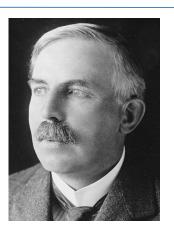


UHECRs at the Pierre Auger Observatory

Francesco Salamida
University of L'Aquila and INFN LNGS



Cosmic Rays discovery in a nutshell

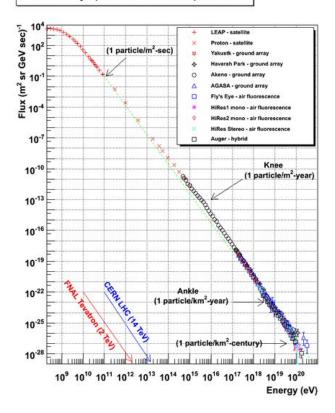
Also before the twentieth century it was known that an isolated electroscope naturally discharges

- Ernest Rutherford
 proposed the natural
 radioactivity as responsible
 for the discharge
- •radioactive nuclei emits alpha, beta, gamma

Around 1910

 independently
 Domenico Pacini and

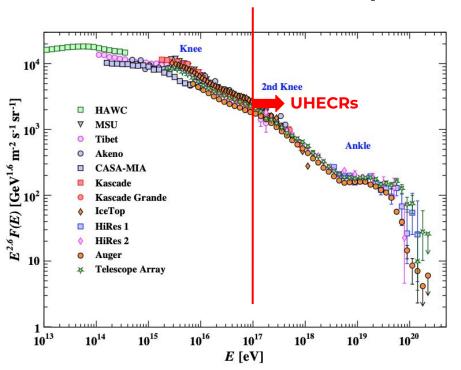
 Victor Hess proved the the radiation was coming from space



- •1930 Bruno Rossi suggests a n East-West effect if CRs are charged particles
- •1933-34: three independent experiments (Alvarez & Compton, Johnson, Rossi) find that the intensity of CRs is greater from the West than from the East

CR are positively charged particles!

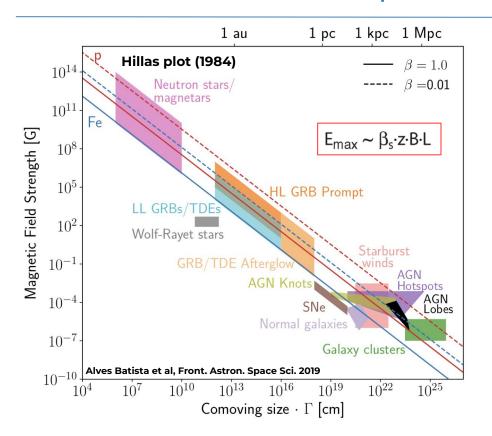
Cosmic Rays discovery in a nutshell


Cosmic Ray Spectra of Various Experiments

- CR spectrum spans over 10 order of magnitudes in energy and 30 in intensity
- The spectrum follow a power law with negative spectral index
- As the flux decrease direct measurements in space are not possible and huge arrays on Earth are necessary
- A sharp end of the spectrum is expected at extreme energies (propagation/source)

The Strange Science Case of the Ultra High Energy Cosmic Rays

Particles with E = 10^{17} - 10^{20} eV, \sqrt{s} = 14-450 TeV


ASTROPHYSICS

- What is the nature and origin of UHECRs?
- What is causing the suppression of the flux at the highest energies?
- Which are the sources? can we perform UHECRs astronomy?
- How are UHECRs accelerated to such extreme energies?

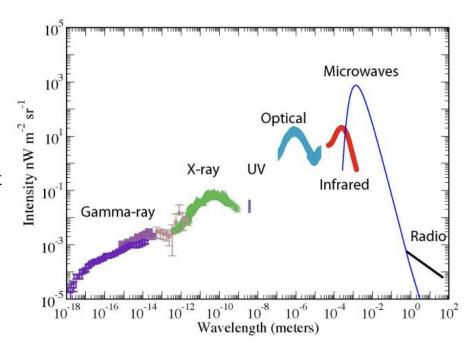
FUNDAMENTAL PHYSICS

- Tests of fundamental interactions and their models in extreme energy regimes
- Constrain or find hints of new phenomena (e.g. Lorentz invariance violation)

How are UHECR produced?

Realistic constraints more severe

size of Mercury's orbit to reach 10²⁰eV


- small acceleration efficiency
- synchrotron & adiabatic losses
- interactions in source region

How they reach Earth? (Astrophysics)

For the energies of the UHECRs, relevant photon fields are:

- Cosmic Microwave Background (CMB): relic radiation from the Big Bang; black body at temperature 2.7 K
- UV-optical-IR (Extragalactic Background Light, EBL)
 - UV, optical and near IR is due to direct starlight
 - From mid IR to submm wavelengths, EBL consists of re-emitted light from dust particles
- Dependence on redshift to be considered
- •Energy scale:

$$\varepsilon' = \varepsilon \Gamma (1 - \cos \theta)$$

How they reach Earth? (Nuclear Physics)

Pair production on CMB

$$\varepsilon' > 1 \text{ MeV}$$

$$p + \gamma \to p + e^+ + e^-$$

$$p \longrightarrow 0 \xrightarrow{e^+ - e^-} 0$$

$$cmb$$

Pion production on CMB

$$\varepsilon' > 150 \,\mathrm{MeV}$$

$$p + \gamma \to n + \pi^{+} \qquad p \longrightarrow \bigcap_{\pi^{+}} n$$

$$\pi^{+} \to \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \to e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

$$p + \gamma \to p + \pi^{0}$$

$$\pi^{0} \to \gamma + \gamma$$

Disintegration

$$\varepsilon' > 8 \text{ MeV}$$

$${}_{Z}^{A}X + \gamma \rightarrow_{Z-1}^{A-1} X' + p$$

$${}_{Z}^{A}X + \gamma \rightarrow_{Z}^{A-1} X' + n$$

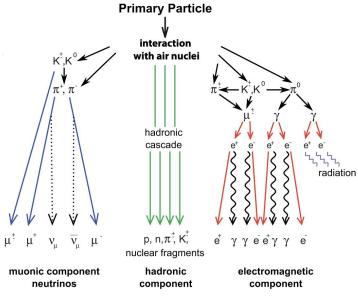
$${}_{Z}^{A}X + \gamma \rightarrow_{Z-2}^{A-2} X'' + \alpha$$

$${}_{Z}^{A}X + \gamma \rightarrow_{Z-2}^{A-2} X'' + \alpha$$

$${}_{Z}^{A}X + \gamma \rightarrow_{Z-2}^{A-2} X'' + \alpha$$

cosmogenic neutrinos cosmogenic gammas

How they reach Earth?

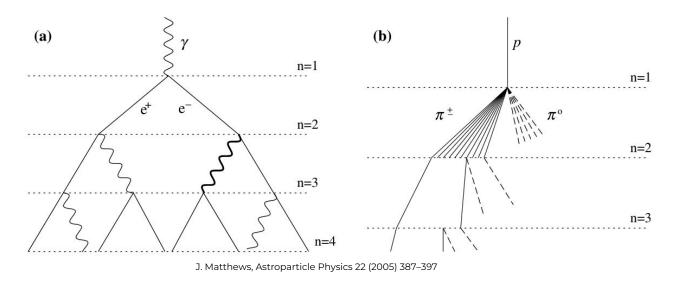

- NO He >50 EeV, CNO > 100 EeV expected
- Extreme-E CRs can only be: local, &/or protons, &/or heavy nuclei
- source or propagation scenario?

Composition at the highest energies and the detection of cosmogenic neutrino and/or photons is of key importance

How to measure UHECRs?

- Due to the low flux of UHECRs (1 particle per km² yr⁻¹ above 10¹⁹ eV) we need huge instrumented areas for detection
- UHE particles interacting with atmosphere (mainly N and O) initiate a cascade of ionised particles and electromagnetic radiation i.e extensive air shower (EAS)
- 3 components: muonic, hadronic, electromagnetic

How to measure primary mass?

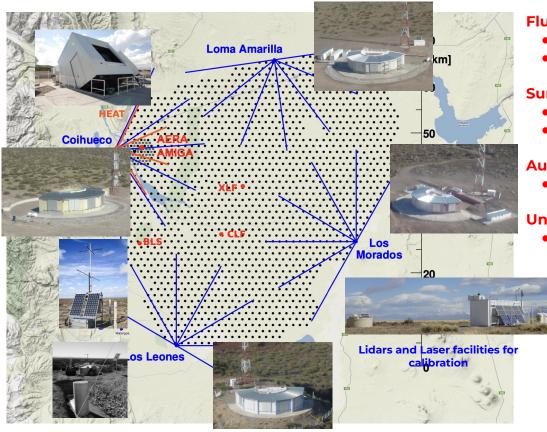

Heitler-Matthews model

$$N(X) = 2^{X/\lambda}$$

$$E(X) = \frac{E_0}{N(X)}$$

$$N(X_{\text{max}}) = \frac{E_0}{E_c}$$

$$X_{\rm max} \propto \ln(E_0/E_c)$$



Using a pure superposition model:

$${}^{A}X, E_{0} \leftrightarrow A \times n, E_{0}/A$$

$$X_{\text{max}}^A \propto X_{\text{max}}(E_0/A)$$

The Pierre Auger Observatory

Fluorescence detector (FD)

- 24 telescopes in 4 sites, FoV: 0-30°, E>10¹⁸ eV
- HEAT (3 telescopes), FoV: 30 60°, E>10¹⁷ eV

Surface detector (SD)

- 1660 stations in 1.5 km grid, 3000 km 2 E > $10^{18.5}$ eV
- 61 stations in 0.75 km grid, 23.5 km²,E > 10^{17.5} eV

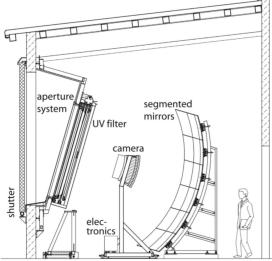
Auger Engineering Radio Array (AERA)

• 153 antennas in 17 km2 array

Underground muon detector

17 buried scintillators

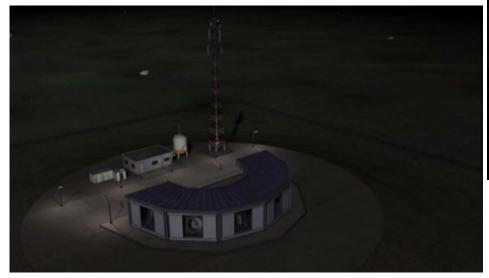
Auger Phase I data taking from 2004 on (from 2008 with the full array):


- > 120.000 km²sr yr for anisotropy
- > 90.000 km²sr yr for spectrum

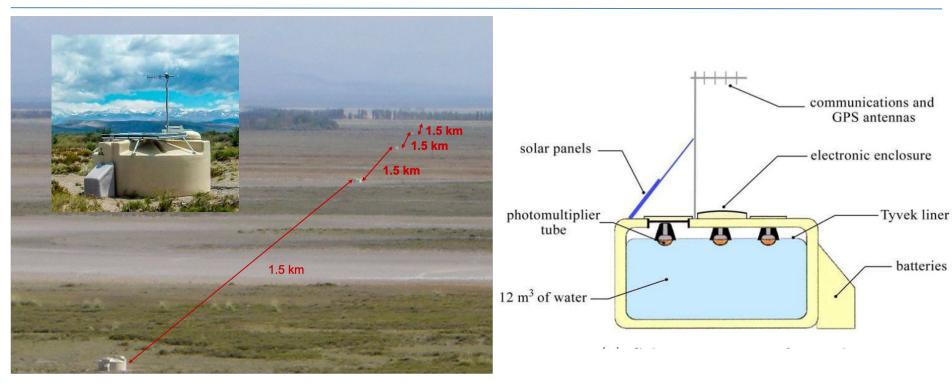
Auger Phase II data taking from 2023 to 2030...

- Multiple detectors
- UHECR detector test bench facility

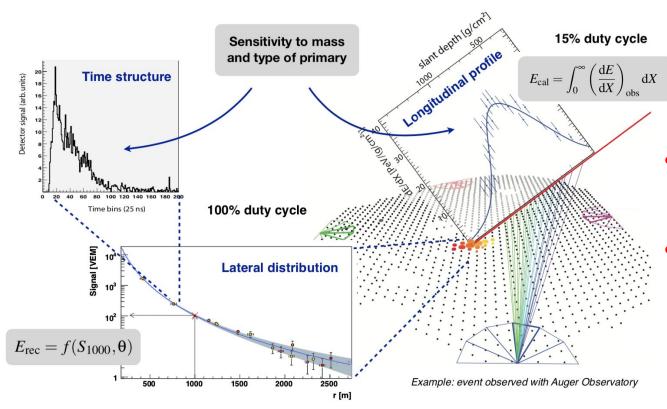
Fluorescence Detectors



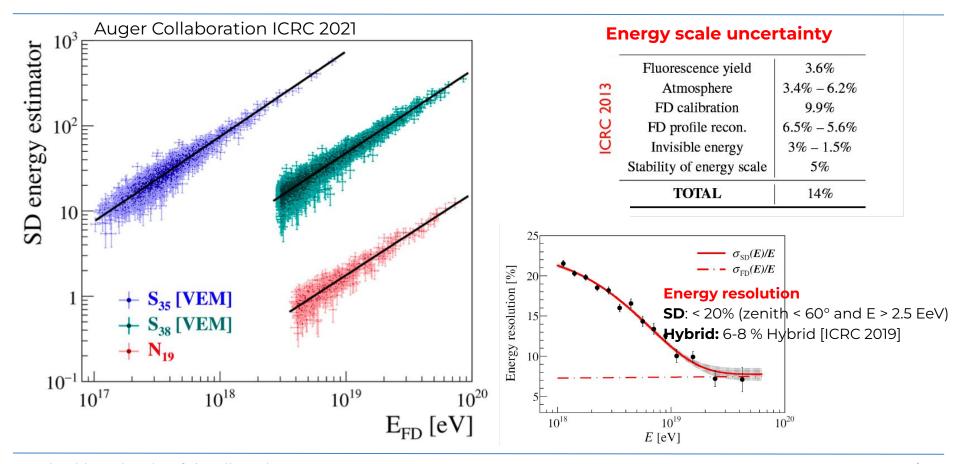
- FD measures the fluorescence light produced by the excitation of nitrogen in the atmosphere by the EAS particles
- 30° fov in elevation and azimuth for each telescope
- ~14% duty cycle (data taking during moonless clear nights)

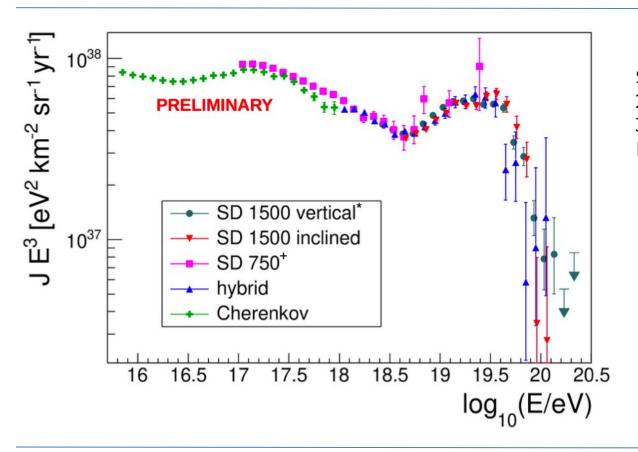

Fluorescence Detectors

Surface detectors


- SD measure the Cherenkov light produced in water by EAS particles at ground
- ~100% duty cycle

Surface detectors

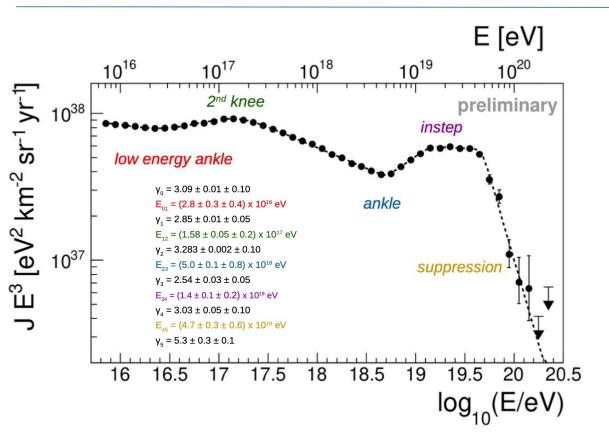

The hybrid concept


STRATEGY

- Measure the same air showers with 2 independent detectors (golden hybrid events)
- use golden hybrids to calibrate the entire SD data sample

Calibration with FD energy scale

The Auger energy spectrum



SD Data sample: 215030 events 1/1/2004 – 31/8/2018

Exposure: 60400 km² sr

- Five measurements
- more than 3 order of magnitudes
- same energy scale
- Fluxes in agreement within systematic uncertainties (1%-7%)

The energy spectrum

2nd knee observed

- different models: more than one Galactic component? (H4a, GST)
- is the 2nd knee the iron one? (rigidity dependent cut-off)

ankle at ~ 5 10¹⁸ eV confirmed

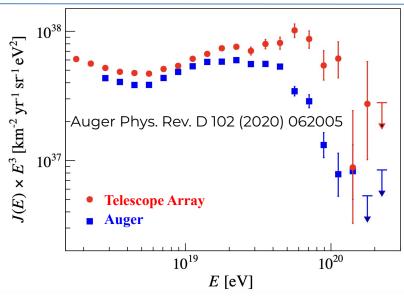
- dip model
- mixed models: superposition of heavier nuclei

Suppression at ~ 5 10¹⁹ eV confirmed

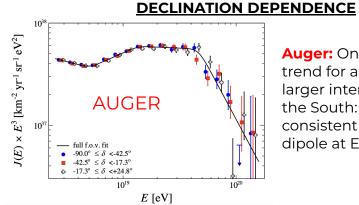
<u>light composition (p + <10%</u> <u>heavier)</u>

- soft injection spectrum (slope ~ 2)
- production of cosmogenic v

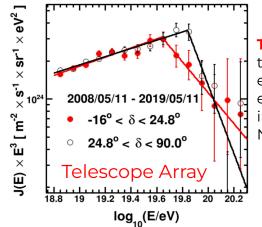
mixed composition


- •hard injection spectrum (slope ~ 1)
- •cosmogenic v and γ suppressed

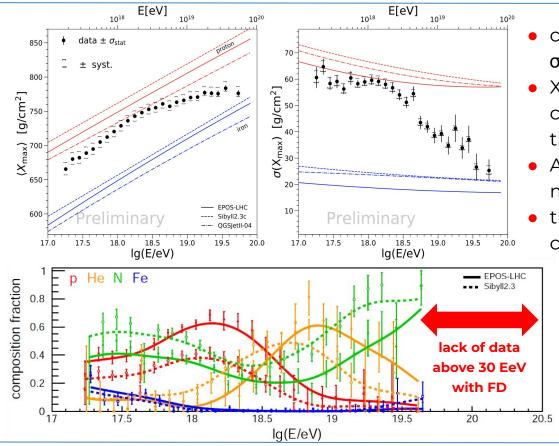
new feature instep at ~ 10¹⁹ eV identified hint for low energy ankle at ~ 10¹⁷ eV


Telescope Array (TA)

Middle Drum: based on HiRes II TALE (TA low energy extension) **Detector Upgrade** in progress, see Communication next slides Tower WLAN Antenna LIDAR Laser facility Test setup for Solar Pane radar reflection Infill array and high elevation telescopes Battery & Electronics GPS Antenna Electron light source (ELS): ~40 MeV Scintillator Box 507 surface detectors: 3 fluorescence detectors double-layer scintillators (2 new, one station HiRes II) (grid of 1.2 km, 680 km²) Northern hemisphere: Utah, USA


The energy spectrum in Auger and TA

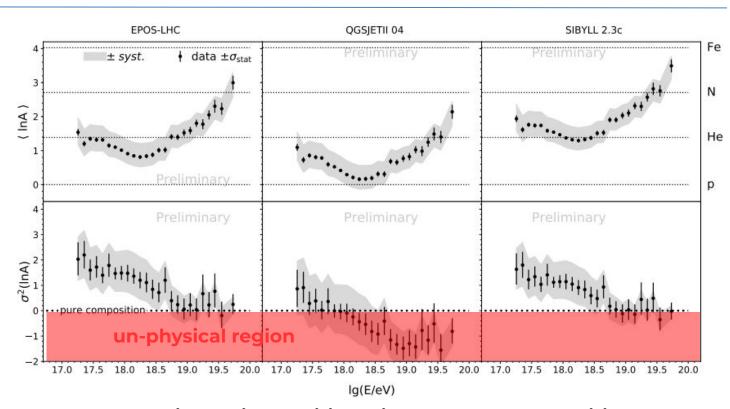
- Energy scale: different fluorescence yield and invisible energy models
- \bullet $\sigma_{\mbox{\tiny syst}}$ on the two energy scales : 14% for Auger and 21% for TA
- γ0: is in agreement!
- ullet 2nd knee position: within 1.8 σ
- γ1: within 2.1σ
- general agreement rescaling the energies by +5.2% for Auger and -5.2% for TA



Auger: Only a trend for a slightly larger intensity in the South: consistent with dipole at E > 8 EeV

TA: Differences in the suppression energy, with an excess of intensity in the Northernmost sky

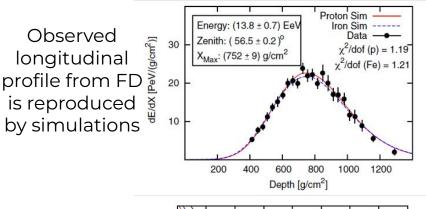
Mass composition

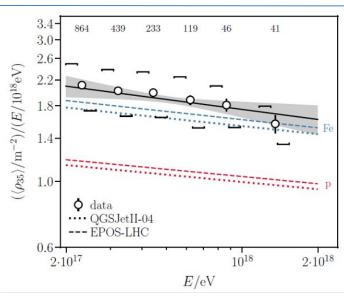

- change of slope of X_{max} and decrease of $\sigma(X_{max})$ across the ankle
- X_{max} and $\sigma(X_{max})$ indicate lighter composition up to ~2 EeV, heavier above this energy
- At higher energies, consistent with less mixed composition
- the uncertainties in the models are currently the main source of systematics

Mass fractions at Earth from fitting 4 mass groups to the measured X_{max} distributions

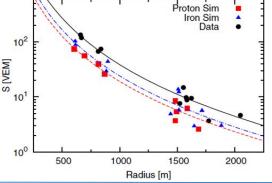
Front. Astron. Space Sci. 6 (2019) 23

<InA> and variance

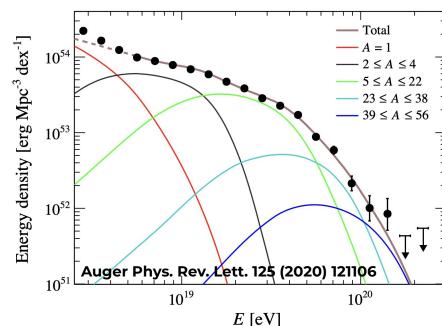

- Model independent trend in <InA>
- Pure composition excluded below and around the ankle
- QGSJETII04 is in tension with data

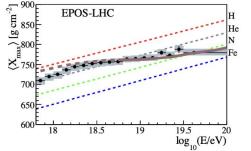

Auger Prime and NN approach will provide additional info on mass composition

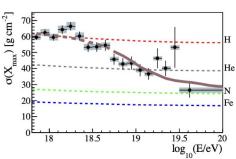
Hadronic interactions models


How well hadronic models reproduce Auger data?

Eur. Phys J. C (2020) 80:751: first direct measurement of muon number with UMD at Auger


Measured signal at the ground differ for data and simulations


- Evidence of muon excess 1.3< R_{had}<1.6
- Insensitive to energy scale uncertainty R_e~1
- Muon number from models in tension with data
- fluctuations of muons are in agreement Phys. Rev. Lett. 126 (2021) 152002

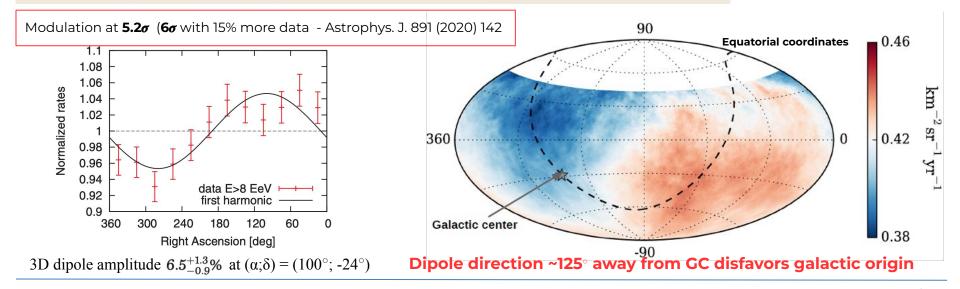

Astrophysical scenarios

Simultaneous fit of flux and composition to find source scenarios more compatible-with data

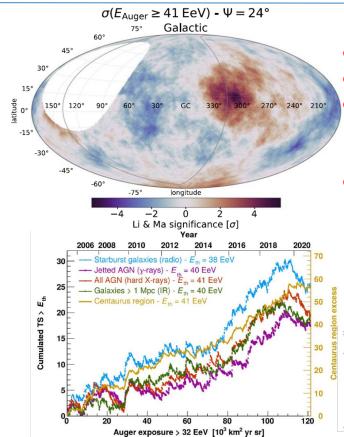
- CR are propagated through interstellar medium
- no magnetic fields

- sources accelerating only protons are disfavoured
- uniformly distributed sources accelerating nuclei [rigidity dependent] are favoured
- indication that "instep" at 10¹⁹ eV may be due to the **interplay between He and CNO components**
- individual nearby source not favored, spectrum flat in declination
- additional component required below 5 10¹⁸ eV (possibly a tail from galactic CR)
- energy density in CR above the ankle constraints the luminosity density for extragalactic objects like AGN and SB

Large Scale anisotropy


Auger - Science 315 (2017) 1266

Rayleigh analysis of the first harmonic in right ascension


Energy (EeV)	Number of events	Fourier coefficient a_{lpha}	Fourier coefficient $oldsymbol{b}_{lpha}$	Amplitude r_{lpha}	Phase φ_{α} (°)	Probability $P (\geq r_{\alpha})$
4 to 8	81,701	0.001 ± 0.005	0.005 ± 0.005	0.005 +0.006 -0.002	80 ± 60	0.60
≥8	32,187	-0.008 ± 0.008	0.046 ± 0.008	0.047 +0.008	100 ± 10	2.6 × 10 ⁻⁸

E > 8 EeV

Exposure = $76800 \text{ km}^2 \text{sr y}$

Intermediate Scale anisotropy

Blind search for overdensities

- Energy [32-80] EeV zenith up to 80°
- 2635 events between 1/1/2004 and 31/12/2020
- Centaurus A region:
 - \circ most significant excess, 2.2 σ p.t., at ψ =24 $^{\circ}$ E>41 EeV
 - \circ direction fixed at Cen A 3.9 σ p.t., at ψ =27 $^{\circ}$ E > 41 EeV
- autocorrelation with (GC, GP, SGP) not significant

Data available at https://doi.org/10.5281/zenodo.6504276

Likelihood test for anisotropy with astroph. catalogs Most significant signal at E_{th} = 38-41 EeV, ψ =23° - 27°, signal fraction 6-15%

Catalog	$E_{\rm th}$ [EeV]	Ψ [deg]	α [%]	TS	Post-trial p-value	-
All galaxies (IR)	40	24+16	15+10	18.2	6.7×10^{-4}	4σ for SB
Starbursts (radio)	38	25^{+11}_{-7}	9+6	24.8	3.1×10^{-5}	3.1 σ for
All AGNs (X-rays)	41	27^{+14}_{-9}	8+5	19.3	4.0×10^{-4}	
Jetted AGNs (γ-rays)	40	23^{+9}_{-8}	6^{+4}_{-3}	17.3	1.0×10^{-3}	Jetted AGN

Multi-messenger and Fundamental Physics

Different cosmic messengers provide complementary information about potential sources

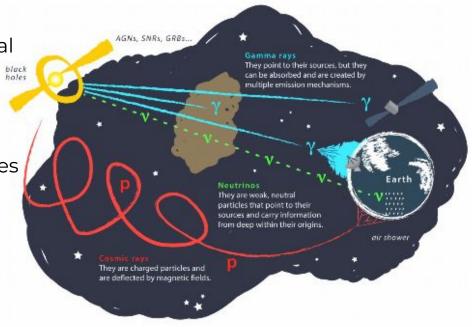
Cosmic rays (nuclei):

Accelerated by extreme astrophysical events

Deflected by magnetic fields

• Gamma-rays:

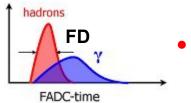
Propagate in straight lines

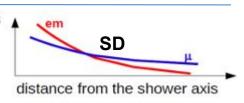

Easily absorbed at ultra-high energies

• Neutrinos:

- Not deflected and not absorbed
- Low interaction rate i.e difficult to detect

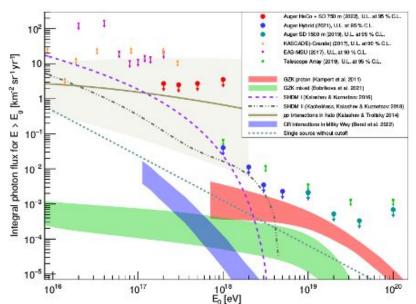
... and Fundamental Physics:


Dark Matter, LIV, BSM


Photon searches

Photon signature:

deeper Xmax, less muons

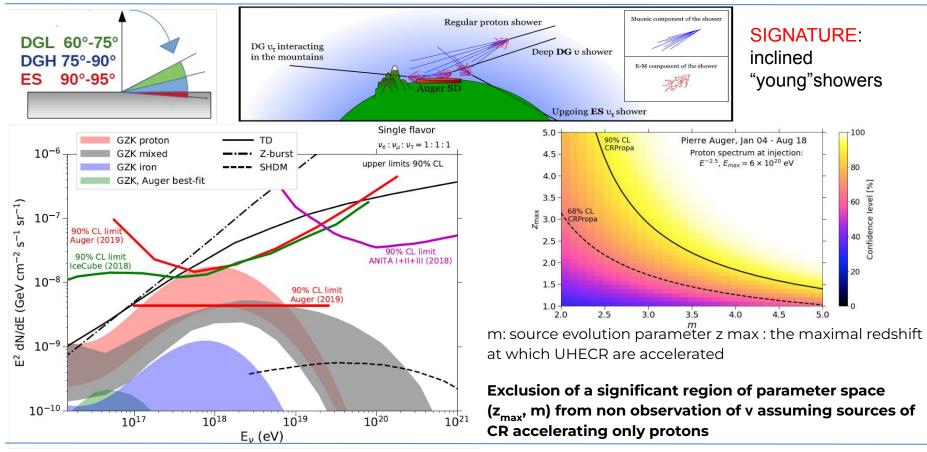

 steeper LDF and broader signal

Recently published on Ap. J. 933 (2022)125:

11 candidates > 10 EeV (SD)

22 candidates > 1 EeV (Hybrid)

Upper limits on diffuse photon flux


Targeted search NO Candidates found

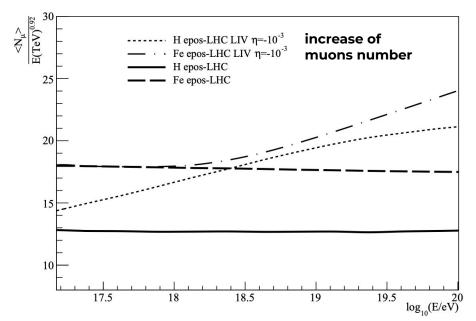
- •In coincidence of known sources including **CenA** and the **Galactic Center** [UL extrapolating HESS flux]
- GW follow-up (4 events)

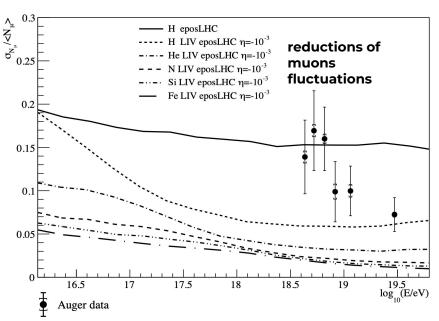
Top-down model disfavored

- CR proton dominated scenario disfavored
- constraining mass and lifetime of dark matter particles
- Auger Phase II: additional information for better photon/hadron separation or photon discovery

UHE Neutrino searches (SD)

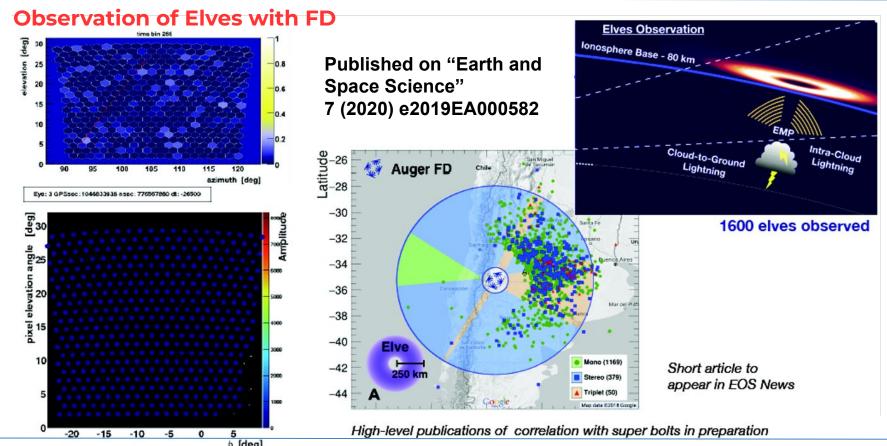
Limits on the LIV with air showers

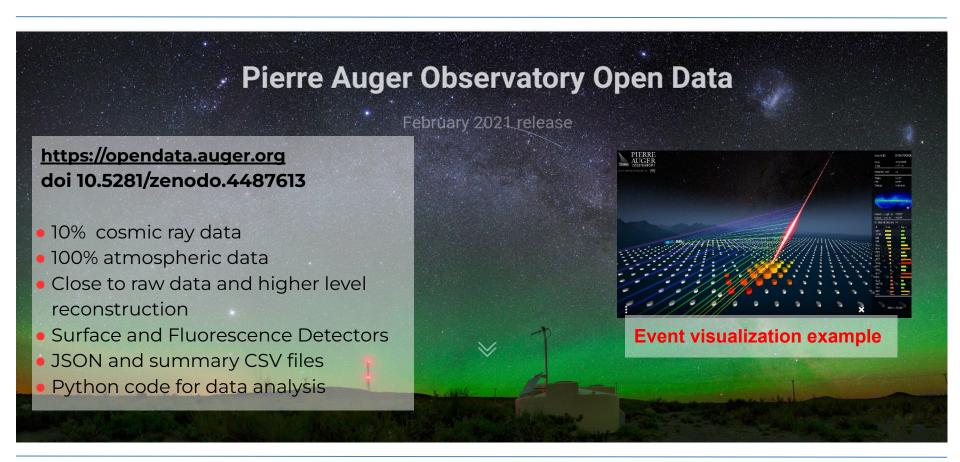

Lorentz Invariance Violation effects can be studied using a modified dispersion relation (Coleman, Glashow)


$$E^2 - p^2 = m^2 + \sum_{n=0}^{N} \eta^{(n)} \frac{p^{n+2}}{M_{Pl}^n} \implies m_{LIV}^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{Pl}^n} \implies \gamma_{LIV} = \frac{E}{m_{LIV}} \implies \tau = \gamma_{LIV} \tau_0$$

$$T = \gamma_{LIV} \tau_0$$

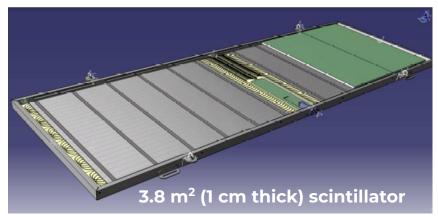
Limits on the LIV


- From MC muons are very sensitive to LIV
- Using the muon fluctuations measurement at the Pierre Auger Observatory



new bound for $\eta^{(1)}$ is $[-5.95 \cdot 10^{-6}, 10^{-1}]$ at 90.5% of CL

Auger as a laboratory for Earth phenomena

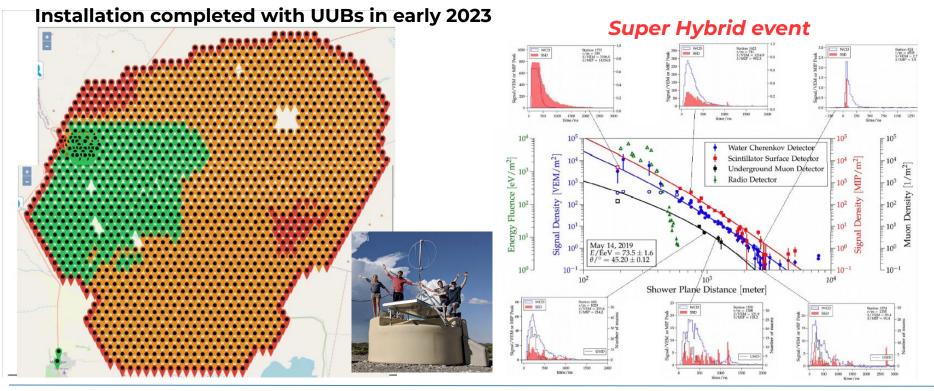

Auger Open Data

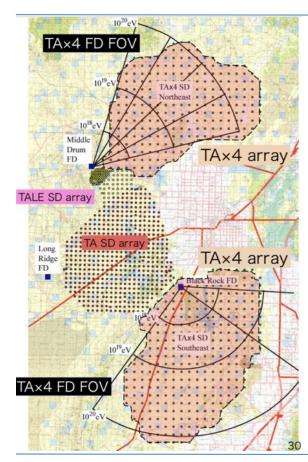
The future of UHECR: Auger Prime upgrade

SCIENCE CASE

- Origin of the flux suppression, GZK vs. maximum energy scenario
- Search for a flux contribution of protons up to the highest energies at a level of ~ 10%
- Study of extensive air showers and hadronic physics √s=70 TeV

UPGRADE PLAN


- Scintillators SSD
- Upgraded and faster electronics UUB (40 MHz -120 MHz)
- Extension of dynamic range with small sPMT
- Underground buried UMD detectors
- Radio antennas RD


The future of UHECR: Auger Prime status

1436 SSD stations deployed

25% of the array equipped with UUB and SSD-PMT and sPMT

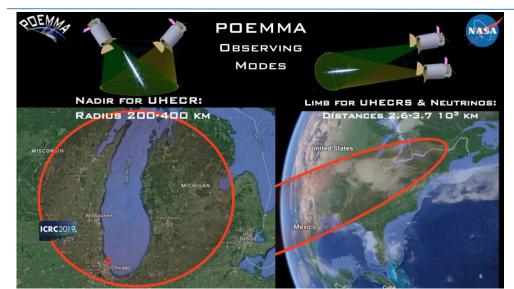
The future of UHECR: TA x 4

AIM: increase the coverage up to ~3000 km² to increment the statistics at UHE

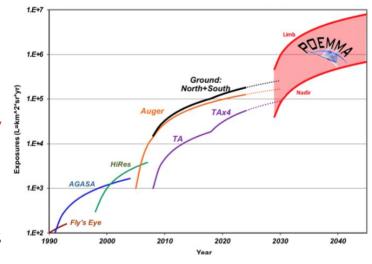
- SD array: increased by 500 stations with 2 km spacing
- **FD telescopes:** increased by 4 FD in the Northern site, 8 in the Southern site

Feb. 19 - Mar. 12, 2019:

- 257 SDs
- 6 communication towers



The future of UHECR: POEMMA

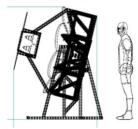


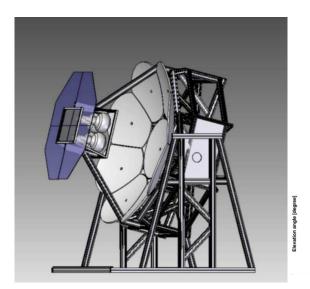
GOAL: observation of UHE cosmic particles with E $\gtrsim 10^{19}$ eV to study their origin

- huge gain in exposure (~10⁵ km² sr yr) for both charged CRs and neutrinos
- full sky coverage of the celestial sphere
- sensitivity to neutrinos > 2×10^{19} eV from FD of v-induced EAS
- follow-up of transients

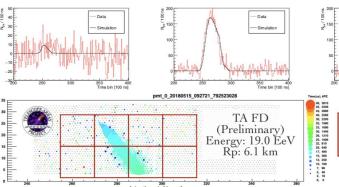
Probe Of Extreme Multi-Messenger Astrophysics

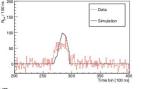
- 2 satellites flying in loose formation
- 4 m wide FoV (45°) Schmidt mirrors
- fast (1µs) UV camera for fluorescence observation + ultrafast (10 ns) optical camera for Cherenkov obs.

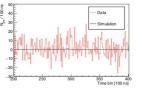

The future of UHECR: FAST


Fluorescence detector Array of Single-pixel Telescopes

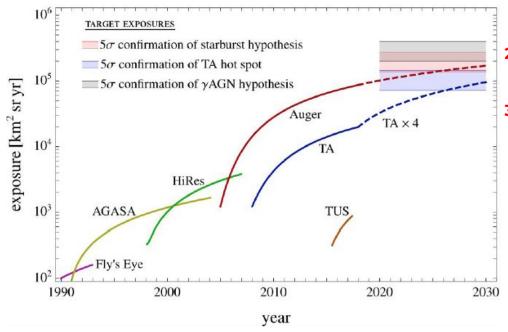
Reference: T. Fujii et al., Astropart. Phys. 74 (2016) 64-72


- UHECR and neutral particles E > 10^{19.5} eV
- mass discrimination on event by event basis
- huge target volume with lower cost w.r.t current FDs
- Deploy on a triangle grid with 20 km spacing, like "Surface Detector Array"





- Smaller optics and single or a few pixels 1 m² aperture, 15°×15° FoV
- Low-cost and simplified telescope
- installed for X-calibration and trigger at Auger and TA



FAST top-down reconstruction (Preliminary)ZenithAzimuthCore(X)Core(Y)XmaxEnergy59.8 deg-96.7 deg7.9 km-9.0 km842 g/cm²17.3 EeV

 $E = 1.73 \times 10^{19}$

Conclusion

OPEN QUESTIONS

- 1. What is the origin of flux suppression?
 - fundamental constraints on sources and their properties
- 2. is there a fraction of protons above ~5 10¹⁹eV?
 - feasibility of charged particle astronomy
 - proof for future experiments
- 3. can we disentangle composition and hadronic interaction systematics?
 - constraints on hadronic multiparticle production from EAS
 - constraints on new physics beyond the reach of LHC
 - new measurements at accelerators

FUTURE STEPS

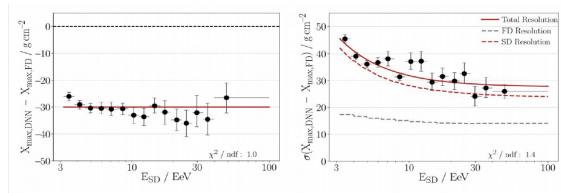
- Increase in statistics at UHE
- Composition sensitivity at and above the suppression region (E>4 10¹⁹ eV)
- More data on neutrinos (and photons)
- More information on hadronic interactions



Fantastic Four 1961

Thanks for listening!

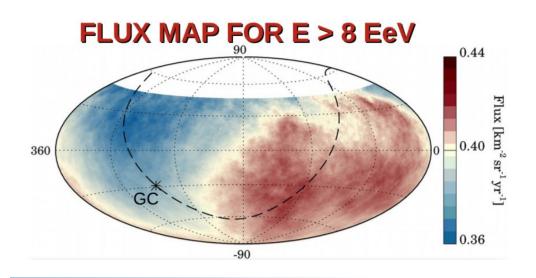
Backup slides

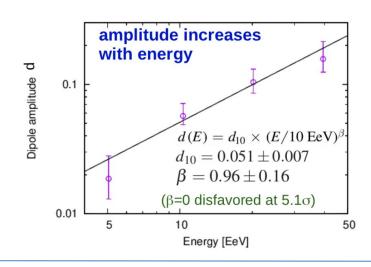

Mass composition (prospects)

SD can extend the measurement of <Xmax> (worse resolution)

Neural network approach tested with hybrid events

Promising in view of the additional info provided by the upgraded SD detector


Large scale anisotropy


Weighted Fourier Analysis to obtain modulation in right ascension and azimuth

Auger data: Exposure >92000 km² sr yr

OBSERVATION (>5 σ): 3D dipole above 8 EeV at (α , δ)=(98 $^{\circ}$,-25 $^{\circ}$): (6.6 $^{+1.2}_{-0.8}$) %, 125 $^{\circ}$ away from GC

the UHECRs are extra-galactic above 8 EeV, while predominantly Galactic below few EeV

Full sky coverage with Auger + TA


Large Scale Anisotropy

Energy threshold

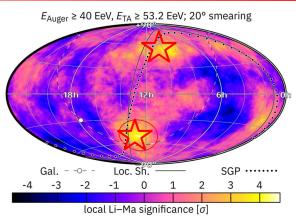
- 8.86 EeV for Auger
- 10 EeV for Telescope Array

Events

- ~31000 events
- Agreement with Auger alone, smaller uncertainty
- Hint for a quadrupole moment

Intermediate Scale Anisotropy (<30°)

Energy threshold

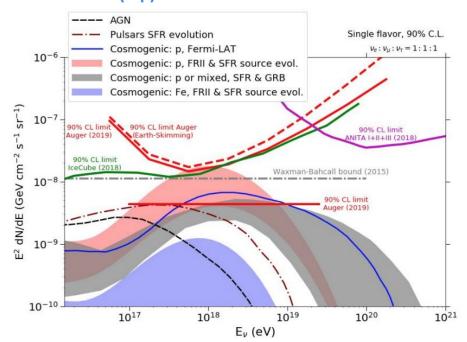

- 40 EeV for Auger
- 53.2 EeV for Telescope Array

Events

• 969 events

Blind search

20° radius around (α =12^h50^m, δ = - 50°), 2.6 σ post-trial 15° radius around (α = 9^h30^m, δ = +54°), 1.5 σ post-trial



Cosmogenic neutrinos

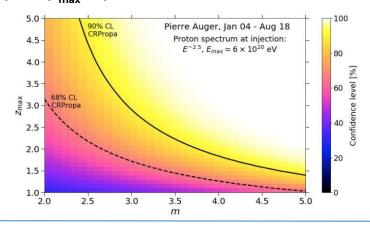
Expected events:

Red band: 1.4 - 5.9 Gray band: 0.8 - 2.0 Blue band (top): 0.4

$$p + \gamma \rightarrow n + \pi^+$$

 $\rightarrow \mu^+ + \nu_{\mu}$
 $\rightarrow e^+ + \overline{\nu}_{\mu} + \nu_{e}$

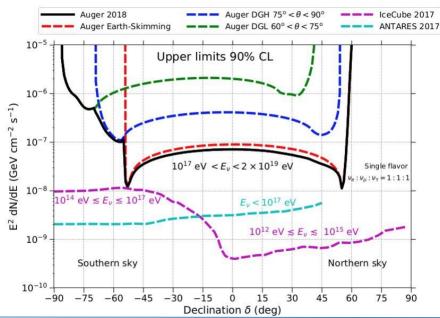
Maximum sensitivity around EeV $k(90\% CL) < 4.4.10^{-9} GeV cm^{-2} s^{-1} sr^{-1}$


CONSTRAIN ON PROTON MODELS

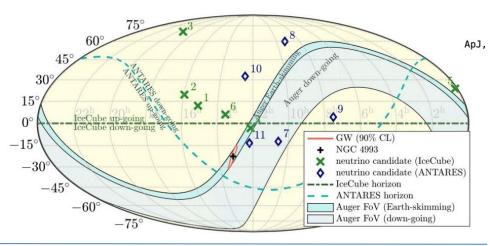
UHECR source evolution models parameterized as:

$$\Psi(z) \propto (1+z)^m$$

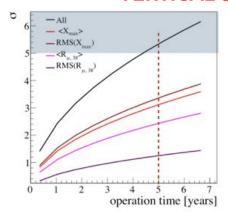
m: source evolution parameter z max: the maximal redshift at which UHECR are accelerated

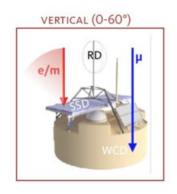

Exclusion of a significant region of parameter space (z_{max}, m) from non observation of v

UHE neutrinos: point like sources


Steady sources

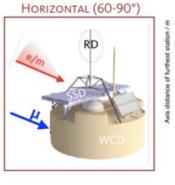
- Good sensitivity at EeV energies in a broad range in declination
- Energy range complementary to IceCube and Antares

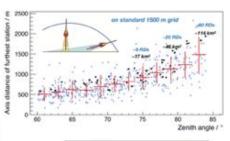

Transient sources (e.g GW)


- ANTARES, Icecube & Auger searched for in coincidence with GW170817 from TeV to EeV
- Very good Auger sensitivity because source was in the FoV of Earth Skimming at the moment of merger
- Sensitive to neutrino luminosities below 5x10⁴⁶erg/s for certain periods during 1-day follow-up searches

The future of UHECR: Auger Prime detectors

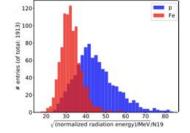
VERTICAL SHOWERS

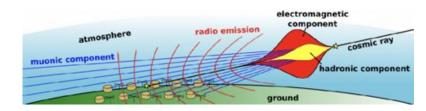


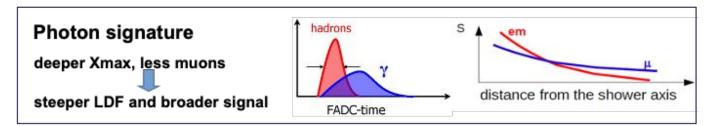

Significance of distinguishing two different realisations of "maximum rigidity model":

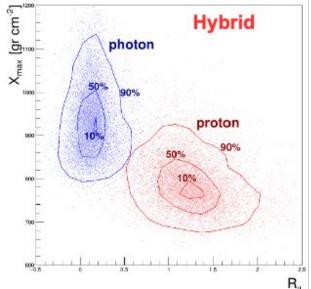
- as it predicts, i.e. no protons at UHE
- adding 10% protons

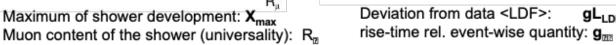
>5σ in 5 years of operations

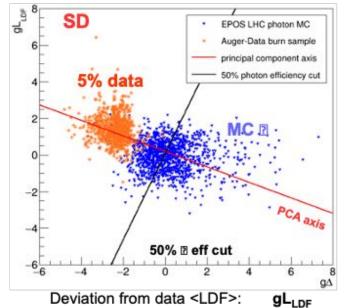

HORIZONTAL SHOWERS



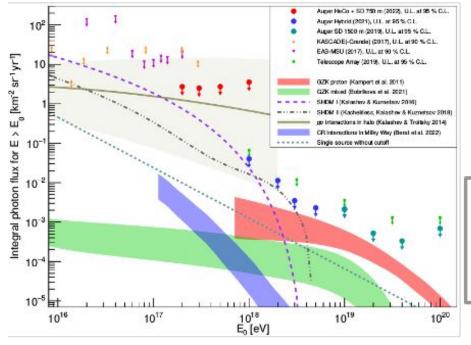

RADIO Hybrid:


E_{rad} from radio muons from WCD





Hybrid and SD photon search



Upper limits on diffuse photon flux

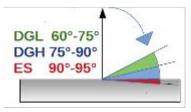
Strictest limits at E> 0.2 EeV

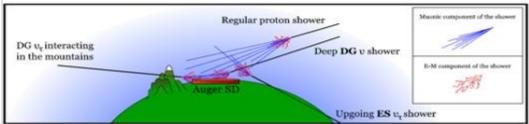
11 candidates > 10 EeV (SD)

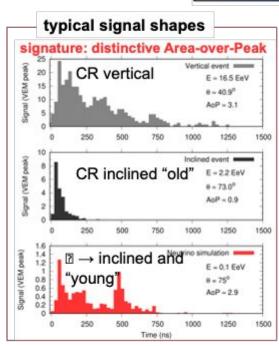
22 candidates > 1 EeV (Hybrid)

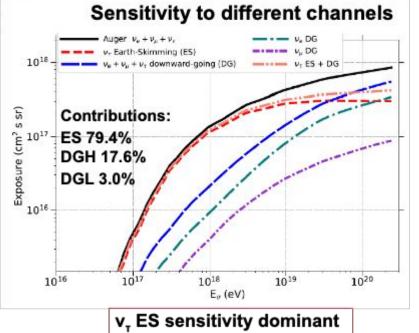
Targeted search

In coincidence of known sources including CenA and the Galactic Center [UL extrapolating HESS flux]

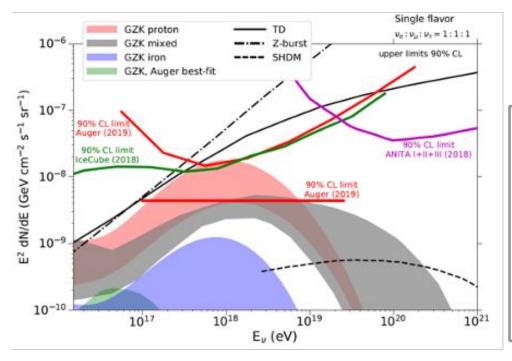

GW follow-up (4 events)


NO Candidates found


- Top-down model disfavored


- CR proton dominated scenario (also the most pessimistic cases) disfavoured
- constraining mass and lifetime of dark matter particles → see R. Aloisio at this Conf.
- Auger Phase II: additional information for better photon/hadron separation or photon discovery

UHE neutrinos with the SD



Upper limits on the diffuse neutrino flux

Pierre Auger Coll., JCAP 10 (2019) 022

Identification criteria applied "blindly" to the search data set

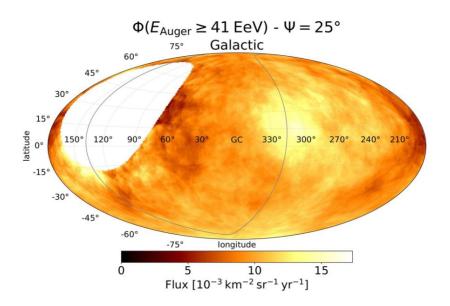
Point-like sources

also in coincidence with observations by other experiments For example TXS 0506+056

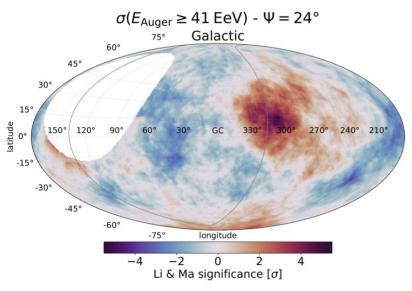
Coincidence with GW

For example GW170817 GW follow-up (62 events, stack analysis)

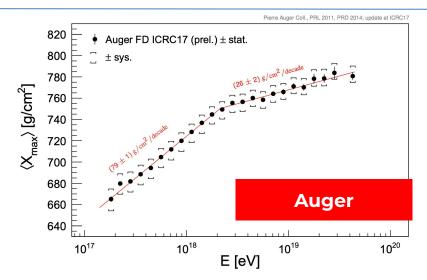
NO Candidates found

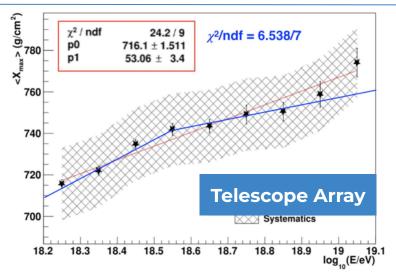

NO Candidates found

Maximum sensitivity ~ 1 EeV


Upper limits set assuming dN/dE = k E⁻² \rightarrow k \sim 4.4 x 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹ [0.1 – 25] EeV

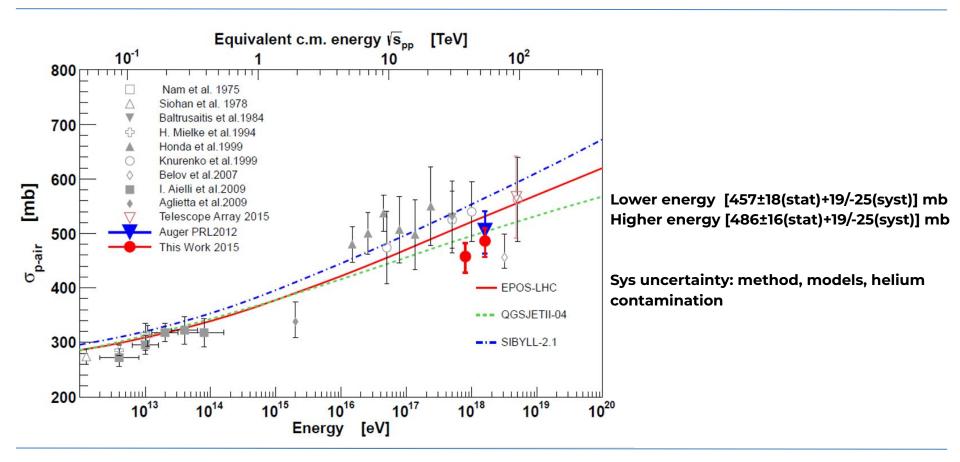
Parameter space is scanned in


- Direction (R.A., Dec)
- Threshold energy 32 EeV ≤ Eth ≤ 80 EeV
- Top-Hat angular scale $1^{\circ} \le \psi \le 30^{\circ}$


Largest significance post-trial **2.2** σ found at (RA, dec)=(196.3 $^{\circ}$, -46.6 $^{\circ}$) or (I, b)=(305.4 $^{\circ}$, 16.2 $^{\circ}$) Nobs = 156 vs Nexp=98 at Eth 41 EeV and Ψ =24 $^{\circ}$

Tension on composition between Auger and TA?

- X_{max} res. ~25 to ~15 g cm⁻² (from $10^{17.8}$ eV to > $10^{19.7}$ eV) Systematic uncertainty on $X_{max} \le 10$ g cm⁻²



- X_{max} res. 17.2 g cm⁻² (from $10^{18.2}$ eV to 10^{19} eV) Systematic uncertainty on $X_{max} \sim 17$ g cm⁻²

Auger data show trend towards heavier composition above 10^{18.4} eV

- TA data have less statistical separation power and larger systematics
- TA data compatible with mix of 4 elements with 75% (p+He) below 10^{19.1} eV
- direct comparison is difficult (AUGER unbiased measurement, TA biased by detector acceptance)
- CAVEAT: TA analysis with QGSJetII-04 only [excluded by Auger σ (Xmax) measurement]

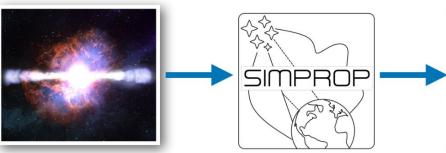
p-air cross section

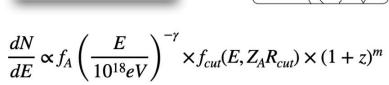
Simulation and Procedure

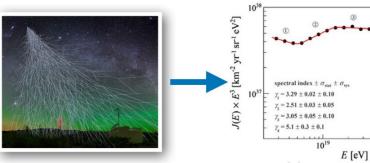
CRs ejected by EG accelerators

Considered at the escape

Propagation through the intergalactic medium


Choice of propagation models:


- ▶ EBL model
- Photo-disintegration cross section


Production of showers in the atmosphere

Choice of hadronic interaction model (EPOS-LHC)

Comparison with the data

Estimation of free parameters that characterize of the fluxes at the sources using combined fit (GAP2021_040, PhD Thesis by A. Condorelli)