The tracking detectors of the ATLAS and CMS experiments for the High-Luminosity LHC

Seminar at the University of Geneva

2.11.2022

Susanne Kuehn, CERN

Overview

- The High-Luminosity LHC and challenges for the experiments
- The upgrade plans of the tracking detectors of the ATLAS and CMS experiments
- Layout of the new silicon tracking detectors
- Technology choices and results of prototyping of
 - the new Inner Tracker (ITk) of ATLAS
 - the new Inner Tracker and Outer Tracker of CMS
- Summary

Phase-II Upgrade of the LHC

From LHC to HL-LHC

- Proton-proton collisions with up to 14 TeV at higher intensity
- Instantaneous nominal luminosity x5-7.5
- Integrated luminosity x10

High pile-up fill in 2017: 78 reconstructed vertices in event from high pile-up CMS-PHO-GEN-2012-002

Challenges for the experiments at the HL-LHC

Proton-proton collisions with up to 14 TeV at higher intensity:

- Instantaneous nominal luminosity $x5-7.5 \rightarrow$ Increased particle densities
- Integrated luminosity x10 \rightarrow Increased radiation damage, radiation levels up to 2x10¹⁶ n_{eq}/cm² or 1 GRad
 - Impact on detector technologies (silicon planar and 3D-sensors), electronics (deep sub-micron technologies and FPGAs) and materials (cables, glues) → Qualification process essential
- \rightarrow Increase of overlapping proton-proton events (pile-up) from $<\mu>\sim 50$ now to $<\mu>\sim 200$
 - Accumulation of "pile-up" jets especially in forward region
- → Hit rates x8, up to 3 GHz/cm²
 - Higher rate of fake tracks

Integrated particle fluence in 1 MeV-neutron equivalent fluence for CMS tracker for pp collisions at 14 TeV (FLUKA 3.7.2.0 CMS-TDR-17-001, LHCC-2017-009)

The ATLAS and CMS experiments

Target for HL-LHC:
At least the same performance of the ATLAS and CMS experiments as in Run-2/Run-3

Phase-II Upgrade: Physics Program

Wide program covering nearly all areas of Physics at hadron colliders

- Exploration of electro-weak Standard Model and top physics
 - Precision measurements like W/top masses,
 - Rare signatures like Vector-Boson-Scattering, FCNC top decay, ...
- **Higgs Boson Program** a major component, main measurements:
 - Higgs couplings
 - Higgs self-coupling
 - Higgs differential distributions
 - Rare Higgs decays
 - Heavy Higgs searches
- **QCD measurements** constraining PDF uncertainties with LHC data
- **Flavour physics** constrains on CKM matrix, ...
- Extended sensitivity for **Beyond the Standard Model physics**
 - New TeV-scale physics could be discovered or very strongly disfavoured

HL-LHC offers increased dataset → Reduced uncertainties both statistically and experimentally (large calibration datasets)

Main references:

Reports arXiv:1902.04070,

arXiv:1902.00134, arXiv:1812.07831, Physics Briefing book arXiv:1910.11775

Tracks are everywhere

- Many challenges for reconstruction:
 - High multiplicity events and highly boosted jets require improved granularity and resolution
 - VBS/VBF forward jets: forward tracker for pile-up rejection by jet-vertex association
 - Rare events: improvements in coverage and reconstruction efficiency
- → Detector upgrades

Further motivations for detector upgrades

Efficient tracking with small fake rates

The tracker material profile (in λI and X₀ respectively) is superimposed 2014 JINST 9 P10009

→ Radiation tolerance, high granularity and low material budget essential in tracking detectors

+ current trackers can't withstand radiation and rates beyond LHC

 \rightarrow New all-silicon tracking detectors for ATLAS and CMS experiments with extended coverage to $|\eta|$ < 4

Silicon strip and pixel detectors

P-N diode in reverse bias capacitively coupled to a charge-sensitive amplifier

The upgrade tracking detectors

- n-in-p silicon sensors (planar or 3D for radiation hardness)
- Extended coverage to forward region
- Fast data transmission with low power giga-bit data transmission
- Serial powering of pixel detectors, DC-DC converters for strip detectors
- CO₂ cooling (thinner pipes)
- Carbon structures for mechanical stability
- → low material budget (< 2 X₀) and efficient powering

The layout of the tracking detectors

Layout of the upgrade tracking detectors

	CMS	ATLAS	
Strip pitch (µm)	90-100	70-85	
Strip length (cm)	2.5-5	2.5-8	
Strip thickness (µm)	290	300	
Pixel size (µm²)	25x100, 1.5 mm macro-pixels	50x50 (planar L1-L4), L0 3D in rings 50x50, 25x100 in flat	
Pixel thickness (μm)	≤ 150	≤ 150	

The CMS Strip detector upgrade

The CMS OUTER tracker foresees two type of modules

Concept: Every module is a functional unit individually connected to the power source and to backend system for data, trigger and control

- 7608 Strip-Strip modules 2S
- 5592 Macropixel-Strip modules
 PS
- Cabling to service area (power supplies) defines the optimal powering group: 12 modules per group → 12 modules mounted on various carbon fibre/foam support structures for precise placement and with cooling pipes for cooling

Track information for triggering in CMS

A. Dierlamm, S. Mersi

Key point in CMS Outer Tracker: include tracking information with fast readout → **2-sensor module concept for tracker**

- → Correlation on module level (@ 40 MHz) to form stubs is sent out if within p_T > 2 GeV
- → Latency ~12 µs
- → Rate reduction (factor 10) due to sharp thresholds (leptons) and isolation (multi-jet background reduction)
- → Muon+calo+tracks combined give capability to particleflow selections
- → Expected results achieved with prototype modules

CERN-LHCC-2020-004, CMS-TDR-021

Strip-Strip (2S) modules in CMS

- Sensor production started in Summer 2020, progressing smoothly
- Module production ongoing in 7 production centres in Europe, US, India and Pakistan

Integration prototype for central section (TB2S):

- Ladders from carbon fibre frame and cooling tubes
- 12 modules per ladder

Pixel-Strip (PS) modules in CMS

Macro-pixel sensor

PS-p sensor

Size: 5 x 10 cm²

Pitch : 100 μm

Length: 1.5 mm

No. of strips: 32x960

Strip sensor

PS-s sensor

Size: 5 x 10 cm²

Pitch: 100 μm

Length: 2.5 cm

No. of strips: 2x960

Sensor spacing 1.6, 2.6 or 4.0 mm Radiation hardness 1×10^{15} n_{eq}/cm^2

5 module production centres are getting ready for pre-production

- Several prototypes successfully assembled and qualified (good hit efficiencies)
- Pre-production: spring 2023 winter 2024
- Production: spring 2024 spring 2026

Test results with irradiated modules:

- Ladder cooled with 2S and PS modules cooled with CO₂. Test-box flushed slightly with dry air.
- Variations of CO₂ cooling set value: No thermal runaway observed below -18°C (potential convection contribution)

The strip detector of the new Inner Tracker ITk of ATLAS

Strip Barrel

Strip Endcap

Pixel Inner Layers

Pixel Outer Barrel

Pixel Endcap

Concept of the ITk Strip Detector

CERN

- ~3x size and ~5x modules compared to current SCT strip detector in ATLAS
- Similar concept of modularity of components
 - Assembly and testing at multiple sites
 - Simplifies final assembly
 - Earlier test of full system
- 10,000 modules in 8 flavours with 2560 or 5120 channels/module

 Parallel powering scheme with DC/DC converters and on-module power control and monitoring chips

ITk Strip module production and performance

- n-in-p float-zone sensors with p-stop isolation and ~320 µm thickness
- Measurements in test beam show results meeting the operation range (>99% efficiency, <0.1% noise occupancy requirement, signal-to-noise ratio >10)

- Preproduction ongoing
 - ~20 assembly sites across 4 continents

 Binary readout chip and controller chips (130 nm CMOS) Improved design for radiation hardness but still power usage increase vs. ionizing dose (known for this CMOS process)

→ pre-irradiation of ASICs to 5 Mrad in production (DOI: 10.22323/1.313.0094)

Increase in noise was observed in modules at cold operation, mainly in strips below hybrid

→ Investigation actively ongoing

Module Thermal Cycler

Hybrid Burn-in

Crate

ITk Strip local supports

CERN

- Carbon-fibre composite structures with co-cured polyimide-copper bus tapes have modules glued on top of both sides with a stereo angle between both sides
 - In central region (barrel): staves with 14 modules on each side (392 staves in total)
 - In endcaps: petals with 9 modules on each side (384 petals in both endcaps)

 End-of structure cards service the electrical to optical transmission (lpGBT and VTRx+ links) and to the outside world

End-of-strucure card

 Good electrical and thermal performance achieved, preproduction running

Overview of the ATLAS ITk Pixel detector

	Surface [m²]	# Channels	# modules
Pixel	13 (x7)	5 G (x60)	8.5 k

OB 53.5% of the pixel detector

Uni GE team plays a key role in the Outer Barrel!

Different sensors types and technologies depending on distance from interaction point

- Modules assembled with 3D-sensors in triplet, 3 chips (Layer 0), planar quads, 4 chips with 100 μm (L1), planar quad sensors with 150 μm thickness (L2, L3, L4)
- Pixel size 50x50 μm² (L1-L4, rings of L0), 25x100 μm² (barrel of L0)
- Modules plan soon to start pre-production with current version of front-end chip
- Front-end chip developed in RD53 Collaboration (ATLAS+CMS) (see later slides on CMS)
- Reduction of material by deploying serial powering and CO₂ cooling
- Fast readout with max. 1 MHz trigger rate and data transmission with 1.28 Gbps (electrical) to IpGBT and VTRx+ link (optical) to FELIX readout

4-chip module on test jig

Local support mechanics of the ITk Pixel detector

Principle: Local support structures from carbon-fibre composites get modules attached

Inner System: staves, rings

Endcap: half-rings

Outer Barrel: cells, longerons and inclined half-rings

- Layout differs in detector areas: varying serial powering chain lengths, varying mechanical solutions to achieve high thermal and electrical performance for stable and safe operation
- → Successful evaluation of thermal performance and manufacturing variability for OB local supports
- → Pre-production ongoing

Manufacturing of components and assembly for OB in-house at CERN, the University of Geneva and the University of Bonn

Readout of the ITk pixel detector

- On-detector readout with 1.28 Gbps (up to 4 lanes per front-end chip) and conversion to optical signals at > 5.12 Gbps
- Uplink sharing for all layers to reduce material (320 MHz)

First results on single components are encouraging:

envelope for twinax cables

L2 Barrel:

Further challenge are space constraints for routing of services

Losses to be kept below 20 dB → Verification of full chain to be achieved!

L2 SDD12

Powering of the ATLAS and CMS Pixel detectors

Powering modules serially with chains of up to 12 quad modules

Serial powering:

- T. Stockmanns et al., NIM A511 (2003) 174-179
- D. Bao Ta et al., NIM A557 (2006) 445-459
- L. Gonella et al., JINST 5 (2010) C12002
- → Radiation hard on-chip shuntLDO converts input voltage to constant front-end chip supply voltage. Slope & offset can be regulated.
- → Reduced number of supply lines, less material
- → Less power dissipation on services than with parallel powering
- Several HV lines per chain (at least 2 per SPchain foreseen)
- Each module on different potential → ACcoupling of data lines
- Challenge: Has never been used on large scale, configuration and heat dissipation in ShuntLDOs

In ATLAS ITk Pixel:

- About 1000 SP-chains
- Total power consumption (112 kW) is within cooling budget

distributed on one module to all front-ends

Results of electrical prototypes in ITk Pixel

- Outer Barrel demonstrator program based on previous front-end chip version successfully finished (Up to 120 FE-I4 ASICs in 6 SP-chains)
 - Power fluctuations indicated necessity of improved shuntLDOs compared to FE-I4, implemented in ITkPixV1 FE (current FE)
- Test of serial powering chain of standalone modules before and after irradiation → modules fully functional but features at start-up seen (studying fast load changes in the serial chain)
- OB demonstrator with current front-end chip RD53A recently installed and both inclined half-ring (11 modules) and first part of longeron (6 modules) being evaluated in OB System Test with CO₂ cooling

Stages: 1 Module QC, 2 Thermal cycling, 3 Cell Loading, 4 Tab cutting, 5 Final Pigtail, 6 On demonstrator

CERN-PHOTO-202210-174

The new CMS Pixel detector

Relatively simple removal/ installation (smaller Layer 1 radius since beam pipe bake out can be done without IT in place) → Maintenance possible in long shutdowns

- Planar n-in-p sensors with pixel size: 25x100 μm². 3-D sensors in barrel layer 1
- 3900 modules, 4.9 m² (~50% modules less than in ATLAS ITk Pixel)
- Powering in serial chains and cooling with CO₂. Cooling pipes below frontend periphery in innermost layers.
- Service Cylinder to route cables ondetector. Specific boards for electricaloptical conversion inside the detector volume (see spare slide)

Front-end and module concept in CMS Pixels

- RD53 Collaboration: joint R&D of ATLAS and CMS ASIC: 65 nm with TSMC
 - RD53A FE prototype (full width/half depth chip with 3 analogue FE) heavily investigated: Many results were collected and show good results. Cold-start up of ShuntLDO problematic
 - ITkPixv1 (ATLAS) and CROC-1 (CMS) produced and being tested
 - Verification of ATLAS ITkPixv2 ongoing to submit for production at the end of November 2022, then design of CMS CROC-2 to submit in April 2023

Cell size
Technology
Hit rate
Trigger rate
Trigger latency
Min. threshold
Radiation tolerance
Power

50x50 μm²
CMOS 65 nm
3.5 GHz/cm²
750kHz
12.5 μs
600 e> 500 Mrad*@ -15 °C
< 1W/cm²

*but demonstrated working up to ~1.1Grad

architectures

CMS prototype w/ final size and linear FE

RD53B-CMS (CROC_V1)
 [432x336]
 size: 21.6 x 18.6 mm²

Post-coating, post-irradiation IV of HPK and FBK single chip modules

→ Evaluation of performance after irradiation and in test beams ongoing

- Module flavours with 1x2 and 2x2 front-end chips. Assembly performed with jigs and templates (10-20 µm precision achieved)
- Parylene-N foreseen for encapsulation of wirebonds and for HV insulation

A prototype ladder

A prototype small disk

A prototyoe large disk

System test ran cooling and mechanics prototypes being tested

Material estimates for the upgrade tracking detectors

Design aiming for reduction of material

Minimize effects of multiple-scattering and energy losses before outer detectors

Tracking performance

High tracking efficiencies and low fake rates

- For ATLAS reconstruction efficiency
- > 90% in central region
- > 80% in forward region

Reduced material → less interactions

Increase in hit counts → tighter track selections

Improved hermeticity → more hits and fewer holes

Vertex
reconstruction
efficiencies for
tt can cope with
high pile-up

 Jets robust to pile-up

Tracking performance

• Longitudinal impact parameter z_0 resolution crucial for pile-up suppression

- For low p_T dominated by multiple scattering
- For high p_T dominated by intrinsic detector resolution
- Improvement due to reduced material and better resolution of strip tracker than current TRT

 B-tagging performance and light-jet rejection robust to pile-up → important to discriminate between VBF and tt in forward regions

Extrapolation for Physics case H→ µµ

Summary

- HL-LHC will increase physics reach of the ATLAS and CMS experiments
 - Improved precision for several processes (Higgs-couplings, ...) and several rate-limited processes get available (VBS, Di-Higgs, ...)
- ATLAS and CMS experiments have to tackle challenges of high pile-up, particle rates and radiation dose
 - → New all-silicon tracking detectors for both experiments
- In ATLAS: ~4-layer strip detector with about 10,000 strip modules and ~5-layer pixel detector with about 8,500 pixel-hybrid modules
 - Strips: Design verified and many final design reviews passed. Deep into pre-production and starting production. Unexpected effect of cold noise being investigated.
 - Pixels: Prototypes of several components being tested and first parts (sensors) in pre-production. Main challenges are front-end chip submission, module production and validation of data transmission concept.
- In CMS: ~6-layer strip detector with about 13,000 strip modules and ~4-layer pixel detector with about 4,000 pixel-hybrid modules
 - Outer Tracker: Production of modules ongoing. Mechanics to go in production next year
 - Inner Tracker: Module concept prototyped, System slice test successfully ran. Main challenges: front-end chip submission next year
- Common effort essential to make it for installation in 2027

Thank you!

Acknowledgment

Matthias Hamer, Antonio Cassese,
Didier Contardo, Konstantinos
Damanakis, Didier Ferrere, Frank
Hartmann, Helen Hayward, Anna Sfyrla,
Felix Sefkow, Thomas Senger, Giacomo
Sguazzoni, Stefaniana Stucci, Benedikt
Vormwald

SPARE

The HL-LHC

Phase-II Upgrade: Detector Upgrades – CMS

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193

 Tracks in L1-Trigger at 40 MHz for 750 kHz PFlow-like selection rate

HLT output 7.5 kHz

https://cds.cern.ch/record/2714892

NEW DETECTOR

Calorimeter Endcap

https://cds.cern.ch/record/2293646

- Si, Scint+SiPM in Pb-W-SS
- 3D shower topology with precise timing

NEW DETECTOR

Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

DT & CSC new FE/BE readout

NEW

READOUT

- New GEM/RPC $1.6 < \eta < 2.4$
- Extended coverage to η ≃ 3

Beam Radiation Instr. and Luminosity, and Common Systems and Infrastructure https://cds.cern.ch/record/2020886

MIP Timing Detector

https://cds.cern.ch/record/2296612 https://cds.cern.ch/record/2667167

- \simeq 30 ps resolution
- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

Phase-II Upgrade: Detector Upgrades – ATLAS

New all-silicon inner tracker with extended coverage to

 $|\eta| \sim 4$

Pixel detector: CERN-LHCC-2017-021; ATLAS-TDR-030.

Strip detector: CERN-LHCC-2017-005; ATLAS-TDR-025.

HGTD: new high granularity timing detector with forward coverage from LGADs, 30-50 ps resolution for MIPs CERN-LHCC-2020-007; ATLAS-TDR-031.

Liquid Argon Calorimeter: Upgrade of electronics CERN-LHCC-2017-018; ATLAS-TDR-027.

Tile Calorimeter: Upgrade of electronics CERN-LHCC-2017-019; ATLAS-TDR-028.

Muon Spectrometer: Chamber replacement inn the inner barrel and upgrade of electronics CERN-LHCC-2017-017; ATLAS-TDR-026.

TDAQ System: Upgrade of L0-based system to 1 MHz CERN-LHCC-2017-020; ATLAS-TDR-029.

Phase-II Upgrade: Detector Upgrades

Trigger/DAQ:

Upgrades, add tracking at L1, partially new electronics Improve bandwidth and processing for triggering, increase in latency

Tracking detector:

New all silicon tracking detectors for ATLAS and CMS with extended coverage to $|\eta| < 4$

Timing detectors:

High granularity timing detector in forward region in ATLAS and timing layer for MIPs around trackers in CMS

Calorimetry:

ATLAS: New FE electronics for Tile and LAr calorimeter (increase granularity)

CMS: Replace endcaps and replace electronics in electromagnetic calorimeter

Muon system:

ATLAS: New FE electronics and additional units in muon spectrometer

CMS: Extend forward chambers and replace electronics

Motivations for detector upgrades

Process	Requirements
Efficient tracking with small fake rates	Radiation tolerance, high granularity, low material budget
High multiplicity events and highly boosted jets	Improved granularity and resolution
Missing transverse energy	High coverage including acceptance in forward region
Resonances in top pairs, W, Z, H	Reconstruction of leptons & b-quarks in boosted topologies
VBS/VBF forward jets	Forward tracking to reject pile-up by jet-vertex association
$H \rightarrow \tau \tau$	Triggering of $ au$ -leptons
High-mass gauge bosons	Good lepton momentum resolution at high p _T
Rare events	High coverage and reconstruction efficiency
BSM cascades	Triggering & reconstruction of low p _T leptons + identifying heavy flavour

 \rightarrow Precise measurement of physics objects: leptons (e, μ , τ -leptons), photons, missing transverse energy, jets, b-(c-)quarks over full p_T range

+ current trackers can't withstand radiation and rates beyond LHC

Physics of the Higgs Boson

- Higgs couplings highly sensitive to BSM physics
- With HL-LHC dataset significant improvement in precision
- Study based on following channels
 - $H \rightarrow gg$
 - $H \rightarrow ZZ^* \rightarrow 4I$
 - $H \rightarrow WW^* \rightarrow |\nu|\nu$
 - $H \rightarrow tt$
 - ttH, H \rightarrow gg and H \rightarrow $\mu\mu$
 - WH/ZH, H \rightarrow gg
 - $H \rightarrow \mu\mu$
- Relative precision on Higgs coupling modifiers κ with $\kappa_{\nu} \le 1$: **Factor 2 improvement feasible** from LHC to HL-HLC (constrained on 2-7% level)
- Gives access to direct coupling to top quark (mainly ttH \rightarrow ttyy, 4% for κ_t)

10¹⁰

10

10⁶ 10⁵

10⁴

 10^{3}

10

Di-Higgs Production → direct handle on Higgs self coupling

SM HH Signal	Statistic	al-only	Statistica	al + Systematic
Significances	ATLAS	CMS	ATLAS	CMS
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95
$HH \rightarrow b\bar{b}\tau^+\tau^-$	2.5	1.6	2.1	1.4
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8
$HH \rightarrow b\bar{b}VV^*$	-	0.59	-	0.56
$HH \rightarrow b\bar{b}ZZ(4\ell)$	-	0.37	-	0.37
Combination	3.5	2.8	3.0	2.6
	4.	5		4.0

Combining all channels yields to sensitivity of 40

m,... [GeV]

Vector Boson Scattering and W mass

VBS cross section

- In leptonic signatures expected to be observable at HL-LHC
 - WZ scattering: about 6% precision
 - ZZ scattering: 1-8 σ overall, depends on theo. unc. (ZZjj)
 - WW scattering: <10% precision, 2σ sensitivity to W_LW_L Challenge is extraction of the longitudinal scattering component to test unitarity

 Despite major improvements with forward tracking and jet-tagging capabilities, WW analysis will be systematically limited

Precision measurement of W mass

- Reduced constraints to PDFs with extended forward tracking at HL-HLC
- Low luminosity run < μ > = 2 would give in short time a clean sample at 14 TeV

For 200 pb⁻¹

\sqrt{s} [TeV]	Lepton acceptance	Uncertainty in m_W [MeV]	
		HL-LHC	LHeC
14	$ \eta_\ell < 2.4$	$11.5~(10.0 \oplus 5.8~)$	$10.2 (9.9 \oplus 2.2)$
14	$ \eta_\ell < 4$	$9.3~(8.6 \oplus 3.7)$	$8.7~(8.5 \oplus 1.6)$

see also: CMS-PAS-FTR-18-005/-014/-029/-038/-023

https://cds.cern.ch/record/2703572

Current ATLAS tracker

CERN

- Current silicon strip tracker in ATLAS performing very well and lead to great physics results, Run 2 just successfully started
- Radiation damage occurring
- ATLAS silicon strip tracker planned for maximal dose of 2*10¹⁴ Neq/cm²

Radiation damage in silicon sensors

Radiation damage: non-ionising energy loss of charged and neutral particles

→ damage in silicon bulk

Effects:

- Increase of leakage current
- Change of effective doping concentration
- Increase of depletion voltage
- Defects act as trapping centres affecting the charge collection efficiency

→ Radiation damage degrades the detector performance and limits the life time

Strip-Strip (2S) modules in CMS

2 x Strip sensors

2S sensor

Size: 10 x 10 cm²

Pitch : 90 μm

Length: 5 cm

No. of strips/sensor : 2x1016

2 x 8 CMS Binary Chip (CBC)

- 2x127 channels per chip
- Bump bonded to flexible hybrid
- Connects to top and bottom sensors
- Inter-chip communication via hybrid

Concentrator ASIC: CIC

- collects data from 8 CBCs (half module)
- Low Power GigaBit Transceiver
 - IpGBT + VTRx+
- 2-stage DCDC powering
 - 12 V to 2.5 V (opto) 1.25 V (ASICS)

Strip-Strip (2S) modules in CMS

2S assembly - sensor alignment

Sensor-sensor gluing

Sensor-sensor alignment measurement

Specs: rotation < 400 μrad, strip parallel (perpendicular) offset < 100 (50) μm

Strip-Strip (2S) modules in CMS

2S module prototypes

- More than 30 modules build across the various production centers
- Several laboratory and beam tests carried out before and after irradiation, expected performance confirmed

Pixel-Strip (PS) modules in CMS

Macro-pixel sensor

PS-p sensor

Size: 5 x 10 cm²

Pitch : 100 μm

Length: 1.5 mm

No. of strips: 32x960

Strip sensor:

PS-s sensor

Size: 5 x 10 cm²

Pitch: 100 μm

· Length: 2.5 cm

No. of strips: 2x960

Sensor spacing 1.6, 2.6 or 4.0 mm

2 x 8 Short Strip ASIC (SSA)

- 120 channels per chip
- Sends hits to MPA
- Bump bonded to flexible hybrid

16 MacroPixel ASIC: MPA

- 120 x 16 pixels per chip
- Bump bonded to Macro-Pixel sensor
- Includes correlation logic

Concentrator ASIC: CIC

- collects data from 8 MPAs
- Low Power GigaBit Transceiver
 IpGBT + VTRx+

2 stage DCDC powering

- 12 V to
 - 2.5 V (opto)
 - 1.25 V (ASICS)
 - 1.05 V (MPA digital)

ATLAS ITk Strip sensors and electronics

- n-in-p float-zone sensors with p-stop isolation and ~320 µm thickness
 - 8 sensor types (2 for barrel, 6 for endcap)
 - bias voltage: 100V to 500V
 - ~24% wafers delivered for production. Few percent rejected due to too low quality
- Binary readout chip and controller chips (130 nm CMOS)

SS, LS are barrel Rx are endcap petals

HCCStar (Hybr. controller)

- Connects 10x ABC to stave
- SEE mitigation

ABCStar (front-end chip)

Binary readout with 256 channels

AMACStar (Power control and environmental monitoring)

On the same wafer as HCC

- All three chips were extensively modified to improve SEE protection and validated
- In production stage for detector

https://arxiv.org/pdf/2009.03197

Services of the strip detector

Full chain defined and services purchased for larger system tests

Type-1 Cable Connectors

Type-3 cables

Services on the detector sorted in service modules

Mockup of services

EC cooling manifold tested with in CO₂ plant at CERN

Global mechanics and integration of ATLAS ITk Strips

Loaded local support structures (staves and petals) are end-insertable including cooling and cabling

Fire-tests of components passed

- For barrel: carbon cylinders for each layer in which staves are inserted.
 - Tests with mock-ups well advanced

- For endcaps: carbon wheels with blades for each disk mounted in endcap structure
 - Tests with mock-ups well advanced

Prototype Wheels (w/ blades)

interlinks and end flanges

ATLAS ITk planar and 3D pixel sensors

Thin n-in-p planar sensors

- Dies of 4x4 cm²
- 100/150 µm thick

2.11.2022

- Bias voltage up to 600/400 V (at end of life-time)
- Signal: ~10000 e⁻ (~6000 e⁻ after HL-LHC dose)
- Production about to start after production readiness review in Nov. 2022

Test beam results for 50x50 μm² planar modules with varying bias structures irradiated with 70 MeV protons to 3*10¹⁵ n_{eq}/cm²

Biasing solutions

- Punch through
- Bias Rail and bias resistor
- Temporary Metal

3D sensors

- For innermost layer: 1.3×10¹⁶ n_{eq}/cm² for 2000 fb⁻¹
- Dies of 2x2 cm², 150 μm thickness + 100-200 μm support wafer
- Pixel size of 25x100 µm² challenging for radiation hardness and only in part of L0 foreseen
- Pre-production ongoing

p⁺ ohmic column n⁺ junction column

- >97% efficiency at perpendicular track incidence
- Power consumption at the operational voltage: <10 mW/cm²
- Maximum operational voltage: 250 V

ITK Pixel Outer Barrel

- ATLAS ITK Pixel Upgrade
 - Active area ~13m²
 - First pixel detector with inclined layout
 - TDR approved in 2018

4 x Front-end Chips
(150µm thick)

Planar Sensor

- 4472 Pixel modules
- Active area: 6.94m² (53.5% of Pixel Detector)
- >14 Institutes from six different funding

agencies

4 times the area of the current

ATLAS Pixel Detector!!

D. Alvarez Feito

ITk Pixel OB Local Supports

Module Cells

(Module + PGT tile + Cooling Block)

Functional Local Supports (FLS)

(Base Blocks + Cooling Pipe + CFRP Support Structure)

ITk Pixel OB Service Scheme & Routing

The tracking detector upgrades of the ATLAS and C

Powering of the ITk Pixel detector

CERN

- Powering modules serially with chains of up to 14 quad modules
 - → Reduced number of supply lines, less material
 - → Less power dissipation on services than with parallel powering
 - → Radiation hard on-chip shuntLDO allows regulation of voltage on chip
- Several HV lines per chain (at least 2 per SP-chain foreseen)
- Each module on different potential → AC coupling of data lines

Serial powering:

- T. Stockmanns et al., NIM A511 (2003) 174-179
- D. Bao Ta et al., NIM A557 (2006) 445-459
- L. Gonella et al., JINST 5 (2010) C12002

Constant current supplied and parallel distributed on one module to all front-ends

Results of ITk Pixel electrical prototypes

CERN

• Tests with different readout systems give comparable results

Serial powering features

 Measurements with realistic power supplies and services scheme → Leakage current return through HV power supply with low-ohmic off-mode required to avoid forward bias on module with lowest ground level in chain → Input to PSU specifications

Module	Voltage Drop [V]	Drop over R_HV [V]	ISensor [uA]
BM1	2.12	0.333	30.27272727
BM2	1.78	-0.023	-2.3
BM3	1.95	-0.219	-19.90909091
BM4	1.99		
BM5	2		
BM6	2	-0.041	-3.727272727
BM7	2.01	-0.053	-4.818181818

Power fluctuations

 Several observations (power fluctuations induced during reset of GBT, register start-up) underline the necessity of the improvement of the shuntLDO regulators → Input to RD53 chip requirements, undershunt current protection and overvoltage protection

CMS Pixel readout architecture

- Communication electronics hosted on dedicated board
 - Detached from the modules
 - Portcards optoelectronic service card (~ 700)
 - Positioned around IT support cylinder (TBPX) and on "Dee" structures (TFPX, TEPX)
 - Opto-converter boards: Portcard houses 3x lpGBTs and VTRx+ links, powered via cascaded DC-DC converters (1 bPOL12V DC/DC converter 1 bPOL2V5 DC/DC converter)
 - Up to 6 electrical up-links at 1.28 Gb/s → module to LpGBT
 - Rates reduction achieved with data formatting. One electrical down-link at 160 Mb/s → LpGBT to module clock, trigger, commands, configuration data to modules

Efficient data formatting to reduce data rates (factor ~2)
 / 25% bandwidth headroom on e-link occupancy

- Back-end electronics
 - 28 DTC (Data Trigger Control) boards
 - Lumi processors

Pixel

Modules

Portcard

LDGBT

Lumi

processo

Tracking performance: impact parameter resolution

- For low p_T dominated by multiple scattering
- For high p_T dominated by intrinsic detector resolution
- Improvement due to reduced material and better resolution of strip tracker than current TRT

Conservative estimate for performance of ATLAS ITk: algorithms not fully optimized

 $50 \times 50 \, \mu m^2$ $25 \times 100 \, \mu m^2$

σ(d₀) [μm]

Simulation

Single muon, p_ = 100 GeV

ATLAS Preliminary — Analogue Clustering, 50×50 μm²

Analogue Clustering, 25×100 μm²⁻

true track |n|

Tracking performance

Number of strip plus pixel measurements on a track as a function of η

ITk provides at minimum **9 hits** in the barrel and **13 hits** in the forward or all particles with $p_T > 1$ GeV within $|z_{vertex}| < 150$ mm

Redundancy is very important to clean combinatorics in reconstruction

Track Reconstruction: From detector readout to physics objects

Reconstruction chain steps:

More tracker performance

- b-tagging
- → evaluated using tt sample with partonjet matching
- ightarrow Run-2 algorithms without dedicated tuning used

Tracking efficiency with muons in CMS

Primary vertex reconstruction

- Vertexing: reconstructing and identifying the primary hard scatter vertex and pile-up vertices
- ITk vertexing uses Adaptive
 Multi-Vertex Finder (AMVF)
 algorithm which replaces Run 2 Iterative Vertex Finder (IVF)
 algorithm

- Vertex reconstruction efficiency shows **robust performance** even up to $\langle \mu \rangle \sim 200$
- Longitudinal position resolution improved by factor of 2-3 and exhibits strong robustness against pile-up
- → Vertex reconstruction efficiencies for tt can cope with high pile-up

Jet Flavour Tagging and Physics Case

 Discriminate heavy flavour jets (from b- and cquarks) from jets originating from light quarks and gluons

- Evaluated using tt sample with parton-jet matching
- High-level multvariate algorithm combines information from several discriminates
- Not fully optimised
- Important to discriminate between VBF and tt in forward regions

- Extrapolation for Physics cases
 - · H→ μμ

 Uncertainty on precision measurement of W mass reduced by 20% with extended forward tracking at HL-HLC