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•  
•  

Dark sector
Motivation

Outline
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Analyses (20 min)

• H125 → Dark matter pair ATLAS Collab, ATLAS-CONF-2020-008 (2020)

• H125 → Dark photon + γ ATLAS Collab, ATLAS-CONF-2021-004 (2021)

• ATLAS, JHEP 08 (2020) 080

•  Hong et al., JINST 16 (2021) P08016

Higgs boson

ML on FPGA
ETmiss, VBF

Trigger (30 min)

Higgs portal to DM? How to trigger?

Trigger

https://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-008/
https://cds.cern.ch/record/2758212
https://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-008/
https://cds.cern.ch/record/2758212
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Motivation
Dark sector
Higgs boson



Many evidence of dark matter
Here: colliding galaxy clusters
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Inferred distribution 
of matter by lensing

Source: https://apod.nasa.gov/apod/ap080917.html

3 MLy (MACSJ0025, 2008)

X-rays from 
known matter–

Dark matter
(Known unknown)

= Dark matter

Can we create dark matter? Related to Higgs?

https://apod.nasa.gov/apod/ap080917.html
https://apod.nasa.gov/apod/ap080917.html
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Higgs boson couplings
Higgs couples to everything
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Loop relation for massless Y

Tree relation for massive X
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Table of elementary particles Feynman diagrams

fermions

scalar

bosons

Higgs coupling to each particle is determined given mH

Source: Fermilab



Higgs is so narrow because 125 GeV
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Massive bosons 
p.s. suppressed
(mH ≪ 2 • mW,Z)

Fermion mF 
means tiny Yukawa couplings
(tt ̅large, but mH ≪ 2 • mtop)

Higgs width in MeV (for mH = 125)

Massless 
bosons 
loop suppressed

Everything is suppressed

Source: CERN Yellow Report (2014)
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Tree relation for 
massive

Loop relation for 
masslessH

http://cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR2014
http://cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR2014


O(MeV) is not unreasonable
Portals to NP can look like

Γ
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γγ
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Measure these branching ratios
to indirectly limit invisible

Goncalves, Han, Mukhopadhyay, PRL 120, 11801 (2018)
Curtin, Essig, Zhong, 1412.4779 (2015)

Curtin +12 others, 1312.4992 (2014)
Chang +3 others, 0801.4554 (2008)
Silveira & Zee, PL B161,136 (1985)

and many many more papers.

χ

χH

H 

Theory
• SM singlet ~ g H2 χ2

• Fully renormalizable

Search

invisiblefermionsvector bosons

Coupling at 0.01 → MeV-level modification → Large rate

Source: CERN Yellow Report (2014)

http://arxiv.org/abs/1412.4779
http://arxiv.org/abs/1312.4992
http://arxiv.org/abs/0801.4554
http://www.sciencedirect.com/science/article/pii/0370269385906240
http://arxiv.org/abs/1412.4779
http://arxiv.org/abs/1312.4992
http://arxiv.org/abs/0801.4554
http://www.sciencedirect.com/science/article/pii/0370269385906240
http://cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR2014
http://cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR2014


What's allowed by individual measurements?
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Source: http://cdsweb.cern.ch/record/2629412 
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Standard Model

Measure each predicted slice

non-SM 
≲ 30%

Measured 
Standard 

Model

Allowed

Constrains non-Standard Model
(with caveats)

A fraction of Higgs decays could be related to our hypothesis

http://cdsweb.cern.ch/record/2629412
http://cdsweb.cern.ch/record/2629412


Dark matter (m>0)
Related production channels
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Higgs production
• ggF No observable!
• ggF + 1 jet Overwhelming strong bkg'd
• VBF Depends on trigger threshold
• ZH Suppressed by σ • B
• WH " and neutrino / hadronic W

Trigger threshold is critical aspect of the study

sm
aller σ

Comparison to without γ
• Smaller signal size, but clean 
• Adding γ reduces strong background
• Depends on trigger threshold
• Added bonus in interpretation (next slide)



H

q

q

γd

γ

q

q

V

V

jet

jet

ETmiss

photonγ

γd

Dark photon

H

q

q

χ

χ

q

q

W

W

γ

jet

jet
γ

ETmiss

photon

ETmiss

photon

Dark matter + γ 

ETmiss

photon

Dark matter (m>0) → Dark photon (m=0)
Maybe there is a Dark sector
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same 
final 
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Theory
• Unbroken U(1)dark with enhanced H → γ γdark

• Signal peaks in the mT of (ΕΤmiss,γ) system

Gabrielli, Heikinheimo, Mele, Raidal, PRD 90, 055032 (2014)

H125

W (e misid)

Expand the scope of the search with alternate signal models

http://dx.doi.org/10.1103/PhysRevD.90.055032
http://dx.doi.org/10.1103/PhysRevD.90.055032
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Analyses
H125 → Dark matter pair
H125 → Dark photon + γ



Physics of VBF H → invisible 
VBF production of the Higgs is established
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Received 5 December 1983 

We compare Higgs boson production mechanisms at multi-TeV hadronic colliders. In addition to the previously inves- 
tigated processes gluon + gluon ~ H and q?l ~ V* ~ VH (V = W, Z), we consider Higgs boson formation by pairs of virtual 
W's or Z's, a process analogous to two-photon collisions in e+e - scattering. The Higgs production process W'W* ~ H' is 
dominated by longitudinal W's and is the most important mechanism for M H > 6 M W, if the top quark mass is about 30 
GeV. 

1. Introduction. The standard Glashow-Weinberg-  
Salam [1 ] model of electroweak interactions has 
been extremely successful at predicting low energy 
phenomena. With the recent discovery [2] of the 
W and Z gauge bosons, the only particle of the theo- 
ry remaining to be discovered is the I-Iiggs boson, a 
neutral spin-zero particle. The Higgs is required for 
the spontaneous symmetry breaking which give rise 
to masses in the theory. Unfortunately, although the 
couplings of the Higgs boson to quarks and leptons 
are predicted, its mass is not.  

We shall consider here the possibility that the I-Iiggs 
boson is very massive, in fact with a mass several times 
that of the W. The dominant decay of such a Higgs 
boson is into W or Z pairs. The partial widths are pre- 
dicted to be 

r ( H  ~ W+W - )  "" GFM3H]87rx/~ 

"~ 40 GeV(MH/500 GeV) 3 , ( la )  

F(H -~ ZZ)-~ 21- F(H-~ W+W-). (lb) 
Clearly, for M n > 10Mw, the width of the Higgs 
boson is so great that its detection becomes quite 
improbable. For Higgs boson masses above threshold 

This work supported in part by the Director, Office of 
Energy Research, Office of High Energy Physics and 
Nuclear Physics, Division of High Energy Physics of the 
U.S. Department of Energy under Contract DE-AC03- 
76SF00098. 

196 

for the WW decay but not in excess of 7 - 8  M w there 
is a chance that the Higgs boson could be found in ex- 
periments at a multi-TeV hadronic collider. The best 
signature may be furnished by the leptonic decay of 
one of the W's or Z's [3]. 

2. Bas& production cross sections. In the standard 
electroweak model, the Higgs boson can be produced 
from quark-ant i-quark interactions, figs. 1 and 2, or 
from gluon-gluon interactions, fig. 3. Previously, it 
has been assumed that the dominant mechanism is 
gluon fusion. However, for a heavy Higgs boson, this 

Pt 

PI I 

; / 

Fig. 1. Higgs boson production from virtual vector boson 
pairs (V = W or Z). The initial state quark (or anti-quark) 
momenta are Pl and P2 and the corresponding final state 
momenta are P'I and p~. The momenta of the virtual vector 
bosons are q 1 and q2. 

0.370-2693/84/$ 03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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Source: Cahn, Dawson, PLB 136 (1984) 196
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ector boson

• Energetic jets with large η gap
• No hadronic activity
• mjj, Δηjj, Ncentral jets

• ETmiss ~ Higgs PT
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Not many handles, background estimation is crucial

Trigger & 
QCD makes 
us cut here

http://www.sciencedirect.com/science/article/pii/0370269384911808
http://www.sciencedirect.com/science/article/pii/0370269384911808
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Signal & background
Z & W are largest
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Strong process is dominant, but weak process imp't at higher mjj
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Event display
High ETmiss (564 GeV) + High mjj (3.6 TeV)
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Angular characteristics
Data distribution of separation in η
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ATLAS, J. High Energy Phys. 01 (2016) 172

Known processes
H χ

χHiggs signal process

Angular 
separation in η

Use kinematic properties to statistically separate samples
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-16/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-16/
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Selection
Signal region, control regions
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Cuts
• Two jets > 80 GeV, 50 GeV 

• Centrality of additional jets

• ETmiss > 200 GeV

Signal region
• Bin in mjj ⊗ Njet ⊗ Δφjj = 5 ⊗ 2 ⊗ 2

Control region
• W → ℓν

• Z → ℓℓ

• Multijet by 
rebalance & smear

N
jet

[3,4]
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ATLAS Preliminary, 139 fb-1 
Signal region bins for the search of VBF invisible Higgs boson decay
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ATLAS, ATLAS-CONF-2020-008 (2020)

https://cds.cern.ch/record/2715447?ln=en
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Results (2019)
Limits, systematics
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Implied recoil

Data is consistent 
with no signal

We can say that Higgs decays less than 37% to invisible final states
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If 100% of the Higgs 
decayed invisibly

Systematic errors
• simulation samples
• hadronic jet energy

Statistical errors
• large for sensitive bins
• need more data

ATLAS, Phys. Lett. B 793, 499 (2019)
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http://dx.doi.org/10.1016/j.physletb.2019.04.024
http://dx.doi.org/10.1016/j.physletb.2019.04.024


Data is consistent 
with no signal

Systematic errors
• simulation samples 8%
• multijet estimation 7%
• jet energy 6%
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Update (2020)
Add 4x more data & improve methods
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Two-jet invariant mass

Statistical errors
• large for sensitive bins
• need more data 17%

W strong

Z strong

W electroweak
Z electroweak

Multijet
others

We can say that Higgs decays less than 13% to invisible final states

If 100% of the Higgs 
decayed invisibly

If 13% of the Higgs 
decayed invisibly

ATLAS, ATLAS-CONF-2020-008 (2020)
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https://cds.cern.ch/record/2715447?ln=en
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Interpretations
ATLAS result interpreted in #1, #2
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χ0 χ0
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N N

#1
χ0

χ̅0

H
p

p

= σWIMP

#2 χ0

χ̅0

heavy
scalarp

p

= σscalar • Binv

QuantityInterpretationATLAS result

Connection to astrophysics & BSM sector



Interpretation #1
ATLAS result + Higgs portal
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scalar: Γinv • (mχ)–2 ~ σWIMP

fermion: Γinv • const ~ σWIMP
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Direct detection results

DM interpretation is complementary to direct detection

ATLAS

ATLAS



= σscalar •      Γinv
ΓH

ε125
εscalar

•

Interpretation #2
ATLAS result + "No model"

σH •      Γinv
ΓH

#2
χ0

χ̅0

heavy
scalar
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= σscalar • Binv

χ0

χ̅0

H
p

p
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TeV scale particle limit at ~ ¼ pb
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Add a photon to it
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http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.pdf 

jet jet

photon

ET
miss

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.png


Interpretation
H125 to γγdark
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ATLAS, [arXiv:2109.00925], submitted to Eur. Phys. J. C
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Data is consistent 
with no signal

• need more data

If Higgs decayed 
to dark photons

Observed limit Bdark of 0.014

Expected limit Bdark of 0.017 ± 0.006

https://arxiv.org/abs/2109.00925
https://arxiv.org/abs/2109.00925


Interpretation
Scalar particle to γγdark
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acceptance boost harder γ
larger ΕΤmiss

more difficult 
to produce

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_12.png 

Exclude at few percent up to a few TeV

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_12.png
http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_12.png
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Trigger
ML on FPGA
ETmiss, VBF



ETmiss trigger rate vs. ❬μ❭
Rate blows-up with ❬μ❭, so very large at the beginning of runs
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Pileup lower as run goes on
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ePhysics

• Signal: Higgs pT gives rise to ETmiss

• Background: Combinatorics esp. vs. ❬μ❭

Challenge
• Problem: ETmiss trigger is bandwidth limited

• Non-solution: Can't increase threshold to 
reduce the rate beyond ~150 GeV bec. 
signal peaks at low values

• Solution: Be smarter about reducing 
background while maintaining signal 
(sounds like physics analysis!)

ETmiss trigger

NB. 150 → 180 GeV reduces signal by ~30%



 Ben CarlsonBrief history: L1 MET

3

Lots of trouble with pileup driving up MET rates  
• Conceptually, linear rate v. <µ> means “no pileup dependence,” see left cartoon 
• Rates show non-linear <µ> dependence, see right plot 

Despite periods with very high L1 rates, we kept XE50 
• The total rate did peak to almost 8 kHz a few times, but this was only at the start of 

L1 cross-section = rate / lumi

rate

non-linear rate =  
non-constant cross-section

Cartoon of rates
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ETmiss trigger rate challenge
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Level-1 XE50 
blowing up

050



Signal efficiency similar (before / after noise update with lower rates)

 Ben CarlsonImproving XE50 rate

4
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Improvement

0.5-1 GeV threshold 
adjustment in FCAL

<µ>

Frequent adjustments to noise cuts control the rate  
• Adjusted as the pileup increases or the filling scheme changed (right) 
• The noise cuts were adjusted three times in 2017 and once in 2018 
• Plot on the left shows the impact of the first change, plot on the right the second 

change (sorry it’s confusing…) 
• Documented by L1Calo (link, ATR-17844), but lots of missing changes… 

10 GeV

7.5 GeV

5.0 GeV

2.5 GeV

Ivana Hristova, ATR-17844

This matters, because we will have to study the performance in each period 

η bin
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η bin

At level-1: Smarter noise cuts
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Noise cuts to 
reduce L1 rate

<μ>

https://indico.cern.ch/event/719325/contributions/3077086/attachments/1688360/2715759/Carlson_Trigger_July17_2018.pdf
https://indico.cern.ch/event/719325/contributions/3077086/attachments/1688360/2715759/Carlson_Trigger_July17_2018.pdf


 Ben CarlsonBrief history: HLT 

6

mht110 (default for post-CHEP 2016)  
• Rate for µ > 45-50 too high, see left plot 

We found backup: mht110 + cell70*, but kept mht110  
• The performance is much better when mht is combined with cell MET  
• Efficiency is better compared to mht130, see right plot^

HLT cross-section = rate / lumi Efficiency relative to mht110

mht > 120

mht > 130

mht > 120

<µ>

mht > 110 + cell >70

mht > 110

https://cds.cern.ch/record/2215888/files/ATL-COM-DAQ-2016-132.pdf

mht > 110 
+ cell > 70

mht > 130

At HLT: Smarter algorithm (2016)
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Try combo to 
reduce rate

in 2016
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At HLT: Smarter (2017)
χ2 based "pileup fit" algorithm
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Algorithm
• Divide η-φ space in ~0.42 grid

• Assume uniform underlying pileup energy 
in η-φ, float magnitude given momentum 
conservation in xy

Result
• Trigger rate drastically reduced

• Signal efficiency is similar

Algorithm & threshold evolution
• Rapid development Year Trigger name HLT algorithm L1 threshold HLT threshold

R
L dt

[GeV] [GeV] [GeV] [fb
�1

]

2015 HLT_xe70_mht_L1XE50 mht 50 70 3.5

2016 HLT_xe90_mht_L1XE50 mht 50 90 12.7

2016 HLT_xe110_mht_L1XE50 mht 50 110 30.0

2017 HLT_xe90_pufit_L1XE50 pufit, cell 50 90, 50 21.8

2017 HLT_xe100_pufit_L1XE50 pufit, cell 50 100, 50 33.0

2017 HLT_xe110_pufit_L1XE50(55) pufit, cell 50 (55) 110, 50 47.7

2018 HLT_xe110_pufit_xe65_L1XE50 pufit, cell 50 110, 65 57.0

2018 HLT_xe110_pufit_xe70_L1XE50 pufit, cell 50 110, 70 62.6Rapid algorithm R&D to retain ETmiss threshold

same
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Use combinations of algorithms
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Algorithm
• χ2 based algorithm from prev. slide

• Cell-based algorithm using ~200k LAr cells

• Use both algorithms!

Result
• Trigger rate drastically reduced

• Signal efficiency is similar

Algorithm & threshold evolution
• Rapid development
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 eventsµµ→Z
2015
2016
2017
2018

Year Trigger name HLT algorithm L1 threshold HLT threshold

R
L dt

[GeV] [GeV] [GeV] [fb
�1

]

2015 HLT_xe70_mht_L1XE50 mht 50 70 3.5

2016 HLT_xe90_mht_L1XE50 mht 50 90 12.7

2016 HLT_xe110_mht_L1XE50 mht 50 110 30.0

2017 HLT_xe90_pufit_L1XE50 pufit, cell 50 90, 50 21.8

2017 HLT_xe100_pufit_L1XE50 pufit, cell 50 100, 50 33.0

2017 HLT_xe110_pufit_L1XE50(55) pufit, cell 50 (55) 110, 50 47.7

2018 HLT_xe110_pufit_xe65_L1XE50 pufit, cell 50 110, 65 57.0

2018 HLT_xe110_pufit_xe70_L1XE50 pufit, cell 50 110, 70 62.6

Year Trigger name HLT algorithm L1 threshold HLT threshold

R
L dt

[GeV] [GeV] [GeV] [fb
�1

]

2015 HLT_xe70_mht_L1XE50 mht 50 70 3.5

2016 HLT_xe90_mht_L1XE50 mht 50 90 12.7

2016 HLT_xe110_mht_L1XE50 mht 50 110 30.0

2017 HLT_xe90_pufit_L1XE50 pufit, cell 50 90, 50 21.8

2017 HLT_xe100_pufit_L1XE50 pufit, cell 50 100, 50 33.0

2017 HLT_xe110_pufit_L1XE50(55) pufit, cell 50 (55) 110, 50 47.7

2018 HLT_xe110_pufit_xe65_L1XE50 pufit, cell 50 110, 65 57.0

2018 HLT_xe110_pufit_xe70_L1XE50 pufit, cell 50 110, 70 62.6

Rapid algorithm R&D to retain ETmiss threshold

same



Approach
•  

• Repeat every few months

Obvious question (& answer)

• Why not pre-develop in advance? Rates are notoriously difficult to simulate

My view for Run 3
• Keep a similar theme of innovating on algorithms, combining algorithms as we did in HLT

• May want to use non-ETmiss triggers for the VBF + ETmiss (+ soft) analyses
VBF + ETmiss (+ soft) analyses
VBF + ETmiss (+ soft) analyses
VBF + ETmiss (+ soft) analyses

ETmiss trigger
Summary of the Run 2 history & my outlook on Run 3
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higher pileup than beforeStart data taking ETmiss rates 
are too high

Develop & deploy 
clever solutions

threaten to raise thresholds

Rapid algorithm R&D to retain ETmiss threshold
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Source: L1Calo TDR, https://cds.cern.ch/record/1602235. This diagram courtesy B. Carlson. 

https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
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Run 3 architecture
My guess
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L1Calo TDR 
https://cds.cern.ch/
record/1602235  

• We'll start with baseline ETmiss algorithms in jFEX-gFEX
• We'll take data and probably realize that we need to do better than baseline
• We'll probably improve & add jFEX-gFEX algorithms (like we did before in HLT)

• We'll combine jFEX-gFEX outputs (like we did before in HLT) → use ML?

M
ore speculative

https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
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ML on FPGA
Boosted decision trees

2021 JINST 16 P08016
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Nanosecond machine learning event classification with

boosted decision trees in FPGA for high energy physics
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A�������: We present a novel implementation of classification using the machine learning/artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA).
The firmware implementation of binary classification requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called fwXmachina achieves this
implementation. Our intended user is an expert in custom electronics-based trigger systems in high
energy physics experiments or anyone that needs decisions at the lowest latency values for real-time
event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
rejection of the multÚet processes.
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65 TB/s

FPGA

Partial data

Custom electronics

Reduce rate to
100 kHz 160 GB/s

1.5 GB/s

Software

Reduce rate to
1-10 kHz

50k CPUs

yes / no

yes / no

O(1) μs

O(1) s

Latency

Source: http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf 

https://twiki.cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf
https://twiki.cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf


   TM HongIsn't there already a package? (yes, now there are 2)
2018 JINST 13 P07027

3. resource usage, expressed as the following FPGA resource categories: onboard FPGA
memory (BRAM), digital signal processing (arithmetic) blocks (DSPs), and registers and
programmable logic (flip-flops, or FFs, and lookup tables, or LUTs).

The hls4ml tool has a number of configurable parameters which can help the user explore and
customize the space of latency, initiation interval, and resource usage tradeo�s for their application.
Because every application is di�erent, the goal of the hls4ml package is to empower the user to
perform this optimization through automated neural network translation and FPGA design iteration.
In practice, the time required to perform hls4ml translation of a neural netowrk is much shorter
(minutes to hours) than a designing a specific neural network architecture for an FPGA, and may be
used to rapidly prototype machine learning algorithms without dedicated engineering support for
the FPGA implementation. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus has the potential for the “time to physics”
to be greatly reduced.

We first introduce some terminology and concepts for the inference of deep, fully connected
neural networks. Consider the network illustrated in figure 2 with M layers, where each layer m

has Nm neurons. The input layer has N1 input neurons and the output layer has NM output neurons.
The vector of neuron output values at each layer are denoted by xm. For the m

th fully connected
layer (m > 1),

xm = gm
�
Wm,m�1xm�1 + bm

�
, (2.1)

where Wm,m�1 is the matrix of weights between layers m � 1 and m, bm are the bias values, and gm
is the activation function for layer m. The size of matrix Wm,m�1 is Nm ⇥ Nm�1 and thus the number
of multiplications required to compute the neuron values of layer m is implicitly also Nm ⇥ Nm�1.

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

Figure 2. A cartoon of a deep, fully connected neural network illustrating the description conventions used
in the text.

– 5 –

Deep Neural Network 
• Popular method for signal vs. background
• But can't be very deep for FPGA, so ~3 "deep" in paper
• y = Θ(𝕄 ⋅ x + b)

Fancy 
activation

Duarte et al., J. Instrum. 13, P07027 (2018)

Multiplication
(limited resource on FPGA)

Standard Decision Tree
• Another popular classification
• y = Θ(x < threshold) start
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2d plane: xa vs. xb

2d plane: xa vs. xb

Hong et al., J. Instrum. 16, P08016 (2021)

No multiplication
(bin search problem)

Decision Tree for FPGA
• Smart bit integer precision, bit shifting
• Flattened (also "deep")
• All variables processed in parallel
• One step algorithm, ns fast, tiny footprint
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Boolean

https://dx.doi.org/10.1088/1748-0221/13/07/P07027
https://dx.doi.org/10.1088/1748-0221/13/07/P07027
https://dx.doi.org/10.1088/1748-0221/16/08/P08016
https://dx.doi.org/10.1088/1748-0221/16/08/P08016
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• Workflow

• Optimization

• Use bit integer precision
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39

• Workflow

• Optimization

• Use bit integer precision

• Will discuss next:
Tree Flattener
Forest Merger



• Workflow

• Optimization

• Use bit integer precision • Advantages & subtleties
Bit integers represents a wide range 
without sacrificing float precision

Transformation

Floor operation

f(x1 + x2) = f(x1) + f(x2)

Equal up to one bit because of floor

Firmware only addsPre-evaluate f

ML training
sw interface

Nanosecond
Optimization

HLS / VHDL
fw design

User 
input

Input
data

ROC,
latency,
LUT, FF

Custom
firmware

External
sw for ML
training

External
sw for HLS
synthesis

   TM Hong  structure (3)
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E.g., ap_int⟨8⟩ means the variable is 
represented by a range from 0 to 255.



   TM HongDecision tree, 2 var example
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2d plane: xa vs. xb

First 
step

• Advantages & subtleties
• Cut thresholds & weights determined during training
• Danger of "memorizing" boundaries (overtraining), so must consider a forest
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First 
step

Full 
tree

• Advantages & subtleties
• Deterministic, conventional style
• Cuts in each axis is not independent of each other, so recursive



Our 
approach
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Full 
tree

• Advantages & subtleties
• Each axis is independent of each other → Bin search problem on a grid
• Does not scale well for very deep trees (but do you really need it at L1?)
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• Advantages & subtleties
• Use TMVA software to train the 

BDT (support for other sw coming)

• Can we pre-merge the trees for 
firmware? Yes, next slide.

1st 
tree

2nd 
tree

Our 
approach
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   TM HongMerging of the forest
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• Advantages & subtleties
• Merging is pre-processed before implementation in firmware
• This is using adaptive boosting. Gradient boosting cannot pre-merge, 

but we have approximations for that method to improve performance.

• Physics impact of flattening & merging
• None, bec. encodes the entirety of conventional approach
• Firmware is a giant look-up table problem

Put this in fw
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VBF Higgs vs. Multijet background
• σΗiggs = 4 pb, two widely separated high-pT jets
• σpp = 80 mb, dominant process at LHC
• Distributions given on the right

We consider two decays of the Higgs
• H → neutrinos, "invisible"
• H → bbb̅b,̅ thru pseudoscalar decays

Strategy
• Train BDT to identify VBF jet pair,

i.e., train BDT on Multijet vs. VBF H → neutrinos
• Apply that BDT to Multijet vs. VBF H → bbb̅b ̅

Why
• If it works for VBF H → bbb̅b,̅ then it can be a 

trigger for VBF independent of the Higgs decay
• Does it work? Next slide

   TM HongPhysics: VBF Higgs vs. multijet
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It works!
• Reminder. Did not train on VBF H → bbb̅b ̅
• Subtlety re: jet selection (see paper)
• Distributions given on the right

Performance comparison
• Try to mimic ATLAS HL-LHC cuts as best 

we can using Madgraph + Delphes
• Two-fold signal efficiency improvement 

from ATLAS-inspired → fwX results

Details
• We validated our setup to reproduce the 

signal efficiency in the ATLAS Run-2 paper
• Comparison using bit integers, not floats
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Ran two configurations
• Optimized version
• Non-optimized version (for comparison)
• Both using 100 trees, max depth of 4
• Results given on the right

Performance
• 5 clock ticks = 16 ns
• Negligible resource usage

Benchmark using e+ vs. γ
• In the paper, we also define one set of 

parameters to scale up one param. at a time
• Uses 4 variables, 8 bits & same as above
• 3 clock ticks = 10 ns
• Negligible resource usage

VBF H 
Optimized

VBF H 
Non-opt

Nvar 5 7

Nbit-var 
Nbit-score

8 
16

12 
16

Nbin 40k 1M

Latency 5 ticks 6 ticks

LUT 1% 1.5%

Flip Flops ~0 ~0

BRAM 2% 30%

DSP 0 ~0
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Angles
Masses

Jets, MET

e, γ, τ

L1Topo CTP

Digitize
supercells 
0.025 x 0.1

Digitize 
trigTowers
0.1 x 0.1

eFEX

jFEX

gFEX

Small R=0.4 
jets, τ, ETmiss

Global quantities,
e.g., Large R=1 

jets, ETmiss

jTowers
0.1 x 0.1

supercells
0.25 x 0.1

gTowers
0.2 x 0.2

e, γ, τ

Same as Run-2

L1 accept

Where can we put fwX?

49

L1Calo TDR 
https://cds.cern.ch/
record/1602235  

LAr

Tile

• L1Topo to do combo algorithms
• gFEX to develop new algorithms
• jFEX to develop new algorithms

• eFEX to develop new algorithms

Run 3

Source: L1Calo TDR, https://cds.cern.ch/record/1602235. This diagram courtesy B. Carlson. 

M
ore speculative

My guess

https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
https://cds.cern.ch/record/1602235
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Regression (using BDT)
• Toy problem in 1-d
• Train / test on f(x) = sin(x) + Gaussian(x)
• For sample of x: y = f(x) in 16 bits
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Why (10 min)

•  
•  

Higgs boson

Summary

52

Method (20 min)

• H125 → Dark matter pair Binvisible < 0.13

• H125 → Dark photon + γ Bdark photon < 0.014

•
•  http://fwx.pitt.edu 

Dark sector

ML on FPGA
ETmiss, VBF

Trigger (30 min)

Higgs portal to DM? How to trigger?

Why

Trigger

http://fwx.pitt.edu
http://fwx.pitt.edu


Abstract
With	more	data	coming	from	LHC	collisions,	detailed	measurements	of	
Higgs	boson	proper9es	allow	us	to	probe	whether	it	communicates	with	
the	unknown	and/or	undiscovered	sector	beyond	the	Standard	Model.	One	
mo9va9on	is	weakly	interac9ng	dark	maCer,	which	are	invisible	to	the	
detec9ng	apparatus,	through	a	Higgs	portal.	I	will	discuss	the	latest	ATLAS	
results	of	the	search	for	Higgs	bosons	decaying	to	invisible	par9cles.	I	will	
also	describe	the	technical	challenges	of	triggering	on	such	events	using	
missing	energy	from	the	Higgs	boson	decay	and/or	hadronic	jets	from	the	
Higgs	boson	produc9on,	including	the	poten9al	use	of	machine	learning	
methods	on	FPGA	boards	in	real-9me	level-1	trigger	systems.	will	discuss	
how	such	interac9ons	produce	the	recently	discovered	Higgs	boson,	and	
how	it	may	serve	as	a	portal	to	unknown	sectors	of	elementary	par9cles,	
such	as	dark	maCer.	I	will	also	describe	the	technical	challenges	of	saving	
such	minuscule	frac9ons	of	weak	force	collisions,	including	the	use	of	
ar9ficial	intelligence	in	real-9me	trigger	systems.



Distribution of energy
Simulation of the polar angle for one collision
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… with "pileup" noise
Ellis, Huston, Hatakeyama, Loch, Tönnesmann, Prog. in Part. & Nucl. Phys. 60 (2008) 484

Large Δη between the scattered quark jets

Multijet
5%

Z (electrowk)
17%

Z (strong)
44%

W (electrowk)
9%

W (strong)
24%

Others
1%

http://dx.doi.org/10.1016/j.ppnp.2007.12.002
http://dx.doi.org/10.1016/j.ppnp.2007.12.002


• ATLAS geometry

• VBF jet pair

• ETmiss

• For +γ

• η along the beam direction
• φ azimuthal angle

• High pT
• Wide gap in η
• Not back-to-back in φ
• Large mjet-jet 2 TeV →
• Low hadronic activity in between

• pT imbalance 840 GeV →

• High-pT photon 540 GeV →
• mT(ΕΤmiss, γ) 1.1 TeV →
• Its η in between jets

η

φ

   TM HongDetector signature
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http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.pdf 

jet jet

photon

ET
miss

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.png


• H portal to χ

• H portal to γd

• VBF H125 w/ POWHEG NLO
• VBF H125 + γISR w/ MG5_aMC@NLO

• S-to-B is higher with mjj, ETmiss, see →

• VBF H125 → γγdark w/ POWHEG v2
• mT(ΕΤmiss, γ) as proxy for mH, see →

Transverse mass of ETmiss and γ
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Dijet invariant mass pT imbalance

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_13.pdf 
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• Weak boson bkg'd
• Z → νν No leptons
• W → ℓν Loses a lepton

• Signal Region
• ETmiss trigger, > 150 GeV
• "Centrality" of γ, 3rd jet
• For +γISR, 15 < pTγ < 110 GeV
• For +γdark,         max(110,0.7 mT)

• Control Region
• For W → ℓν,Require a lepton
• Lepton trigger, > 30 GeV
• Reverse γ centrality cut
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SR

CR

Dijet invariant mass
http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_04a.pdf, fig_04b.pdf 
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• Statistical
• √N
• MC

• Theoretical
• Wγ, Zγ theory

• Experimental
• JES, JER

   TM HongUncertainties, for +γ
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Evaluated by fixing parameters to their best-
fit values and quadratically subtracting from 
the total nominal systematic uncertainty

The observed (expected) upper limit on Binv is 0.37 (0.34+0.15
�0.10) at 95% confidence level (CL). The impact

on the limit from di�erent sources of uncertainties is shown in Table 5. It is evaluated by fixing the nuisance
parameters corresponding that group of systematic uncertainties to their best fit values, and subtracting
in quadrature the new limit’s 1� uncertainty band from the original one. The statistical uncertainties on
the yields of simulated events and data in the SR have the largest impact on the limit constraint. A small
anti-correlation is observed among the di�erent sources of uncertainty.

Table 5: The contributions on the Binv and B(H ! ��d) 95% CL limit ±1� uncertainty band from di�erent sources
of systematic uncertainties. The evaluation is performed by fixing a given group of systematic uncertainties to their
best-fit values and quadratically subtracting the limit 1� uncertainty from the nominal case including all systematic
uncertainties. Due to residual correlations between categories, the quadratic sum of systematic uncertainties can
di�er from the actual number. The uncertainty due to a finite number of data events (“Data stats.”) is obtained by
fixing all systematic uncertainties to their best-fit values. The sum of all systematic uncertainties is estimated by
quadratically subtracting the above uncertainty from the total one. The experimental uncertainties and the uncertainty
related to the size of MC simulated samples (“MC stats.”) are treated as separate categories. The impact of systematic
uncertainties is computed from a fit to data with Binv = 0 or B(H ! ��d) = 0 for each respective column.

Source 1� Uncertainty on Binv 1� Uncertainty on B(H ! ��d)
Data stats. 0.106 0.0051

V�+ jets theory 0.056 0.0028
MC stats. 0.045 0.0026

Jet Scale and Resolution 0.045 0.0011
Photon 0.032 0.0011

e ! �, jet! e, � Bkg. 0.026 0.0024
Pileup 0.025 0.0004

W�+ jets/Z�+ jets Norm. 0.021 0.0005
E

miss
T 0.012 0.0003

Signal theory 0.004 0.0010
Lepton 0.002 0.0008
Total 0.148 0.0071

8.2 Fit model and results for H ! ��d search

In the search for Higgs boson decaying to a ��d pair, the most discriminating observable is the photon-Emiss
T

transverse mass mT(�, Emiss
T ); therefore, this is the observable used to search for a new physics signal. The

events entering the dedicated SR�d (see Section 6) are split in 5 mT bins, as described in Section 6.3. Given
a di�erent relative contribution of H ! ��d signal produced through ggF and VBF production, events
are also split in two categories, those with mjj < 1 TeV and those with mjj � 1 TeV. A total of 10 bins
enters the likelihood function definition, which is, therefore, equivalent to the one in Eq. (5) other than
having a di�erent number of bins in the SR, and a di�erent signal benchmark model for the interpretation
in the context of H ! ��d search. The SR bin-by-bin yields are shown in Table 6 for the background
contribution and recorded data yields in a fit to the background only contributions. The background-only fit
is shown because there is a small deficit that results in a negative fitted B(H ! ��d) signal normalization
when the signal is floating.

The result of the maximum likelihood fit with the B(H ! ��d) signal normalization floating in the ten SR
bins and four inclusive CRs is shown in Fig. 5, with the best fit model propagated in all the regions. Data
and simulated background predictions are in agreement within the reported uncertainties, apart from a small
deficit in the data in the bins corresponding to the highest mT values. The pre-fit background predictions in
the highest mT bins are pulled down by the fit to data, and uncertainties describing these di�erences, which
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Table 1: Summary of generators used for simulation. The details and the corresponding references are provided in
the body of the text. The V in V+jets represents either a W or a Z boson.

Process Generator ME Order PDF Parton Shower Tune

Signal Samples

ggF Higgs P����� v2 NNLOPS NNLO PDF4LHC15 P�����8.230 AZNLO

VBF Higgs+� M��G����5_aMC@NLO 2.6.2 NLO PDF4LHC15 H����� 7.1.3p1 A14

ggF Higgs! ��d P����� v2 NNLOPS NNLO PDF4LHC15 P�����8.244p3 AZNLO

VBF Higgs! ��d P����� v2 NLO CTEQ6L1 P�����8.244p3 AZNLO

Background Samples

Strong V�+ jets S����� v2.2.8 NLO (up to 1-jets),
LO (up to 3-jets)

NNPDF3.0nnlo S�����
MEPS@NLO

S�����

EW V�+ jets M��G����5_aMC@NLO 2.6.5 LO NNPDF3.1lo P�����8.240 A14

EW VV+jets S����� v2.2.1 or
S����� v2.2.2

LO NNPDF3.0nnlo S�����
MEPS@LO

S�����

VV+jets S����� v2.2.1 or
S����� v2.2.2

NLO (up to 1-jet),
LO (up to 3-jets)

NNPDF3.0nnlo S�����
MEPS@NLO

S�����

EW V+ jets H����� 7.1.3 or H����� 7.2.0 NLO MMHT2014nlo68cl H����� 7.1.3 H����� 7

Strong
W (! µ⌫) + jets/
W (! ⌧⌫) + jets

S����� v2.2.8 NLO (up to 2-jets),
LO (up to 4-jets)

NNPDF3.0nnlo S�����
MEPS@NLO

S�����

tt̄� M��G����5_aMC@NLO 2.2.3 NLO NNPDF2.3lo P�����8.186 A14

tt̄ P�����B�� v2 NLO NNPDF3.0nlo P�����8.230 A14

� + jet S����� v2.2.2 NLO (up to 2-jets),
LO (up to 4-jets)

NNPDF3.0nnlo S�����
MEPS@NLO

S�����

Systematic Samples

V�+ jets ↵4

interference
M��G����5_aMC@NLO 2.6.2 LO NNPDF3.1lo P�����8.240 AZNLO
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Table 3: Summary of the requirements defining the di�erent regions considered in this analysis. Where present, the
values in squared brackets are referring to the regions defined in the search for H ! ��d signal. The leading and
subleading jets must satisfying the fJVT requirements mentioned in Sec. 5. In the SR and Z

�
Rev.Cen. CR definitions

E
miss,lep-rm
T ⌘ E

miss
T since no lepton is present.

Variable SR W
�
µ⌫ CR W

�
e⌫ CR Z

�
Rev.Cen. CR Fake�e CR

pT ( j1) [GeV] > 60
pT ( j2) [GeV] > 50
Njet 2,3
Nb-jet < 2
��jj < 2.5 [2.0]
|�⌘jj | > 3.0
⌘( j1) ⇥ ⌘( j2) < 0
C3 < 0.7
mjj [TeV] > 0.25
E

miss
T [GeV] > 150 – > 80 > 150 < 80

E
miss,lep-rm
T [GeV] – > 150 > 150 – > 150

E
jets,no-jvt
T [GeV] > 130
��( ji, E

miss,lep-rm
T ) > 1.0

N� 1
pT (�) [GeV] > 15, < 110 [> 15, <max(110,0.733 ⇥ mT)]
C� > 0.4 > 0.4 > 0.4 < 0.4 > 0.4
��(�, Emiss,lep-rm

T ) > 1.8 [–]
N` 0 1 µ 1 e 0 1 e

pT (`) [GeV] > 30

centrality C� [102] is defined as

C� = exp
✓
� 4

(⌘1 � ⌘2)2 (⌘� �
⌘1 + ⌘2

2
)2
◆
, (1)

where the subscripts indicate the first- and second-highest pT jets in the event. C� equals 1 when the photon
is centred between the two jets characterizing the VBF signature, equals 0 when the photon is infinitely
farther forward in ⌘, and equals 1/e when it aligns with one of the two jets.

Another characteristic of the EW processes in the VBF topology is reduced hadronic activity in the large
rapidity gap between the two leading jets, caused by the absence of color connection between the two
quarks. To suppress the contribution from the strong V� + jets production with additional jets from QCD
radiation with respect to the benchmark signal, the equivalent centrality C3 is defined for the third-leading
jet in the event, replacing ⌘� in Eq. 1 with the third-leading jet pseudo-rapidity ⌘3.

Events are assigned to the SR if they satisfy a set of requirements which have been optimized to maximize
the sensitivity of the search for the VBF Higgs boson invisible signal. These requirements are summarized
in the following.

As discussed in Section 3, events are selected with the E
miss
T -trigger algorithm. To ensure a trigger e�ciency

more than 97% in this topology, the o�ine E
miss
T , after full o�ine reconstruction and calibration of all

11

ηγ, ηj2

8 variables 
fed to DNN
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