

- Adapters
- 2 Hardware Accelerators
 - → FPGA-GPU combination
- 3 Host memory

Conventional system

Conventional system

GPU RAM FPGA PCIe 4 2 1 5 Host CPU RAM

CAPI/OpenCAPI system

Memory Allocation:

- Unified memory mode
- Store within GPU memory space

Advantage:

- No redundant copy at host memory
- Speedup with NVLink and CAPI/OC

Conventional system

CAPI/OpenCAPI system


```
cudaDeviceGetAttribute(xxx);
cudaMemcpy(ibuff,bufferA, size, cudaMemcpyDeviceToHost);
// obuff = 2*ibuff
vector_add<<<4*numBlocks,numThreadsPerBlock>>>(ibuff,obuff,vector_size);
cudaMemcpy(bufferB, obuff, size, cudaMemcpyHostToDevice);
cudaDeviceSynchronize();
```



```
cudaDeviceGetAttribute(xxx);

// obuff = 2*ibuff
vector_add<<<4*numBlocks,numThreadsPerBlock>>>(ibuff,obuff,vector_size);

cudaDeviceSynchronize();
```

Using Host-GPU unified memory:

- Double the bandwidth and cut by 2 the latency
- Not depending on GPU interface used → no reprogramming needed

September 15th, 2021

University of Geneva

- Adapters
- 2 Hardware Accelerators
 - → FPGA-GPU combination
- 3 Host memory

- Adapters
- 2 Hardware Accelerators
- 3 Host memory
 - → OMI: New memories around a universal bus
 - → Work with pools of memories

OMI = bandwidth of HBM at DDR latency, Capacity and Cost

Memory Interface Comparison

OMI, the ideal Processor Shared Memory Interface!

Specification	LRDIMM DDR4	DDR5	HBM2E(8-High)	ОМІ
Protocol	Parallel	Parallel	Parallel	Serial
Signalling	Single-Ended	Single-Ended	Single-Ended	Differential
I/O Type	Duplex	Duplex	Simplex	Simplex
LANES/Channel (Read/	64	32	512R/512W	8R/8W
LANE Speed	3,200MT/s	6,400MT/s	3,200MT/S	32,000MT/s
Channel Bandwidth (R+W)	25.6GBytes/s	25.6GBytes/s	400GBytes/s	64GBytes/s
Latency	41.5ns	?	60.4ns	45.5ns
Driver Area / Channel	7.8mm²	3.9mm²	11.4mm ²	2.2mm ²
Bandwidth/mm²	3.3GBytes/s/mm ²	6.6GBytes/s/mm<	35GBytes/s/mm ²	33.9GBytes/s/mm ²
Max Capacity / Channel	64GB	256GB	16GB	256GB
Connection	Multi Drop	Multi Drop	Point-to-Point	Point-to-Point
Data Resilience	Parity	Parity	Parity	CRC

DDR: low BW per Die/Area

HBM: expensive + capacity limited

CXL.mem, OpenCAPI, CCIX, GenZ:

high latency, far memory

Similar Bandwidth/mm²
provides an opportunity for
an HBM Memory with an OMI
Interface on its logic layer.

Brings Flexibility and
Capacity options to
Processors with HBM
Interfaces!

Allan Cantle's full presentation at https://youtu.be/c0DuGSwDpqY

System Composability: PowerAXON & Open Memory Interfaces

4x8 @ 32 GT/s

Multi-protocol
"Swiss-army-knife"
Flexible / Modular Interfaces

Built on best-of-breed Low Power, Low Latency, High Bandwidth Signaling Technology

OMI edge 8x8 @ 32 GT/s

6x bandwidth / mm² compared to DDR4 signaling

Data Plane Bandwidth and Capacity: Open Memory Interfaces

(PowerAXON and OMI Memory configurations show processor capability only, and do not imply system product offerings)

September 15th, 2021 University of Geneva 10

System Enterprise Scale and Bandwidth: SMP & Main Memory

Multi-protocol
"Swiss-army-knife"
Flexible / Modular Interfaces

Signaling Technology

Build up to 16 SCM socket Allocate the bandwidth **Robustly Scalable High Bisection Bandwidth** however you need to use it "Glueless" SMP POWER10 Chip 1 Terabyte / Sec 1 Terabyte / Sec **PowerAXON OMI Memory Built on best-of-breed** Low Power, Low Latency, **High Bandwidth**

(PowerAXON and OMI Memory configurations show processor capability only, and do not imply system product offerings)

September 15th, 2021

System Heterogeneity and Data Plane Capacity: OpenCAPI

Pod Composability: PowerAXON Memory Clustering

(PowerAXON and OMI Memory configurations show processor capability only, and do not imply system product offerings)

Memory Clustering: Distributed Memory Disaggregation and Sharing

Use case: Share load/store memory amongst directly connected neighbors within Pod Unlike other schemes, memory can be used:

- As low latency local memory
- As NUMA latency remote memory

Example: Pod = 8 systems each with 8TB

Workload A Rqmt: 4 TB low latency

Workload B Rqmt: 24 TB relaxed latency

Workload C Rqmt: 8 TB low latency plus

16TB relaxed latency

All Rqmts met by configuration shown

POWER10 2 Petabyte memory size enables much larger configurations

(Memory cluster configurations show processor capability only, and do not imply system product offerings)

Think big — memory at a system level architecture ■ OpenPOWER™

Data Centric

Generic System Level "Domain Specific Architecture"

- Know more about accelerators?
- See a live demonstration?
- Access to a server?
- Do a benchmark?
- Get answers to your questions?

Paul Scherrer Institute : <u>filip.leonarski@psi.ch</u>
IBM local partner: <u>lclavien@inno-boost.com</u>

IBM OpenCAPI team :

<u>alexandre.castellane@fr.ibm.com</u> - <u>bruno.mesnet@fr.ibm.com</u> - <u>fabrice_moyen@fr.ibm.com</u>

OpenCAPI Repository: https://github.com/OpenCAPI/oc-accel

More about decoupling compute with OMI: https://youtu.be/c0DuGSwDpqY or https://openmemoryinterface.org/

September 15th, 2021

