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The Standard Model of Particle Physics
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The Standard Model (SM) of particle physics describes 

matter in terms of its fundamental constituents and 

their interactions. 



Constituents

26/11/2013Monica D'Onofrio, Colloquium University of Geneva

� Matter is made out of 3 generations of quarks and leptons:

E.g., hadrons as proton(neutron) = uud(udd). Fermions (spin ½)
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Forces
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� Matter held together by Forces carried by Bosons 

� 3 forces considered in SM of particle physics

� Electromagnetic (EM), Weak and Strong forces   (carriers: spin 1)

� The 4th force, gravity, not included in the SM theoretical framework 

� Couplings: g, gW, gs
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γγγγ:         responsible for EM force, transmits light 

W,Z:    responsible for weak force, cause particles to   

change and decay

gluon: responsible for strong force, holds nuclei together



The origin of masses: the Higgs boson
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� SM particles have no inherent mass

� Gain mass by passing through a  field �
the Higgs field: 

� Couples to particles to give mass (value 
related to coupling strength)

� particle associated to the field: spin 0 
Higgs boson (its mass, mH, not predicted 
by the SM)

‘Mechanism’ theorized in 1964  

� Higgs boson observed at the Large 
Hadron Collider 50 years later � 126 GeV! 
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Higgs and Engler on July 4, 2012



A successful story but ..
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� The SM has mapped the subatomic world 

with remarkable success
� Confirmed to better than 1 % uncertainty by 100’s of 

precision measurements,  the recent discovery of the 

higgs boson being the last piece to complete the picture. 

DOES THE HIGGS DISCOVERY COMPLETE 
OUR UNDERSTANDING OF NATURE ?

NO!

The Standard Model is theoretically incomplete
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What is the Dark Matter?

Standard Model ordinary matter only accounts for 

less than 20% of the matter of the Universe
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predicted

observed

Galaxy rotation



The hierarchy Problem

� Why is gravity so weak?
� Also expressed in terms of energy scale

� The ‘size’ of the higgs field could be as 
large as the Planck scale 
� in clear disagreement with observation (mH, mW/Z)

need an incredible fine-tuning to get it to the      

right level � makes the SM ‘unnatural’
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∆∆∆∆mH
2 ~ ΛΛΛΛ2 , Λ Λ Λ Λ = Mpl ?

H
f

weak force is 1032 times stronger! 

MW/MPlanck ~10-16 ! 

MW = weak scale   

MPlanck = gravity scale! 

Fermion loop



(Some) More Problems …
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Early Universe Universe today

� Matter asymmetry not explained by the Standard Model
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� SM cannot explain number of fermion generations

� or their large mass hierarchy

� mtop/mup~100,000
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Supersymmetry (SUSY)

Q|Boson> = Fermion

Q|Fermion> = Boson 

� SuperSymmetric extension of 

the Standard Model:

� Mirror spectrum of particles 

� Enlarged Higgs sector: 

� (at least) 5 ‘higgses’ (two 

charged, three neutral)

� the lightest could be SM-like 

New spin-based symmetry 

relating fermions and bosons

Superpartners (also called 
sparticles) have ½ integer 

difference in spin but 
otherwise equal quantum 

numbers



What’s Nice about SUSY?
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� The lightest of the higgs is predicted to 

be close to MZ: found at 126 GeV ☺

� Naturally solve the hierarchy problem

� Corrections to the Higgs mass due to its 

coupling with fermions is compensated by 

the presence of bosons  

� No fine-tuning required !
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Fermion loop

Boson loop

� If R-parity is conserved, the Lightest SUSY particle (LSP) cannot decay 

� is stable: SUSY provides the perfect candidate for Dark Matter (DM) 

� Define R-parity = (-1)3(B-L)+2S

� B=baryonic number (1/3 for q, 0 for l)

� L=leptonic number (0 for q, 1/3 for l)

� S = spin (1/2 for fermion, 1 for boson)

� R = 1 for SM particles

� R = -1 for SUSY partners 

Higgs

126 GeV/c2

0

0
H

M SUSY

m SUSY

m’ SM

R = -1 R = -1 
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The problem with SUSY: breaking! 

No SUSY partners 
have been found yet

SUSY Breaking determines the characteristics of the new 
particles: lots (> 100) of new parameters  (e.g. masses)

� SUSY must be ‘Broken’ 

� SUSY-breaking terms should preserve the nice aspects of SUSY

� Several mechanisms proposed



- Neutralinos: mixtures of photon, Z, neutral 

higgs superpartners

- Charginos : mixture of W and charged higgs

superpartners
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- Squark & slepton: superpartners of quarks 

and leptons.

Ex: top and bottom squarks, also     

called stop and sbottom

SUSY new particles
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‘organized’ 

in super-

multiplets

- Gluinos: superpartner of the gluon

How arbitrary can sparticle masses be? Need some guiding principle!
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Natural models: fine tuning

Can be guided by the principle of Naturalness** 
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Low level of fine tuning � A Natural model

Fine tuning ���� quantified in terms of stability of the main

scale of the model with respect to its parameters. In this

case, EWK scale (MZ):  

**Riccardo Barbieri, Gian F. Giudice (1988). "Upper Bounds on 

Supersymmetric Particle Masses". Nucl. Phys. B 306: 63

The relevant parameters ai in SUSY are those more closely related to the 

higgs � principally, the stop mass; but also sbottom and gluino masses



Naturalness 
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Light stop (< 1 TeV)

But also: possibly light 

sbottom (related!)

Light neutralino, O(100 GeV): 

often Lightest SUSY particle, 

good candidate for DM

But also: possibly light 

charginos (related!)

Light gluinos (< 2 TeV)

� Top superpartner must be ‘light’ for 

the higgs mass to be at O(100 GeV)  
[but also W/Z superpartners]

The top is the heaviest particle � biggest contribution to Higgs mass correction 
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‘Light’: particles with mass 1 TeV = 1000000000000 ev
To compare: Core of the Sun T = 1000 ev

� Need extremely high energies to produce them

� Back to the condition of the Universe 10-10 s after the Big Bang 

Conditions ‘recreated’ in particle accelerators: collisions between 
fundamental constituents of matter at extremely high energies



The Large Hadron Collider 
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27 km circumference

Centre of mass energy √s = 7 or 8 TeV

Beam energy:

3.5 TeV (2011), 4 TeV (2012)

Beams of protons (set in 

bunches) accelerated by 

electromagnetic force to 

99,9999991% the speed of 

light 26/11/2013

ATLAS



The ATLAS experiment
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The ATLAS experiment
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� Detector designed to separate 
electrons, photons, muons, 
neutral and charged hadrons

� A transverse view: 
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Transverse momentum, pT

Head-on collisions: Visible 

transv. momentum 

conserved � ∑i pT
i≈0

X

X

X

Detector layers

Particles Identification in various components



Physics objects
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� Jets ���� initiated by quarks or gluons produced in the p-p 

collision. Result in clusters of hadrons and leptons in 

calorimeters

� B-jets ���� jet identified as originated from B-hadron 

which do not decay promptly but fly for few mm 

� Photons ���� EM cluster w/o matching track

� Electrons ���� same with matching track

� Muons ���� track in Tracker and Muon chambers

� Tau (hadronic) ���� narrow jets with 1 or 3 tracks

� Missing ET (MET) ���� unbalanced transverse momentum

• Real MET: presence of neutral weakly interacting particle in the event (i.e. neutrinos, or 

the lightest SUSY particle)

• Fake MET: mismeasurements + detector malfunctions, poorly instrumented regions



Cross Sections at the LHC
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Cross section (σ): the probability for a 
specific process to occur in a collision 
[barn = 10−28 m2]

� A lot more “uninteresting” than 
“interesting” processes

� Interesting events gets selected:
� Online, by trigger:

� Selection mechanism to find events 
which contain interesting features

� Offline, by physics analysis
� Offline selection designed to suppress 

background compared to the signal of 
interest 
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Typical SUSY particle

production rate
1 pb

LHC 8 TeV

Integrated Luminosity = amount of data 
collected by ATLAS

5 fb-1 2011 @ 7 TeV
20 fb-1 2012  @ 8 TeV



SUSY production processes and rates
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� If R-parity is conserved, sparticles are pair-produced

Gluino production:
• high production rate (σ) 

up to  1 TeV mass

Stop and sbottom
• moderate production rate 

up to ~0.6 TeV

Focus on ‘strong’ production in Natural SUSY: gluino decaying in stop+top
or sbottom+bottom, and direct stop and sbottom production

Lightest SUSY particle is DM candidate (Here: LSP = neutralino)



Searches for natural SUSY: gluinos
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� Only gluino, stop and sbottom masses are accessible � can search

for third generation squarks produced via gluinos:

� High production rate  

� Spectacularly rich final states. Examples:  
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Final state events:

4 b-jets and Missing ET Final state events:

4 b-jets + Missing ET + 4 W bosons, 

W � l v or W � qq’ 

or

� Many jets, many b-jets, possibly leptons, high MET if m(neutralino) is light



SM background 
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� SM processes might have very

high production rate and can 

mimick SUSY event topologies

� Searching for new particles:
reject as efficiently as possible

SM processes, and determine

residual contributions
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Pre-LHC constraints on gluino masses

26/11/2013Monica D'Onofrio, Colloquium University of Geneva

� From CDF and D0 experiments at TeVatron (pp): √s=1.96 TeV

� Searches for gluinos decaying via first, second generation 

or bottom squarks. No reach for gluinos in stop+top!   
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Missing 
Transve
rse 
EnergyJets

CDF

exclude gluino masses below 300-400 GeV for neutralino masses < 100 GeV

PRL 102 (2009) 121801



Stop and sbottom via gluinos
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� Searching for something heavy!

� Exploit high transverse momentum

of decay products, large MET

� Exploit the presence of b-jets

� Classify search regions (Signal

Region) in terms of N b-jets, N 

leptons, Meff, MET  

� Careful studies of SM background: 

e.g. top pair production
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Meff = MET + ∑ pT jets + ∑ pT leptons

Example of Signal: M gluino = 500 GeV, 
M sbottom = 350 GeV,M neutralino = 60 GeV

PLB 701 (2011) 398



Stop and sbottom via gluinos
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� Searching for something heavy!

� Exploit high transverse momentum

of decay products, large MET

� Exploit the presence of b-jets

� Classify search regions (Signal

Region) in terms of N b-jets, N 

leptons, Meff, MET  

� Careful studies of SM background: 

e.g. top pair production
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Meff = MET + ∑ pT jets + ∑ pT leptons

Example of Signal: M gluino = 800 GeV, 
M sbottom = 2000 GeV,M neutralino = 300 GeV

PRD 85 (2012) 112006



Stop and sbottom via gluinos
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� Searching for something heavy!

� Exploit high transverse momentum

of decay products, large MET

� Exploit the presence of b-jets

� Classify search regions (Signal

Region) in terms of N b-jets, N 

leptons, Meff, MET  

� Careful studies of SM background: 

e.g. top pair production
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Meff = MET + ∑ pT jets + ∑ pT leptons

Example of Signal: M gluino = 950 GeV, 
M sbottom = 2000 GeV,M neutralino = 50 GeV

EPJC 72 (2012) 2174



Constraints on masses
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� Null results interpreted in various Natural SUSY models

� Constraints on masses depend on the assumed mass hierarchy of 

gluino, sbottom, stop, neutralinos

29

Already using 7 TeV data, for Mneut < 100-200 GeV: exclude up to 800-1000 
GeV gluinos and 700-900 GeV stop and sbottom. 

State of the art at 8 TeV:   gluino in 3rd generation squarks excluded up to 1.34 TeV



Direct production of sbottom/stop    
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� Most ‘direct’ way to search for Natural SUSY in strong production

� Challenges: 

� Relatively low production rate: 

� at mass = top mass, x-section is 1/6 of ttbar x-section

� Can’t always exploit the high transverse momentum of decay products: 

� Could be as light as the top quark      

� Various decay modes must be considered. Few examples:   
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Final state events:

2 b-jets and Missing ET 
Final state events:

2 b-jets + Missing ET + 2 W bosons, 

W � l v or W � qq’ 



Pre-LHC constraints on stop and sbottom
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Sbottom: 

2 b-jets and Missing ET 
Stop: 

2 leptons + 2 b-jets and Missing ET 

weak constraints in the 

most likely scenarios!

In general pre-LHC constraints below 250 GeV for sbottom, lower for stop  

From Tevatron experiments and LEP experiments (e+e- collider, √s up to 209 GeV) 

PRL 105 (2010) 081802



Direct sbottom at ATLAS
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� Consider events with 2 b-jets, MET and nothing else

� Main SM background: top pair production

� To reject it efficiently: 

� exploit mCT (contransverse mass) observable, sensitive to pair production of 

heavy particles (A) decaying in visible (V) + invisible (X) 

� In this case: 

� A = sbottom, V = b-jet, X = Neutralino

� mCT: has an endpoint at 140 GeV for 

the top background. For signal:  
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Direct sbottom at ATLAS

26/11/2013Monica D'Onofrio, Colloquium University of Geneva

� Consider events with 2 b-jets, MET and nothing else

� Main SM background: top pair production

� To reject it efficiently: 

� exploit mCT (contransverse mass) observable, sensitive to pair production of 

heavy particles (A) decaying in visible (V) + invisible (X) 

� In this case: 

� A = sbottom, V = b-jet, X = Neutralino

� mCT: has an endpoint at 140 GeV for 

the top background. For signal:  

�
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Direct sbottom at ATLAS
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� With more luminosity, develop methods to fill the gap in scenarios with 

low ∆M (sbottom-neutralino) – compressed

� Exploit production of hard jets from colliding partons (Initial State 

Radiation, ISR) 
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jet

M sbottom = 200 GeV,M neutralino = 100 GeV



Direct sbottom at ATLAS
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� Improve sensitivity already using 7 TeV data (4.7 fb-1)

� With 4 times more luminosity and increased energy gap is almost filled
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JHEP 10 (2013) 189

ATLAS-CONF-2012-106

7 TeV, 4.7 fb-1

8 TeV, 20.1 fb-1



Direct stop production at ATLAS
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� Top squarks have the most crucial role in Natural SUSY 

� Several decays possible

� Assume 1 decay mode at a  

time  (BR=100%)

� Need dedicated searches

At the end of 2011, ATLAS put together a 

strategy to cover a wide range of masses, 

various decay modes and several

hypotheses of SUSY mass hierarchy



7 TeV, 4.7 fb-1 searches for stop 
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� Example: m(stop) close to m(top)
� Again, need to adopt complex kinematic variables to extract signal from 

overwhelming SM background!   
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PLB 720 (2013) 13

1/2 leptons + 2 b-jets (+0/2 jets) + Missing ET 

Signal

region



The golden plot 
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� Presented for the first time at ICHEP 2012, inspired an enourmus
number of theory papers, experts workshops and blogs !  
� It was not at all obvious that could reach such sensitivity with 5 fb-1!   
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stop

stop
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Where we are now
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Large regions of SUSY parameter space excluded

But a lot more to be done to cover gaps / find the stop 



The near future  
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� Explore more challenging scenarios where stop and 

sbottom could hide

� I.e. stop close to top mass, compressed scenarios

� Mixed decays: relax assumption that only 1 decay mode is

realized in nature � much more difficult to decouple it from SM

� Get ready for Run II 

� Start in 2015 with 13 TeV center of mass energy

� Expect to have sensitivity up to 2 TeV gluinos and up to 900 GeV

for stop and sbottom depending on the SUSY model 
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The far future: High Luminosity LHC
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� Foresee an additional major Run for LHC, before upgrade of 

the accelerator. Then: High Luminosity LHC (around 2023)

� Expect a major upgrade of the ATLAS detector 

� Expect to collect up to 3000 fb-1

� Factor of 10 in integrated luminosity wrt previous run

� For SUSY: 

� Extend sensitivity

� Allow signal characterization

in case of evidence in 300 fb-1

� Feasibility studies presented

to support the HL-LHC Case

(European Strategy, Krakow, August 2012)
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Stop pair production 

(updates published for ECFA push reach to 1.4 TeV)

ATL-PHYS-PUB-2012-001



Conclusions
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� Supersymmetry is (still) one of the most compelling

theories for particle physics beyond SM to date 

� Naturalness might be the guiding principle (although not

the only one!) 

� Searches focused on gluino, sbottom and stop

� Thourough strategy defined to search for natural 

SUSY since beginning of ATLAS Run I: 

� No evidence of SUSY yet, stringent constraints set:

� M(gluino) excluded up to 1400 TeV

� M(sbottom) and M(stop)  excluded up to 650 GeV

� Weaker constraints for compressed scenarios

� Much more to explore: intense (and broad) program of 

SUSY searches in preparation for 13/14 TeV data 
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Conclusions
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Maybe naturalness is not the answer, but

we keep looking for the oasis in the desert!!



Back up



Particle physics scale
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Forces
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Forces “run” with energy ….. and don’t agree at 
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1/coupling plotted

� Matter held together by Forces carried by Bosons (spin 1)

� 3 forces considered in SM of particle physics 

� Electromagnetic (EM), Weak and Strong forces   

� Couplings: g, gW, gs

� The 4th force, gravity, not included ! Carrier: graviton



The Higgs boson
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� Everything with mass gets it by interacting with the Higgs field

� Relates MW, MZ and weak, electromagnetic couplings:

� Unifies weak and electromagnetic forces � electroweak

� tan θW = gW / g, MW = MZ cos θW

‘Mechanism’ theorized in 1964  � Higgs boson found at the Large Hadron 

Collider 50 years later! 
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Higgs and Engler on July 4, 2012 Higgs mass peak in diphoton events

Higgs

126 GeV/c2

0

0
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Possible SUSY mass spectra
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But also this:

48

lots (> 100) of new parameters  (e.g. masses)

Particle spectrum unknown

Need some guiding principle!



What’s Nice about SUSY?
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� The lightest of the higgs is predicted to 

be close to MZ: found at 126 GeV ☺

� Naturally solve the hierarchy problem

� Corrections to the Higgs mass due to its 

coupling with fermions is compensated by 

the presence of bosons  

� No fine-tuning required !

� Enables forces to unify
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Energy (GeV)

Fermion loop

Boson loop

� If R-parity is conserved, the Lightest SUSY particle (LSP) cannot decay 

� is stable: SUSY provides the perfect candidate for Dark Matter (DM) 



The LSP and Dark Matter
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� The amount of dark matter 
relic density is inversely 
proportional to the 
annihilation cross section:

ΩDM ~  <σAv>−1

50

Remarkable “coincidence”: 
ΩDM ~ 0.1 for m ~ 100 GeV – 1 TeV!
Supersymmetry independently predicts particles with about the 

right density to be dark matter ! 

HEPAP LHC/ILC Subpanel (2006)HEPAP LHC/ILC Subpanel (2006)HEPAP LHC/ILC Subpanel (2006)HEPAP LHC/ILC Subpanel (2006)

HEPAP 2006 LHC/ILC SubpanelHEPAP 2006 LHC/ILC SubpanelHEPAP 2006 LHC/ILC SubpanelHEPAP 2006 LHC/ILC Subpanel

σσσσAAAA ~  ~  ~  ~  αααα2222/ m/ m/ m/ m2222



LHC operations
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2011

Colliding 

bunches
1331

Bunch spacing 50 ns

Luminosity 3.6 x 1033 cm-2 s-1

Pile-up 

interactions
~20

2012

1331

50 ns

6.8 x 1033 cm-2 s-1

~35
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Hadron Colliders: The LHC 
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27 km circumference

Rate of physics processes per unit time produced in 

heads-on collisions of protons, N obs, defined as: 

Cross section σ:

Given by Nature 

(calc. by theorists)Efficiency:

optimized by

experimentalist

Luminosity 

(integrated in time) 

depending

on the Machine

Nobs= ∫Ldt · ε · σ

At design luminosity (L=1034cm-2s-1)
Any event:            109 / second
W boson:             150 / second 
Top quark:               8 / second
Higgs (126 GeV): 0.4 / second
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Inner Detector
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Pixels: ~ 2.3 m2 of silicon sensors

Silicon micro-strips (SCT): 60 m2

of silicon sensors

Transition Radiation Chambers

• Core of the experiment: reconstruct

the path of charged particles from primary

interactions (tracks)  

• Immerse in Magnetic Field (2 Tesla)

X

X

X

Detector layer

Precision: 20 µm (r-ϕ), 580 µm (r-z)
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Inner Detector
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Pixels: ~ 2.3 m2 of silicon sensors

Silicon micro-strips (SCT): 60 m2

of silicon sensors

Transition Radiation Chambers

Precision: 20 µm (r-ϕ), 580 µm (r-z)

Constant monitoring of detector  
performance is crucial !

• Core of the experiment: reconstruct

the path of charged particles from primary

interactions (tracks)  

• Immerse in Magnetic Field (2 Tesla)

X

X

X

Detector layer



Background strategy  
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Example: top, W/Z+jets

In ETMiss-based analyses
Example: multi-

jet, fake leptons

Step 1 



Irreducible background

� Normalisation done in dedicated Control 

Regions (CR)

� Assuming ΣNCR
j,MC is small: 

� systematic uncertainties associated to the 

transfer factor 

� Need to define the regions

keeping good statistics, low 

systematics uncertainties and 

low signal contamination 
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Simplified models (SMS)  
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� From 29 sparticles consider 2 or 3, decouple all others, force a specific 

decay mode (100% Branching Ratio)

� Assumptions on the chirality and nature of particle involved

Very helpful to design analyses.

Well suited for natural SUSY and direct production 
���� an example: stop pair production

m(A)

m
(B

) A

A’

B = LSP

or
Fix one

of ∆M 


