Life After Higgs

Tobias Golling, Yale

Colloquium, University of Geneva, Nov 27 2013

Objective of Particle Physics

- Is as old as mankind:
 - Where do we come from?
 - What are we?
 - Where are we going?
- In line with Galileo, Newton, Einstein

Fundamental structures & laws in nature

From the largest dimensions in the universe...

...to the smallest dimensions in microcosm

"Big Bang" in the Laboratory

<u>A fraction of a second after the Big</u> <u>Bang:</u> All particles have high energy (temperature) and collide uncontrolled

<u>At the LHC:</u> Select and control individual collisions (we call them events) and record them

Four Fundamental Interactions

The Standard Model of Particle Physics Quarks C Forces Describes all visible matt Descripes trar g : with the exception of the gravitational force □ Higgs mechanism: how elementary photon Z boson icles acquire mass parti bosor experiment with excellent precision □ All pr LÊ <mark>ĐÔ Ô</mark> for mor □ Last zzle: the Higgs boson ece electron neutrino muon neutrino tau neutrino

The Discovery Tools: LHC & ATLAS

- 100

Fantastic machines with capabilities beyond design

The LHC

A Time Machine

A Magnifying Glass

A Discovery Machine

HIGGS BOSON

H

The **HIGGS BOSON** is the theoretical particle of

the Higgs mechanism, which physicists believe will reveal how all matter in the universe gets its mass. Many scientists hope that the Large Hadron Collider in Geneva, Switzerland, which collides particles at 99.99% the speed of light, will detect the elusive Higgs Boson

\$10.49 PLUS SHIPPING

LIGHT HEAVY

Wool felt, fleece with gravel fill for maximum mass.

LHC – Two Important Parameters

ATLAS

• A camera with a 100 million pixels

 Shutter speed of 40 million times per second – operating ~24/7

 Sophisticated filtering to keep only 0.001% of the coolest pics!

1 observed Higgs event in a trillion (10¹²) pp collisons

Detectors are Huge...

CMS is 30% heavier than the Eiffel tower

The "Ugly" Truth about the Proton

How We Imagine a pp Collision

Feynman Diagram

"collision event"

Real Life is More Complex...

What do We See in the Detector?

Run Number: 204769, Event Number: 24947130 Date: 2012-06-10 08:17:12 UTC

The Birth of a Particle

The Higgs Boson!

The Standard Model Appears Complete, But...

There are Unanswered Questions

Naturalness

The LHC

And More Puzzles

- Quantum gravity
- Matter-antimatter asymmetry
- Pattern of masses and mixings
- Unification

•

More Science Revolutions in Store for us?

- Copernican revolution
- Relativity
- Quantum Mechanics

Physics beyond the Standard Model (SM)?

Analogy: Standard Model and Newtonian Physics

velocity v= c *∖<< ζ* proton > scale 19rge

Standard Model and New Physics

Energy, M_{Pl}-TeV -M_{EWSB}-

Naturalness

Aka fine-tuning or hierarchy problem

Why is the Higgs Mass so small?

Observed

Predicted

Observed M^2_{Higgs} 10³² times smaller than predicted

An Aside: even worse in Cosmology

Observed

Predicted

Observed cosmological constant 10¹²⁰ times smaller than predicted

The Problem with Hierarchies

You can think of the Higgs mass as the difference between two numbers

Now Scale Example up by 10³²

 $\begin{array}{l} 36127890984789307394520932878928933023 \\ 36127890984789307394520932878928917398 \\ = m_{H}^{2} = 125^{2} \end{array}$

Unnatural cancellation or fine-tuning: $O(10^{32}) - O(10^{32}) = O(1)$

In analogy to: $0.7 - 0.4 \neq O(10^{-32})$

 m_{H}^{2} in GeV²

Fine-Tuning

Imagine a radio and you have to fine-adjust the knob to 1 part in 10³² in order to tune the channel

Fine-Tuning not Observed in Nature

- Angle of moon and sun agree to 1:10²
 - Ok with 1% fine-tuning

• Imagine they were equal to 1:10³²

Obvious question: what mechanism sets their precise distance (of 10⁻¹⁹ m!)

Summary or Naturalness

 Two very different scales involved – hierarchy problem

• There is fine-tuning of 1 part in 10³²

• This is unnatural

Two Mechanisms to Establish Naturalness

1. Symmetry

Two Mechanisms to Establish Naturalness

10-32

2. Modified cut-off scale

()

Supersymmetry

New symmetry between bosons and fermions

(Symmetry needs to be broken)

SUSY – Other Fixes to the Standard Model

Dark matter candidate

(R-parity conserving)

SUSY – Other Fixes to the Standard Model

Gauge coupling unification

Where is SUSY? Squark-gluino-neutralino model, $m(\tilde{\chi}_{4}^{0}) = 0 \text{ GeV}$ 2800 5²⁸⁰⁰ 5²⁶⁰⁰ **ATLAS** Preliminary squark mass 2400 L dt = 5.8 fb⁻¹, **v**s=8 TeV 2200 0-lepton combined Observed limit ($\pm 1 \sigma_{\text{theory}}^{\text{SUSY}}$) 2000 Expected limit $(\pm 1 \sigma_{exp})$ 1800 Observed limit (4.7 fb⁻¹, 7 TeV) 1600 1400 1200 1000 800 -800 1000 1200 1400 1600 1800 2000 2200 2400

gluino mass [GeV]

Minimum SUSY Requirement for Naturalness

• Only the supersymmetric partner of the top quark (referred to as "stop") is light

• The heavier the stop the more fine-tuning

• Stop of ~1 TeV means ~1% fine-tuning

Stops

Confronting Data with the Stop Hypothesis

Ľ,

the max max

(stop-LSP coannihilation)

The Trick: Recoil

Identifying Charm – Recognizing Patterns

Machine Learning – Image Recognition

Charm Pattern

- Primary vertex
- Calorimeter jet
- Tracks traces of charged particles
- Properties of tracks allow one to distinguish charm, bottom, light

Machine Learning – Charm Identification

Conclusion

- Naturalness and Dark Matter point to new physics in reach of the LHC
 - Higher energy, more luminosity
- The grand ideas to solve the puzzles of the Universe are our guides in designing our searches
- Goal: discover new physics if it is in our data
 - Not a trivial task complex data
 - Cast a wide net
 - Fully exploit the potential of our exquisite data
 - Open to innovations: new tools, new concepts
- We won't give up!

We Might be this Close!

Thank You!