- Adapters - 2 Hardware Accelerators - → FPGA-GPU combination - 3 Host memory # **Conventional system** # **Conventional system** # GPU RAM FPGA PCIe 4 2 1 5 Host CPU RAM # **CAPI/OpenCAPI** system # Memory Allocation: - Unified memory mode - Store within GPU memory space # Advantage: - No redundant copy at host memory - Speedup with NVLink and CAPI/OC # **Conventional system** # CAPI/OpenCAPI system ``` cudaDeviceGetAttribute(xxx); cudaMemcpy(ibuff,bufferA, size, cudaMemcpyDeviceToHost); // obuff = 2*ibuff vector_add<<<4*numBlocks,numThreadsPerBlock>>>(ibuff,obuff,vector_size); cudaMemcpy(bufferB, obuff, size, cudaMemcpyHostToDevice); cudaDeviceSynchronize(); ``` ``` cudaDeviceGetAttribute(xxx); // obuff = 2*ibuff vector_add<<<4*numBlocks,numThreadsPerBlock>>>(ibuff,obuff,vector_size); cudaDeviceSynchronize(); ``` ### **Using Host-GPU unified memory:** - Double the bandwidth and cut by 2 the latency - Not depending on GPU interface used → no reprogramming needed September 15th, 2021 University of Geneva - Adapters - 2 Hardware Accelerators - → FPGA-GPU combination - 3 Host memory - Adapters - 2 Hardware Accelerators - 3 Host memory - → OMI: New memories around a universal bus - → Work with pools of memories # OMI = bandwidth of HBM at DDR latency, Capacity and Cost # **Memory Interface Comparison** **OMI**, the ideal Processor Shared Memory Interface! | Specification | LRDIMM DDR4 | DDR5 | HBM2E(8-High) | ОМІ | |-------------------------|-----------------------------|-----------------|----------------------------|------------------------------| | Protocol | Parallel | Parallel | Parallel | Serial | | Signalling | Single-Ended | Single-Ended | Single-Ended | Differential | | I/O Type | Duplex | Duplex | Simplex | Simplex | | LANES/Channel (Read/ | 64 | 32 | 512R/512W | 8R/8W | | LANE Speed | 3,200MT/s | 6,400MT/s | 3,200MT/S | 32,000MT/s | | Channel Bandwidth (R+W) | 25.6GBytes/s | 25.6GBytes/s | 400GBytes/s | 64GBytes/s | | Latency | 41.5ns | ? | 60.4ns | 45.5ns | | Driver Area / Channel | 7.8mm² | 3.9mm² | 11.4mm ² | 2.2mm ² | | Bandwidth/mm² | 3.3GBytes/s/mm ² | 6.6GBytes/s/mm< | 35GBytes/s/mm ² | 33.9GBytes/s/mm ² | | Max Capacity / Channel | 64GB | 256GB | 16GB | 256GB | | Connection | Multi Drop | Multi Drop | Point-to-Point | Point-to-Point | | Data Resilience | Parity | Parity | Parity | CRC | DDR: low BW per Die/Area **HBM:** expensive + capacity limited CXL.mem, OpenCAPI, CCIX, GenZ: high latency, far memory Similar Bandwidth/mm² provides an opportunity for an HBM Memory with an OMI Interface on its logic layer. Brings Flexibility and Capacity options to Processors with HBM Interfaces! Allan Cantle's full presentation at https://youtu.be/c0DuGSwDpqY ## System Composability: PowerAXON & Open Memory Interfaces 4x8 @ 32 GT/s Multi-protocol "Swiss-army-knife" Flexible / Modular Interfaces Built on best-of-breed Low Power, Low Latency, High Bandwidth Signaling Technology OMI edge 8x8 @ 32 GT/s 6x bandwidth / mm² compared to DDR4 signaling ## Data Plane Bandwidth and Capacity: Open Memory Interfaces (PowerAXON and OMI Memory configurations show processor capability only, and do not imply system product offerings) September 15th, 2021 University of Geneva 10 ## System Enterprise Scale and Bandwidth: SMP & Main Memory Multi-protocol "Swiss-army-knife" Flexible / Modular Interfaces Signaling Technology **Build up to 16 SCM socket** Allocate the bandwidth **Robustly Scalable High Bisection Bandwidth** however you need to use it "Glueless" SMP POWER10 Chip 1 Terabyte / Sec 1 Terabyte / Sec **PowerAXON OMI Memory Built on best-of-breed** Low Power, Low Latency, **High Bandwidth** (PowerAXON and OMI Memory configurations show processor capability only, and do not imply system product offerings) September 15th, 2021 ### System Heterogeneity and Data Plane Capacity: OpenCAPI ### Pod Composability: PowerAXON Memory Clustering (PowerAXON and OMI Memory configurations show processor capability only, and do not imply system product offerings) # **Memory Clustering: Distributed Memory Disaggregation and Sharing** Use case: Share load/store memory amongst directly connected neighbors within Pod Unlike other schemes, memory can be used: - As low latency local memory - As NUMA latency remote memory Example: Pod = 8 systems each with 8TB Workload A Rqmt: 4 TB low latency Workload B Rqmt: 24 TB relaxed latency Workload C Rqmt: 8 TB low latency plus 16TB relaxed latency All Rqmts met by configuration shown POWER10 2 Petabyte memory size enables much larger configurations (Memory cluster configurations show processor capability only, and do not imply system product offerings) # Think big — memory at a system level architecture ■ OpenPOWER™ # **Data Centric** ## Generic System Level "Domain Specific Architecture" - Know more about accelerators? - See a live demonstration? - Access to a server? - Do a benchmark? - Get answers to your questions? Paul Scherrer Institute : <u>filip.leonarski@psi.ch</u> IBM local partner: <u>lclavien@inno-boost.com</u> IBM OpenCAPI team : <u>alexandre.castellane@fr.ibm.com</u> - <u>bruno.mesnet@fr.ibm.com</u> - <u>fabrice_moyen@fr.ibm.com</u> OpenCAPI Repository: https://github.com/OpenCAPI/oc-accel More about decoupling compute with OMI: https://youtu.be/c0DuGSwDpqY or https://openmemoryinterface.org/ September 15th, 2021