
Power™ Coherent Acceleration Processor Interface (CAPI) 1

Framework (OC-Accel), simulation engine (OCSE) and high level language (HLS)

University of Geneva
September 15th, 2021

IBM Montpellier

Power™ Coherent Acceleration Processor Interface (CAPI)

Presentation Outline

2

• Application porting at a glance
• Coding wo framework
• Open-source framework architecture

• Ease of coding
• Ease of moving
• Ease of adapting

• FPGA acceleration: a 3 steps
process

Power™ Coherent Acceleration Processor Interface (CAPI)

FPGA development : no framework with HDL

3

Develop your code
■Software side:
□lib(o)cxl APIs

HDK:
CAPI
PSL

or
BSP

/
OC
TLx
DLx

Big developing efforts
Extreme performance targeted, full control

Programming based on libcxl and PSL/TL-DL interface

Application on Host Acceleration on FPGA

Old fashion HDL described
Hardware Logic

■FPGA side:
□CAPI PSL

interface
□OpenCAPI TLx
□Your action in

HDL

Process C
Slave Context

libcxl

cxl

SNAP
library

Job
Queue

Process B
Slave Context

Process A
Slave Context

cxl

Software
Program

Lib(o)cxl CAPI
OpenCAPI

Power™ Coherent Acceleration Processor Interface (CAPI)

OC-ACCEL : OpenCAPI Acceleration
Framework

• It is an opensource development environment like SNAP was for
CAPI1&2)

• Code is at https://github.com/OpenCAPI/oc-accel
• Doc is at https://opencapi.github.io/oc-accel-doc/
• POWER Utils tools at : https://github.com/OpenCAPI/oc-utils
• How to setup a project

– Easy to re-use CAPI1/2
– Ease to change card or setup a new one

• How to simulate a project (simple examples)
• How to generate the FPGA flash memory content
• How to test on Power

https://github.com/OpenCAPI/oc-accel
https://opencapi.github.io/oc-accel-doc/
https://github.com/OpenCAPI/oc-utils

Power™ Coherent Acceleration Processor Interface (CAPI)

OC-ACCEL Overview

Quick and easy development framework for OpenCAPI Accelerators

OC/AXI Bridge modeProcess C
Slave Context

libcxl

cxl

SNAP
library

Job
Queue

Process B
Slave Context

libcxl

cxl

SNAP
library

Job
Queue

Process A
Slave Context

libocxl

ocxl

oc-accel
library

TLx
DLx

Software on Host Server Acceleration on FPGA

Software Program

DRAM
on-card

Others
...

cfg

snap
core

Verilog
or

HLS C/C++

Hardware Action

AXI4-MM

AXI

AXI4 lite

Master

Slave
Master

data
bridge

mmio

Ethernet
on-cardAXI

OpenCAPI

Power™ Coherent Acceleration Processor Interface (CAPI)

OC-ACCEL documentation

https://opencapi.github.io/oc-accel-doc/

Power™ Coherent Acceleration Processor Interface (CAPI)

Different examples are provided
Each directory has a /sw with main calling
application
and a /hw directory with the action
coded either in RTL or in C/C++

We will briefly explore:
• The pixel manipulation example
• The python example

Oc-accel examples

Power™ Coherent Acceleration Processor Interface (CAPI)

Example of Xilinx tools Setup

VIV_VERSION="2019.2" # default: use Xilinx Vivado
export XILINX_ROOT=/opt/Xilinx # setup your xilinx tools install dir
export XILINXD_LICENSE_FILE=2100@xxxxx.com # Vivado license
. $XILINX_ROOT/Vivado/${VIV_VERSION}/settings64.sh # settings for SDK+HLS+docnav+vivado
vivado -version

Power™ Coherent Acceleration Processor Interface (CAPI)

Predefined configuration, avoiding setup mistake
« make snap_config »

Configuration

Power™ Coherent Acceleration Processor Interface (CAPI)

This is how we prepare the hardware using vivado HLS.
Two in/out streams will collect/return the data to the host mem
The pixel manipulation is described in C/C++

Example of HLS usage
hw/action_pixel_filter.cpp:

hw/action_pixel_filter.cpp

hw/action_pixel_filter.cpp

Power™ Coherent Acceleration Processor Interface (CAPI)

Run a simulation
« make sim »
In 5’ you can simulate WITH the Host server and the actual memory

Simulation

Power™ Coherent Acceleration Processor Interface (CAPI)

Once simulation is performed if required, you can check/debug the
exact transmissions with the « ./display_traces » command

Hardware exchanges & computation analysis

Power™ Coherent Acceleration Processor Interface (CAPI)

Once simulation and chronograms are satisfactory it is time to
generate an image with « make image » command

This will actually prepare the synthesis of the circuitry. It takes some time
And it will provide a binary file (in $SNAP_ROOT/hardware/build/Images/xxx.bin) ready to be stored in the flash
memory of the FPGA card

Card programming

https://github.com/OpenCAPI/oc-utils

Power™ Coherent Acceleration Processor Interface (CAPI)

Once simulation and chronograms are satisfactory, it is time to
generate an flash image with « make image » command
This will actually prepare the synthesis of the circuitry. It takes some time
And it will provide a binary file ready to be stored in the flash
memory of the FPGA card.

Test on POWER server

Power™ Coherent Acceleration Processor Interface (CAPI)

• Each hls_*memcopy_* actions offers a simple
performance test case to run on your P9 hardware

• Highlighted we see 17.7 GB/s from host mem to
FPGA and more than 20GB/S going from FPGA to
host mem.

Build Date: [00000008] 0000202009150921
+---+
| OC-Accel hls_memcopy_1024 Throughput (MBytes/s) |
+---+
+------------LCL stands for DDR or HBM memory according to hardware-------------+

bytes Host->FPGA_RAM FPGA_RAM->Host FPGA(LCL->BRAM) FPGA(BRAM->LCL)

512 8.828 10.240 10.240 11.907
1024 23.814 20.480 1.484 1.476
2048 3.225 2.926 2.985 2.985
4096 5.971 6.554 6.491 80.314
8192 11.924 6.192 6.141 6.466

16384 12.337 12.911 12.921 12.870
32768 24.768 24.693 24.787 25.863
65536 49.461 95.118 92.959 102.721

131072 204.800 188.052 188.322 97.815
262144 195.484 203.055 195.193 202.741
524288 404.856 399.305 380.194 383.251

1048576 759.838 1351.258 775.574 741.567
2097152 1457.368 1408.430 1402.777 1391.607
4194304 2720.042 4185.932 4096.000 4096.000
8388608 7483.147 6732.430 6091.945 6061.133

16777216 7584.637 10292.771 6193.140 6181.730
33554432 10525.230 13584.790 9683.819 9703.422
67108864 13899.930 16615.218 10789.206 10764.977

134217728 17563.168 16927.447 11443.237 11411.131
268435456 17688.156 20650.470 11786.409 11749.265

Note :
• Make sure ensure you

have the OpenCAPI
link attached to the
core where the
software is executed.

• Use numactl to control
this

Bandwidth testing

Power™ Coherent Acceleration Processor Interface (CAPI)

• Using SWIG, CURL and pip3 to ensure environment is controlled
• FPGA contains the hello_world_1024 binary

(Helloworld HLS (C/C++) description reused)
• Host memory is accessed by the python, which in turn exchanges

with the hardware through the OpenCAPI interface
• Can run in a Jupyter notebook

Python application running a FPGA hardware

https://github.com/OpenCAPI/oc-accel/tree/master/actions/hls_helloworld_python

Power™ Coherent Acceleration Processor Interface (CAPI)

The CAPI SNAP/OC-Accel concept

17

Action -
function

(Open)CAPI

SNAP
OC-Accel

Vivado
HLS

(Open)CAPI FPGA becomes a peer of the CPU
 Action directly accesses host memory

SNAP
OC-Accel

Manage server threads and actions
Manage access to IOs (memory, network)
 Action easily accesses resources

FPGA
Gives on-demand compute capabilities
Gives direct IOs access (storage, network)
 Action directly accesses external resources

Vivado
HLS

Compile Action written in C/C++ code
Optimize code to get performance
 Action code can be ported efficiently

+

+

+

=
Offload/accelerate a C/ C++ code with :
- Quick porting
- Minimum change in code
- Better performance than CPU

FPGA

Application

Power™ Coherent Acceleration Processor Interface (CAPI)

2 different working modes

The Fixed-Action Mode
PARALLEL MODE

The Job-Queue Mode
SERIAL MODE

FPGA-action executes a job
and returns after completion

FPGA-action is designed to permanently run
Data-streaming approach with data-in and
data-out queue

Software Code C/C++ function

Hardware Action
Software code C/C++ function

Hardware Action

Présentateur
Commentaires de présentation
We will have 2 different modes in this framework
- The job queue mode which will be used in a cloud environment for example. Typically, a process will ask for a job and the action will be stopped when completed
CLICK
- The 2nd mode is the Fixed action mode which will be used in a streaming approach when actions are always the same and never ending. A typical example is an action looking for a “man with baguette” in N video streams.

Power™ Coherent Acceleration Processor Interface (CAPI)

Presentation Outline

• Application porting at a glance
• Coding wo framework
• Open-source framework architecture

– Ease of coding
– Ease of moving
– Ease of adapting

• FPGA acceleration: a 3 steps process

19

Power™ Coherent Acceleration Processor Interface (CAPI)

A SIMPLE 3 STEPS PROCESS

Application

SNAP_CONFIG=CPU snap_helloworld –i
/tmp/t1 -o /tmp/t2

“Lower case” processing
 “software” action

Action

1

x86 server

EXAMPLE

command: make
snap_config

SNAP_CONFIG=FPGA
snap_helloworld –i /tmp/t1 –o /tmp/t2

FPGA Card emulation
with Power Server IBM’s

Simulation Engine

2

“Upper case” processing
 “hardware” action

x86 server

Application Action

SIMULATION

command: make sim

3

“Upper case” processing
 “hardware” action

POWER8/9 server

Application Action

SNAP_CONFIG=FPGA
snap_helloworld –i /tmp/t1 –o /tmp/t2

EXECUTION

command: make image

Power™ Coherent Acceleration Processor Interface (CAPI)

Takeaways

21

- CAPI / OPENCAPI removes the driver latency that a classic “FPGA + drivers” adds

- HLS can be easily tuned to get performances as good as low level language

- SNAP / OC-ACCEL follow the CAPI / OpenCAPI and FPGAs evolution without a

change in user’s code

- Open-source helps integration with other software (libfuse…) and motivate new

IPs/projects coded based on SNAP and CAPI/OpenCAPI

- Complex C/C++ codes (3000 lines) can be used for FPGA programming

- CAPI / OpenCAPI Simulation Engines save huge time for debuging

Power™ Coherent Acceleration Processor Interface (CAPI)

- Know more about accelerators ?
- See a live demonstration?
- Do a benchmark ?
- Get answers to your questions?

22September 2021

Contact us
alexandre.castellane@fr.ibm.com

bruno.mesnet@fr.ibm.com
fabrice_moyen@fr.ibm.com

OpenCAPI Consortium: https://www.opencapi.org
OpenCAPI Repository: https://github.com/OpenCAPI
OC-Accel Documentation: https://opencapi.github.io/oc-accel-doc/

mailto:castella@fr.ibm.com
mailto:bruno.mesnet@fr.ibm.com
mailto:fabrice_moyen@fr.ibm.com
https://www.opencapi.org/
https://github.com/OpenCAPI
https://opencapi.github.io/oc-accel-doc/

	Framework (OC-Accel), simulation engine (OCSE) and high level language (HLS)
	Presentation Outline
	FPGA development : no framework with HDL
	OC-ACCEL : OpenCAPI Acceleration Framework
	OC-ACCEL Overview
	OC-ACCEL documentation
	Oc-accel examples
	Example of Xilinx tools Setup
	Configuration
	Example of HLS usage
	Simulation
	Hardware exchanges & computation analysis
	Card programming
	Test on POWER server
	Bandwidth testing
	Python application running a FPGA hardware
	The CAPI SNAP/OC-Accel concept
	2 different working modes
	Presentation Outline
	A SIMPLE 3 STEPS PROCESS
	Takeaways
	Diapositive numéro 22

