Heavy flavor jets using

the SVT trigger

- the bb cross section measurement (Sofia)
- photon + b-jet cross section (Mario)
- photon + bb di-jet production (Mario & Till H.)

Sofia Vallecorsa

Journée de réflexion du DPNC

Cartigny - 14 sept 2007

b jets at the Tevatron

- bb CROSS SECTION AND CORRELATION GIVE A INFORMATION ON b PRODUCTION MECHANISM
- GOOD TEST TO NLO VS LO PREDICTIONS
- ASSOCIATED γ PRODUCTION IS PROMISING CHANNEL TO LOOK FOR NEW PHYSICS
- SENSITIVE TO b CONTENT IN THE p PDF

Silicon Vertex Trigger

BASED ON SILICON DETECTOR HITS AND L1 FAST TRACKER INFO

USE @ HIGH PT: SEARCH FOR NEW PHYSICS NEW FOR QCD STUDIES

SVT selected samples

The three analyses make use of the SVT trigger at level 2: NO PRESCALE – MANY "b" events!

bb DI-JET CROSS SECTION

HIGH_PT_BJET

2 SVT TRACKS |d₀|>100 μm

- **2 JETS** E_t > 20 GeV
- **TRACK-JET MATCHING** $(\Delta \phi)$

ANALYSIS STRATEGY:

Apply offline tighter selection to have 100% trig eff.

```
γ + b CROSS SECTION
γ + bb CROSS SECTION
```

PHOTON_BJET

- **ISOLATED PHOTON** E_t > 12 GeV
- **SVT TRACK** |d₀|>120 μm

JET E_t>20 GeV

ANALYSIS STRATEGY:

Calculate trig eff. from data using inclusive sample as reference

bb di-jet cross section

- TWO JETS in THE CENTRAL CALORIMETER REGION $|\eta| < 1.2$ ENERGY CORRECTED FOR DETECTOR EFFECTS
- 2 SVT TRACKS |d₀|>120 μm, p_T> 2 GeV
 GEOMETRICAL (ΔR) TRACK JET MATCHING
- JETS ARE IDENTIFIED AS b-JETS USING A SECONDARY VERTEX TAGGING ALGORITHM

(Sofia)

b purity of tagged jets

(Sofia)

EXTRACT b JET FRACTION FROM DATA: FIT SHAPE OF SECONDARY VERTEX INVARIANT MASS

SVT + TAG selection has low efficiency BUT very high purity >80%

In the 2 tagged jet sample:

- SUM SEC. VTX MASS OF 2 JETS
- BUILD bb AND NON-bb TEMPLATES
- FIT DATA using TFRACTIONFITTER

bb di-jet cross section

Data are compared to:

- PYTHIA (TUNE A)
- HERWIG + JIMMY
- NLO MC@NLO + JIMMY

Main systematic uncertainties:

- Jet Corrections 15–20%
- b fraction 7%

CDF Run II Preliminary	σ [pb]
	$ \eta_{1,2} < 1.2, E_{T,1} > 35 \text{ GeV}, E_{T,2} > 32 \text{ GeV}$
Data	σ = 5664 \pm 168 (stat.) \pm 1270 (syst.)
Pythia (CTEQ5L) Tune A	$\sigma = 5136 \pm 52 \; ({\rm stat.})$
Herwig (CTEQ5L) + Jimmy	$\sigma = 5296 \pm 98 \; ({\rm stat.})$
MC@NLO (CTEQ6M) + Jimmy	$\sigma = 5421 \pm 105 \text{ (stat.)}$

Photon + b-jet

(Mario)

Use inclusive photon sample to get SVT trigger efficiency

- -> ASSUME JET/PHOTON INDEPENDENCE
- Look at the overlap region
 - Photon $E_t > 25$ GeV + SVT track
- Extrapolate to low photon E_t

Event selection

(Mario)

JET SELECTION:

- TAGGED JET $E_T > 20$ GeV, $|\eta| < 1.5$
- B PURITY FROM SECVTX MASS FIT

PHOTON SELECTION:

- $E_T > 12$ GeV, $|\eta| < 1.1$
- γ/π^0 BAKGD is SEPARATED USING FIT TO **CES/CPR** SHOWER SHAPE

Photon + bb di-jet

(Till &Mario)

Same analysis strategy as $b+\gamma$ analysis

Event selection:

- photon Et> 12 GeV, |η|<1.1
- 2 SECVTX tagged jet:
 - Et > 20 GeV, Et>15 GeV, |η| < 1.5
- Isolation: $\Delta R(\gamma, jet) > 0.7$

Summary

• bb cross section:

- comparison to NLO is good
- Δφ distribution confirms contribution from different production mechanisms
- the role of the UE simulation is not negligible to correctly describe data
- b+γ cross section:
 - measurement extended down to $E_t(\gamma) > 12$ GeV
 - data is above LO prediction
- Different examples show the use of SVT at HIGH PT is understood

 Geneva is proving a good expertise on heavy flavour QCD at CDF!

Additional MC

COMPARISON Both LO and NLO predictions are enhanced by adding

multi-parton interaction simulation:

HIGH_PT_BJET

Level 1 Two 5GeV towers Two XFT tracks pt>2GeV/c Level 2 Two clusters (Et>15 GeV, $|\eta| < 1.5$) Two SVT tracks |d0|>100µm Cluster-SVT matching ($|\Delta \phi| < 0.7$) Level 3 Two cone–04 jets Et>20 GeV Two COT tracks matched to SVT ($|d0| > 100 \mu m$) Two Si tracks matched to SVT (|d0|>80 µm)

Bkup

Syst. uncertainties

CDF Run II Preliminary

Total syst. uncertainty (luminosity 6% incl.)

160

180

Leading jet E_ (GeV)

TOTAL SYSTEMATIC UNCERTAINTIES ARE ~20-25 %

syst. uncertainty

-0.2

-0.4

- JET ENERGY SCALE (15%-20%),
- LUMINOSITY (6%)
- UNFOLDING FACTORS (4%)
- $E_T DEPENDENCE DATA/MC$
- TAGGING EFFICIENCY (4%)
 - b QUARK MULTIPLICITY INSIDE THE JET
- B-PURITY (~7%) (fraction fit)
 - COMPOSITION OF NO-b TEMPLATES
 - (b/c/LIGHT RATIOS)
 - SECONDARY VERTEX MASS RECO (TRACKING EFFICIENCY IN DATA AND MC)

Unfolding

data and MC

- Ratio Data/MC after unfolding data cross section
- Fit ratio to third order polinomial
- Reweight MC
- Calculate new unfolding
- Take the difference as a syst. err.

b multiplicity in the jet

Eff. is different according to b content in the jet

In 2SVT-tagged jets events select couples with:

- One jet including 2b quarks
- Two jets including 2b quarks

Bkup

Systematic uncertainties:

