The Quest for Bottom and Top squarks: past, present and future at the ATLAS experiment

Monica D'Onofrio

Colloquium University of Geneva, November 26th 2013

The Standard Model of Particle Physics

The Standard Model (SM) of particle physics describes matter in terms of its fundamental constituents and their interactions.

Constituents

Matter is made out of 3 generations of quarks and leptons: E.g., hadrons as proton(neutron) = uud(udd). Fermions (spin ½)

Every fermion has an antimatter version: same mass, opposite charge

Forces

Matter held together by Forces carried by Bosons

3 forces considered in SM of particle physics

- Electromagnetic (EM), Weak and Strong forces (carriers: spin 1)
- The 4th force, gravity, not included in the SM theoretical framework
- Couplings: g, g_W, g_s

The origin of masses: the Higgs boson

- SM particles have no inherent mass
- Gain mass by passing through a field → the *Higgs field*:
 - Couples to particles to give mass (value related to coupling strength)
 - particle associated to the field: <u>spin 0</u>
 <u>Higgs boson (its mass, m_H, not predicted</u> by the SM)

'Mechanism' theorized in 1964

 \rightarrow Higgs boson observed at the Large Hadron Collider 50 years later \rightarrow 126 GeV!

Higgs and Engler on July 4, 2012

Monica D'Onofrio, Colloquium University of Geneva

26/11/2013

A successful story but ...

The SM has mapped the subatomic world with remarkable success

Confirmed to better than 1 % uncertainty by 100's of precision measurements, the recent discovery of the higgs boson being the last piece to complete the picture.

DOES THE HIGGS DISCOVERY COMPLETE OUR UNDERSTANDING OF NATURE ?

NO!

The Standard Model is theoretically incomplete

less than 20% of the matter of the Universe

Monica D'Onofrio, Colloquium University of Geneva

26/11/2013

The hierarchy Problem

The 'size' of the higgs field could be as large as the Planck scale

▶ in clear disagreement with observation $(m_H, m_{W/Z})$ need an incredible fine-tuning to get it to the right level → makes the SM 'unnatural'

Fermion loop

 $\Delta m_{\rm H}^2 \sim \Lambda^2$, $\Lambda = M_{\rm pl}$?

(Some) More Problems ...

Matter asymmetry not explained by the Standard Model

SM cannot explain number of fermion generations
 or their large mass hierarchy

▶ m_{top}/m_{up}~100,000

Supersymmetry (SUSY)

New spin-based symmetry relating fermions and bosons

Q|Boson> = Fermion Q|Fermion> = Boson

- SuperSymmetric extension of the Standard Model:
 - Mirror spectrum of particles
 - Enlarged Higgs sector:
 - (at least) 5 'higgses' (two charged, three neutral)
 - the lightest could be SM-like

Superpartners (also called sparticles) have ½ integer difference in spin but otherwise equal quantum numbers

What's Nice about SUSY?

- The lightest of the higgs is predicted to be close to M_Z: found at 126 GeV ☺
- Naturally solve the hierarchy problem
 - Corrections to the Higgs mass due to its coupling with fermions is compensated by the presence of bosons
 - No fine-tuning required !
- Define R-parity = $(-1)^{3(B-L)+2S}$
 - B=baryonic number (1/3 for q, 0 for l)
 - L=leptonic number (0 for q, 1/3 for l)
 - S = spin (1/2 for fermion, 1 for boson)

Fermion loop

H

If R-parity is conserved, the Lightest SUSY particle (LSP) cannot decay → is stable: SUSY provides the perfect candidate for Dark Matter (DM)

Boson loor

H

The problem with SUSY: breaking!

No SUSY partners have been found yet

Supersymmetry cannot be an exact symmetry of our world (spin-0 electrons do not exist)

- SUSY must be 'Broken'
 - SUSY-breaking terms should preserve the nice aspects of SUSY
- Several mechanisms proposed

SUSY Breaking determines the characteristics of the new particles: lots (> 100) of new parameters (e.g. masses)

SUSY new particles

Squark & slepton: superpartners of quarks and leptons.

Ex: top and bottom squarks, also called stop and sbottom

- Neutralinos: mixtures of photon, Z, neutral higgs superpartners
- **Charginos** : mixture of W and charged higgs superpartners
- Gluinos: superpartner of the gluon

How arbitrary can sparticle masses be? <u>Need some guiding principle!</u>

Natural models: fine tuning

Can be guided by the principle of Naturalness**

Fine tuning \rightarrow quantified in terms of stability of the main scale of the model with respect to its parameters. In this case, EWK scale (MZ):

Low level of fine tuning \rightarrow A **Natural** model

The relevant parameters a_i in SUSY are those more closely related to the higgs \rightarrow principally, the **stop mass**; but also sbottom and gluino masses

Riccardo Barbieri, Gian F. Giudice (1988). "Upper Bounds on Supersymmetric Particle Masses". *Nucl. Phys. B* **306: 63

Naturalness

The top is the heaviest particle \rightarrow biggest contribution to Higgs mass correction

Top superpartner must be 'light' for the higgs mass to be at O(100 GeV) [but also W/Z superpartners]

> <u>Light stop (</u>< 1 TeV) But also: possibly light sbottom (related!)

Light neutralino, O(100 GeV): often Lightest SUSY particle, good candidate for DM But also: possibly light charginos (related!) $\widetilde{\chi}_1^0, \widetilde{\chi}_1^{\pm}$

Light gluinos (< 2 TeV)

26/11/2013

g

'Light': particles with mass 1 TeV = 100000000000 ev *To compare:* Core of the Sun T = 1000 ev → Need extremely high energies to produce them → Back to the condition of the Universe 10⁻¹⁰ s after the Big Bang

Conditions 'recreated' in particle accelerators: collisions between fundamental constituents of matter at extremely high energies

Monica D'Onofrio, Colloquium University of Geneva

26/11/2013

The Large Hadron Collider

Beams of protons (set in bunches) accelerated by electromagnetic force to 99,9999991% the speed of light

Beam energy: 3.5 TeV (2011), 4 TeV (2012) Centre of mass energy $\sqrt{s} = 7$ or 8 TeV 26/11/2013

The ATLAS experiment

Monica D'Onofrio, Colloquium University of Geneva

26/11/2013

The ATLAS experiment

- Detector designed to separate electrons, photons, muons, neutral and charged hadrons
- A transverse view:

Detector characteristics

Diameter: 22m

Weight: 7000t

End Cap Toroid

44m

Width.

Forward Calorimeters

Muon Detectors

Electromagnetic Calorimeters

Solenoid

Physics objects

- Jets \rightarrow initiated by quarks or gluons produced in the p-p collision. Result in clusters of hadrons and leptons in calorimeters
 - **B-jets** \rightarrow jet identified as originated from B-hadron which do not decay promptly but fly for few mm
- **Photons** \rightarrow EM cluster w/o matching track
- **Electrons** \rightarrow same with matching track
- **Muons** \rightarrow track in Tracker and Muon chambers
- ► Tau (hadronic) → narrow jets with 1 or 3 tracks
- Missing ET (MET) \rightarrow unbalanced transverse momentum
 - **Real MET:** presence of neutral weakly interacting particle in the event (i.e. neutrinos, or the lightest SUSY particle)
 - Fake MET: mismeasurements + detector malfunctions, poorly instrumented regions

Cross Sections at the LHC LHC 8 TeV 10^{9} Cross section (σ): the probability for a specific process to occur in a collision [barn = 10⁻²⁸ m²] 10^{8} Cross section (nb) σ_{tot} 10^{7} 10^{6} A lot more "uninteresting" than 105 "interesting" processes bbar 10^{4} Interesting events gets selected: 10^{3} Online, by trigger: $\sigma_{iet}(E_T^{jet} > \sqrt{s/20})$ 10^{2} Selection mechanism to find events which contain interesting features 10^{1} Offline, by physics analysis σ_7 10^{0} $\sigma_{iet}(E_T^{jet} > 100 \text{ GeV})$ Offline selection designed to suppress background compared to the signal of 10^{-1} interest 10^{-2} Typical SUSY particle 1 pb 10-3 Itbar production rate $\sigma_{iet}(E_T^{jet} > \sqrt{s/4})$ 10^{-4} Integrated Luminosity = amount of data 10⁻⁵ σ_{Higgs}(M_H = 150 GeV) collected by ATLAS 10-6 σ_{Higas}(M_H = 500 GeV) 5 fb⁻¹ 2011 @ 7 TeV 10-7 20 fb⁻¹ 2012 @ 8 TeV 10 0.1√s (TeV)

Monica D'Onofrio, Colloquium University of Geneva

26/11/2013

SUSY production processes and rates If R-parity is conserved, sparticles are pair-produced LPCC SUSY o WG **Gluino production:** 10 NLO(-NLL) ơ(pp→ SUSY) [pb] • high production rate (σ) up to 1 TeV mass 10-1 gg 10-2 Stop and sbottom $\widetilde{\chi}^{\dagger}\widetilde{\chi}$ moderate production rate 10⁻³ 10 🗳 up to ~0.6 TeV 10^{-4} 600 800 1000 1200 1400 1600 200 400SUSY sparticle mass [GeV] Focus on 'strong' production in Natural SUSY: gluino decaying in stop+top or sbottom+bottom, and direct stop and sbottom production

Lightest SUSY particle is DM candidate (Here: LSP = neutralino)

Searches for natural SUSY: gluinos

- Only gluino, stop and sbottom masses are accessible → can search for third generation squarks produced via <u>gluinos</u>:
 - High production rate
 - Spectacularly rich final states. Examples:

Final state events: 4 b-jets and Missing ET

Final state events: 4 b-jets + Missing ET + 4 W bosons, $W \rightarrow l v \text{ or } W \rightarrow qq'$

 \rightarrow Many jets, many b-jets, possibly leptons, high MET if m(neutralino) is light

SM background

E.g.: Can exploit the fact that gluinos should be 'heavy'. How much?

Pre-LHC constraints on gluino masses

Stop and sbottom via gluinos

- Searching for something heavy!
- Exploit high transverse momentum of decay products, large MET

 $M_{eff} = MET + \Sigma p_T jets + \Sigma p_T leptons$

- Exploit the presence of b-jets
- Classify search regions (Signal Region) in terms of N b-jets, N leptons, M_{eff}, MET
- Careful studies of SM background: e.g. top pair production

Stop and sbottom via gluinos Searching for something heavy! Exploit high transverse momentum SUSY of decay products, large MET Cuł i $M_{eff} = MET + \Sigma p_T jets + \Sigma p_T leptons$ Coun Exploit the presence of b-jets Events / 100 GeV Data 201 Classify search regions (Signal 10 L dt ~ 4.7 fb⁻¹, 1s = 7 TeV M Total Region) in terms of N b-jets, N SR4-I Others 102 Gbb: m2=950 GeV, m2=50 GeV leptons, M_{eff}, MET Gbb: m_=700 GeV, m_1=400 GeV 10 Careful studies of SM background: e.g. top pair production data / exp Example of Signal: M gluino = 950 GeV, 600 400 800 1200 1400 1600 1800 2000 1000 m_{eff} [GeV] M sbottom = 2000 GeV, M neutralino = 50 GeV

Monica D'Onofrio, Colloquium University of Geneva

Constraints on masses

- Null results interpreted in various Natural SUSY models
- Constraints on masses depend on the assumed mass hierarchy of gluino, sbottom, stop, neutralinos

Already using 7 TeV data, for Mneut < 100-200 GeV: exclude up to 800-1000 GeV gluinos and 700-900 GeV stop and sbottom.

State of the art at 8 TeV: gluino in 3rd generation squarks excluded up to 1.34 TeV

Direct production of sbottom/stop

- Most 'direct' way to search for Natural SUSY in strong production
- Challenges:
 - Relatively low production rate:
 - at mass = top mass, x-section is 1/6 of ttbar x-section
 - Can't always exploit the high transverse momentum of decay products:
 - Could be as light as the top quark
 - Various decay modes must be considered. *Few examples*:

Final state events: 2 b-jets and Missing ET

Final state events: 2 b-jets + Missing ET + 2 W bosons, $W \rightarrow l v \text{ or } W \rightarrow qq'$

Pre-LHC constraints on stop and sbottom

From Tevatron experiments and LEP experiments (e+e- collider, *J*s up to 209 GeV)

- Consider events with 2 b-jets, MET and nothing else
- Main SM background: top pair production
- To reject it efficiently:
 - exploit mCT (contransverse mass) observable, sensitive to pair production of heavy particles (A) decaying in visible (V) + invisible (X)

- Consider events with 2 b-jets, MET and nothing else
- Main SM background: top pair production
- To reject it efficiently:
 - exploit mCT (contransverse mass) observable, sensitive to pair production of heavy particles (A) decaying in visible (V) + invisible (X)

- With more luminosity, develop methods to fill the gap in scenarios with low ΔM (sbottom-neutralino) compressed
- Exploit production of hard jets from colliding partons (Initial State Radiation, ISR)

- Improve sensitivity already using 7 TeV data (4.7 fb⁻¹)
- With 4 times more luminosity and increased energy gap is almost filled

Direct stop production at ATLAS

Top squarks have the most crucial role in Natural SUSY

- Several decays possible
 - Assume 1 decay mode at a time (BR=100%)
- Need dedicated searches

At the end of 2011, ATLAS put together a **strategy** to cover a wide range of masses, various decay modes and several hypotheses of SUSY mass hierarchy

7 TeV, 4.7 fb⁻¹ searches for stop

Example: m(stop) close to m(top)

Again, need to adopt complex kinematic variables to extract signal from overwhelming SM background!

1/2 leptons + 2 b-jets (+0/2 jets) + Missing ET

The golden plot

- Presented for the first time at ICHEP 2012, inspired an enourmus number of theory papers, experts workshops and blogs !
 - ▶ It was not at all obvious that could reach such sensitivity with 5 fb⁻¹!

Where we are now

The near future

Explore more challenging scenarios where stop and sbottom could hide

- I.e. stop close to top mass, compressed scenarios
- Mixed decays: relax assumption that only 1 decay mode is realized in nature → much more difficult to decouple it from SM

Get ready for Run II

Start in 2015 with 13 TeV center of mass energy

Cross section ratios: 14 (13) TeV / 8 TeV

Expect to have sensitivity up to 2 TeV gluinos and up to 900 GeV for stop and sbottom depending on the SUSY model

The far future: High Luminosity LHC

- Foresee an additional major Run for LHC, before upgrade of the accelerator. Then: High Luminosity LHC (around 2023)
 - Expect a major upgrade of the ATLAS detector
 - Expect to collect up to 3000 fb⁻¹
 - Factor of 10 in integrated luminosity wrt previous run
- For SUSY:
 - Extend sensitivity
 - Allow signal characterization in case of evidence in 300 fb⁻¹
 → Feasibility studies presented to support the HL-LHC Case (European Strategy, Krakow, August 2012)

ATL-PHYS-PUB-2012-001

Stop pair production

Conclusions

- Supersymmetry is (still) one of the most compelling theories for particle physics beyond SM to date
- Naturalness might be the guiding principle (although not the only one!)
 - Searches focused on gluino, sbottom and stop
- Thourough strategy defined to search for natural SUSY since beginning of ATLAS Run I:
 - No evidence of SUSY yet, stringent constraints set:
 - M(gluino) excluded up to 1400 TeV
 - M(sbottom) and M(stop) excluded up to 650 GeV
 - Weaker constraints for compressed scenarios
- Much more to explore: intense (and broad) program of SUSY searches in preparation for 13/14 TeV data

Conclusions

Monica D'Onofrio, Colloquium University of Geneva

26/11/2013

Back up

Particle physics scale

Monica D'Onofrio, Colloquium University of Geneva

26/11/2013

Forces

Matter held together by Forces carried by Bosons (spin 1)

- 3 forces considered in SM of particle physics
 - Electromagnetic (EM), Weak and Strong forces
 - ► Couplings: g, g_W, g_s
 - > The 4th force, gravity, not included ! Carrier: graviton

The Higgs boson

- Everything with mass gets it by interacting with the Higgs field
- Relates M_w, M_z and weak, electromagnetic couplings:
 - Unifies weak and electromagnetic forces \rightarrow electroweak
 - $\tan \theta_{W} = g_{W} / g$, $M_{W} = M_{Z} \cos \theta_{W}$

'Mechanism' theorized in 1964 \rightarrow Higgs boson found at the Large Hadron Collider 50 years later!

Possible SUSY mass spectra

lots (> 100) of new parameters (e.g. masses)

Particle spectrum unknown

But also this:

Need some guiding principle!

 $\bar{u}_R d_R \bar{u}_L d_L$

t1

What's Nice about SUSY?

- The lightest of the higgs is predicted to be close to M₇: found at 126 GeV ^(C)
- Naturally solve the hierarchy problem
 - Corrections to the Higgs mass due to its coupling with fermions is compensated by the presence of bosons
 - No fine-tuning required !
- Enables forces to unify

If R-parity is conserved, the Lightest SUSY particle (LSP) cannot decay
 → is stable: SUSY provides the perfect candidate for Dark Matter (DM)

The LSP and Dark Matter

The amount of dark matter relic density is inversely proportional to the annihilation cross section:

 $\Omega_{\rm DM} \sim \langle \sigma_{\rm A} v \rangle^{-1}$

$$\sigma_A \sim \alpha^2 / m^2$$

Remarkable "coincidence":

HEPAP 2006 LHC/ILC Subpanel

 $\Omega_{\rm DM} \sim 0.1$ for m ~ 100 GeV – 1 TeV!

Supersymmetry independently predicts particles with about the right density to be dark matter !

26/11/2013

LHC operations

	2011
Colliding bunches	1331
Bunch spacing	50 ns
Luminosity	3.6 x 10 ³³ cm ⁻² s ⁻¹
Pile-up interactions	~20

Hadron Colliders: The LHC

27 km circumference

Rate of physics processes per unit time produced in heads-on collisions of protons, N obs, defined as:

 $N_{obs} = \int Ldt \cdot \varepsilon \cdot \sigma$

Luminosity (integrated in time) depending on the Machine

Efficiency: optimized by experimentalist Cross section σ: Given by Nature (calc. by theorists)

At design luminosity (L=10³⁴cm⁻²s⁻¹) Any event: 10⁹ / second W boson: 150 / second Top quark: 8 / second Higgs (126 GeV): 0.4 / second

Inner Detector

- Core of the experiment: reconstruct the path of charged particles from primary interactions (*tracks*)
- Immerse in Magnetic Field (2 Tesla)

Monica D'Onofrio, Colloquium University of Geneva

26/11/2013

Detector layer

Inner Detector

- Core of the experiment: reconstruct the path of charged particles from primary interactions (*tracks*)
- Immerse in Magnetic Field (2 Tesla)

Detector layer

Background strategy

Monica D'Onofrio, Colloquium University of Geneva

26/11/2013

Irreducible background

 Normalisation done in dedicated Control Regions (CR)

$$N_{SR}^{i} = \frac{N_{SR}^{i,MC}}{N_{CR}^{i,MC}} (N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC}) = T(N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC}) = T(N_{CR}^{i,MC}) = T(N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC}) = T(N_{CR}^{i,MC}) = T(N_{CR}^{i,$$

- Assuming $\Sigma N_{CR}^{j,MC}$ is small:
 - systematic uncertainties associated to the transfer factor
 - Need to define the regions
 keeping good statistics, low
 systematics uncertainties and
 low signal contamination

F^{miss}(GeV)

Тор

QCD CONTROL

Monica D'Onofrio, Colloquium University of Geneva

SUSY

IGNAL

REGION

M_T (GeV)

Simplified models (SMS)

- From 29 sparticles consider 2 or 3, decouple all others, force a specific decay mode (100% Branching Ratio)
- Assumptions on the chirality and nature of particle involved

Very helpful to design analyses.

Well suited for **natural SUSY** and **direct production** → **an example: stop pair production**