# Indication of $v \rightarrow v$ , appearance in the T2K EXPERIMENT

 $\theta_{13}$ 

Alain Blondel – University of Geneva On behalf of the T2K collaboration





There are today **THREE** compelling and firmly established observational facts that the Standard Model fails to account for:

- -- neutrino masses
- -- the existence of dark matter
- -- the baryon asymmetry of the universe

The fact that neutrino have masses and mix is established by neutrino oscillations

The neutrino masses offer a chance to explain the baryon asymmetry in the most natural way via

#### \*\*\* LEPTOGENESIS \*\*\*

by a combination of

- -- fermion number violation (authorized by neutrino masses and GUT)
- -- three families of neutrinos ==> leptonic CP violation (authorized by the mixing of three families with large mixing angles)



$$\mathbf{U}_{\mathbf{MNS}} : \begin{pmatrix} \sim \frac{\sqrt{2}}{2} & \sim -\frac{\sqrt{2}}{2} & \sin \theta_{13} e^{i\delta} \\ \sim \frac{1}{2} & \sim \frac{1}{2} & \sim -\frac{\sqrt{2}}{2} \\ \sim \frac{1}{2} & \sim \frac{1}{2} & \sim \frac{\sqrt{2}}{2} \end{pmatrix}$$

Unknown or poorly known  $\theta_{13}$ , phase  $\delta$ , sign of  $\Delta m_{13}$ 

2

### **Conventional three-neutrino oscillations**

\_

\_



|            | $\sim$                                                                      |                                    |                                           | 10 (5) (S) |
|------------|-----------------------------------------------------------------------------|------------------------------------|-------------------------------------------|------------|
| <b>T</b> 2 | Oscillation maximum                                                         | <b>1.27</b> ∆m <sup>2</sup> ]      | $L / E = \pi/2$                           |            |
| ~          | Atmospheric $\Delta m^2 = 2.4 \ 10^{-3}$ Solar $\Delta m^2 = 7.6 \ 10^{-5}$ | eV <sup>2</sup><br>eV <sup>2</sup> | L = 500 km @ 1 GeV<br>L = 16000km @ 1 GeV | GENERAL LA |

**Consequences of 3-family oscillations:** 

I There will be  $\nu_{\mu} \leftrightarrow \nu_{e}$  and  $\nu_{\tau} \leftrightarrow \nu_{e}$  oscillation at L <sub>atm</sub>

(acc)  $\begin{array}{l} P(\nu_{\mu} \leftrightarrow \nu_{e})_{max} = \sim \frac{1}{2} \sin^{2} 2 \theta_{13} + \dots \text{ (small)} \\ P(\nu_{e} \leftrightarrow \nu_{e})_{max} = \sim 1 - \sin^{2} 2 \theta_{13} + \dots \text{ (small)} \end{array}$ 

II There will be CP or T violation

CP:  $P(v_{\mu} \leftrightarrow v_{e}) \neq P(v_{\mu} \leftrightarrow v_{e})$ T:  $P(v_{\mu} \leftrightarrow v_{e}) \neq P(v_{e} \leftrightarrow v_{\mu})$ 

 $1^{st}$  maximum  $\neq$  second maximum

III. we do not know if the neutrino  $v_1$ (which contains more  $v_e$ ) is the lightest one (natural?) or not. Oscillations of 250 MeV neutrinos;

 $P\left(\nu_{\mu} \nleftrightarrow \nu_{e}\right)$ 



$$\mathbf{P}(\mathbf{v}_{\mathbf{e}} \rightarrow \mathbf{v}_{\mathbf{\mu}}) = |\mathbf{A}|^2 + |\mathbf{S}|^2 + 2 \mathbf{A} \mathbf{S} \sin \delta$$

$$\overline{\mathbf{P}(\mathbf{v}_{\mathbf{e}} \rightarrow \mathbf{v}_{\mu})} = |\mathbf{A}|^2 + |\mathbf{S}|^2 - 2 \mathbf{A} \mathbf{S} \sin \delta$$

$$\frac{P(v_{e} \rightarrow v_{\mu}) - P(\overline{v_{e}} \rightarrow \overline{v_{\mu}})}{P(v_{e} \rightarrow v_{\mu}) + P(\overline{v_{e}} \rightarrow \overline{v_{\mu}})} = A_{CP} \alpha \frac{\sin \delta \sin (\Delta m_{12}^{2} L/4E) \sin \theta_{12} \sin \theta_{13}}{\sin^{2} 2\theta_{13} + \text{ solar term...}}$$

... need large values of sin  $\theta_{12}$ ,  $\Delta m_{12}^2$  (LMA-- we have it!) but \*not\* large sin<sup>2</sup> $\theta_{13}$ ... need APPEARANCE ...  $P(\nu_e \rightarrow \nu_e)$  is time reversal symmetric (reactors or sun are out) ... can be large (100%) for suppressed channel (one small angle vs two large) at wavelength at which 'solar' = 'atmospheric' and for  $\nu_e \rightarrow \nu_{\mu}$ ,  $\nu_{\tau}$ 

 $\begin{array}{c} \dots \text{ asymmetry is opposite for } \mathsf{V} \xrightarrow{} \mathsf{V} \\ \text{Alain Blondel - UNIGE seminar -- The T2K experiment -- thete} \end{array} \\ \begin{array}{c} \text{and } \mathsf{V} \\ \text{experiment -- thete} \end{array}$ 



Figure 3: Sketch of  $P(\nu_{\mu} \rightarrow \nu_{e})$  as function of the baseline computed for monochromatic neutrinos of 1 GeV in the solar baseline regime for  $\delta_{\rm CP} = 0$  (left) and in the atmospheric baseline regime for  $\delta_{\rm CP} = -\pi/2$  (right), where the different terms of eq. 4 are displayed. The following oscillation parameters were used in both cases:  $\sin^{2} 2\theta_{13} = 0.01$ ,  $\sin^{2} 2\theta_{12} = 0.8$ ,  $\Delta m_{23}^{2} = 2.5 \cdot 10^{-3} \text{ eV}^{2}$ ,  $\Delta m_{12}^{2} = 7 \cdot 10^{-5} \text{ eV}^{2}$ .

$$\mathbf{P}(\mathbf{v_e} \rightarrow \mathbf{v_\mu}) = |\mathbf{A}|^2 + |\mathbf{S}|^2 + 2 \mathbf{A} \mathbf{S} \sin \delta$$

$$\overline{\mathbf{P}(\mathbf{v}_{\mathbf{e}} \rightarrow \mathbf{v}_{\mu})} = |\mathbf{A}|^2 + |\mathbf{S}|^2 - 2 \mathbf{A} \mathbf{S} \sin \delta$$

$$\frac{P(v_{e} \rightarrow v_{\mu}) - P(\overline{v_{e}} \rightarrow \overline{v_{\mu}})}{P(v_{e} \rightarrow v_{\mu}) + P(\overline{v_{e}} \rightarrow \overline{v_{\mu}})} = A_{CP} \alpha \frac{\sin \delta \sin (\Delta m_{12}^{2} L/4E) \sin \theta_{12} \sin \theta_{13}}{\sin^{2} 2\theta_{13} + \text{ solar term...}}$$

... need large values of sin  $\theta_{12}$ ,  $\Delta m_{12}^2$  (LMA-- we have it!) but \*not\* large sin<sup>2</sup> $\theta_{13}$ ... need APPEARANCE ...  $P(\nu_e \rightarrow \nu_e)$  is time reversal symmetric (reactors or sun are out) ... can be large (100%) for suppressed channel (one small angle vs two large) at wavelength at which 'solar' = 'atmospheric' and for  $\nu_e \rightarrow \nu_{\mu}$ ,  $\nu_{\tau}$ 

 $\begin{array}{c} \dots \text{ asymmetry is opposite for } \mathsf{V} \xrightarrow{} \mathsf{V} \\ \text{Alain Blondel - UNIGE seminar -- The T2K experiment -- thet} \\ \mathbf{a}_{13}^{\mathsf{V}_{\mathsf{T}}} \end{array}$ 









Idea of T2K was born 1999-2001 hep-ex/0106019 combining:

- -- existing SuperKamiokande detector (50kton W.Č., 22.5 kton fiducial)
- -- JAERI-KEK Japanese Proton Accelerator Research Complex (JPARC) at TOKAI including a high power, 0.75MW/50GeV Proton Synchrotron
- -- baseline 295 km → neutrino energy for first maximum is ~600 MeV achievable by pion-decay beam at 2.5 degrees off-axis

Alain Blondel – UNIGE seminar -- The T2K experiment – theta\_13





### ~500 members, 61 Institutions, 12 countries

#### Canada

TRIUMF Univ. Alberta Univ. Brit. Columbia Univ. Regina Univ. Toronto Univ. Victoria York Univ.

#### France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany

Univ. Aachen

INFN, Univ. Rome INFN, Univ. Naples INFN, Univ. Padua INFN, Univ. Bari

#### Japan

ICRR Kamioka ICRR RCCN KEK Kobe Univ. Kyoto Univ. Miyagi Univ. of Educ. Osaka City Univ. Univ. Tokyo

#### Poland

Soltan Inst., Warsaw Niewodniczanski Inst., Cracow Technical Univ. Warsaw Univ. Silesia, Katowice Univ. Warsaw Univ. Wrocław

#### Russia

INR

#### S. Korea

N. Univ. Chonnam Univ. Dongshin Univ. Sejong N. Univ. Seoul Univ. Sungkyunkwan

### IFIC, Valencia

Univ. A. Barcelona

#### Switzerland

Univ. Bern Univ. Geneva ETH Zurich

#### **United Kingdom**

Imperial C. London Queen Mary Univ. L. Lancaster Univ. Liverpool Univ. Oxford Univ. Sheffield Univ. Warwick Univ. STFC/RAL STFC/Daresbury

#### US

Boston Univ. BNL Colorado St. Univ. Duke Univ. Louisiana St. Univ. SUNY-Stony Brook U. C. Irvine Univ. Colorado Univ. Pittsburgh Univ. Rochester Univ. Washington



University of Geneva: N. Abgrall, J. Argyriades, A. Blondel, A. Bravar, F. Dufour, A. Ferrero, A. Haesler, A. Korzenev, S. Murphy, M. Ravonel, G. Wikström









Alain Blondel – UNIGE seminar -- The T2K experiment – theta\_13



short baseline  $\rightarrow$  little sensitivity to matter effects, but sensitive to  $\delta_{CP}$ 

Alain Blondel – UNIGE seminar -- The T2K experiment – theta\_13



|∆m²| (10<sup>-3</sup>eV²)

2.5

0.8



MINOS & Super-K preliminary @ Nu'10

Super-K 90%

Super-K L/E 90%

0.95

MINOS best fit

MINOS 90%

T2K nominal:

3.75MW×107s

7.2×10<sup>20</sup> POT - fiducial events

0.85

- · MINOS 68%

90% CL  $\theta_{13}$  Sensitivity 750kW



sin<sup>2</sup> 2θ<sub>13</sub> < 0.008 (90% C.L.) for 5 years@750kW = 8.3 10<sup>21</sup> p.o.t@30 GeV spectrum centered on oscillation maximum →very rapidly sensitive to Atm. Params. Δsin²2θ<sub>23</sub>≈0.01 Δm²<sub>23</sub> <1×10<sup>-4</sup> eV²

0.9

sin<sup>2</sup>20



## T2R $1^{st}$ v event in Super-K





Alain B hndel - UNIGE seminar -- The T2K experiment - theta 13



### **Beam Monitors**



Proton beam precisely tuned (<1mm) to minimize beam loss, and control direction of secondary beam





Optical transition radiation detector (OTR) immediately upstream of target:

Muon monitors (SiPIN and ionization chambers):

- measure beam direction and intensity spill-by-spill
- requirement: <1mrad (ΔE<sup>peak</sup> ~ 2%/mrad)



### T2K Near Detector Complex ND280







### IN GRID

#### INGRID first neutrino event candidate





Jan 24

Jan 31

Feb 24



### v beam stability



May 02

May 3( Jun 13

Jun 27 Nov 27

Feb 28

Dec 27 Jan 26

Mar 05

Mar 08

Feb 25





### Search for $v_{\mu} \rightarrow v_{e}$ appearance

- 1. Event selection at SK
- 2. Prediction of number of expected events (oscillation/no oscillation)
- 3. Systematic errors
- 4. Open the last three cuts
- 5. Inspect what you see
- 6. results

most slides that follow from T2K seminar at KEK, K. Sakashita (KEK)

### T2K Signal & Background for $\nu_{\rm e}$ appearance

- oscillated  $v_e$  interaction :  $v_{\mu} \rightarrow v_e \rightarrow v_e$ 

• Signal = single electron event

CCQE :  $v_e + n \rightarrow e + p$ (dominant process at T2K beam energy)

- Background
  - intrinsic  $v_e$  in the beam (from  $\mu$ , K decays)
  - $\pi^0$  from NC interaction







SK event selection was fixed before run.

→ Possible because SK is a mature & well understood detector.

| For $\nu_{\mu}$ disappearance analysis           | For $v_e$ appearance search                                |  |  |  |
|--------------------------------------------------|------------------------------------------------------------|--|--|--|
| Timing coincident w/ beam time (+TOF)            |                                                            |  |  |  |
| Fully contained (No OD activity)                 |                                                            |  |  |  |
| Vertex in fiducial volume (Vertex >2m from wall) |                                                            |  |  |  |
| <i>E</i> <sub>vis</sub> > 30MeV                  | <i>E</i> <sub>vis</sub> > 100MeV                           |  |  |  |
| n <sup>o</sup> of rings =1                       |                                                            |  |  |  |
| μ-like ring                                      | e-like ring                                                |  |  |  |
|                                                  | No decay electron                                          |  |  |  |
|                                                  | Inv. mass w/ forced-found 2 <sup>nd</sup> ring<br>< 105MeV |  |  |  |
|                                                  | <b>Ε</b> <sub>ν</sub> <sup>rec</sup> < <b>1250MeV</b>      |  |  |  |

NB: slide shown at NUFACT10 October 2010





### $\nu_{\rm e}$ selection at far detector (SK)

### The selection criteria were optimized for initial running condition

Number of Events / 762.5 days

The selection criteria were fixed before data taking started to avoid bias

200

400

600

800



- 1. T2K beam timing & Fully contained (FC) (synchronized with the beam timing, no activities in the OD)
- 2. In fiducial volume (FV) (distance btw recon. vertex and wall > 200 cm)
- \* Events too close to the wall are difficult to accurately reconstruct vertex
- \* Reject events which are originated outside the ID
- \* Define FV 22.5kton
- 3. Single electron (# of ring is one & e-like)









Alain Blondel – UNIGE seminar -- The T2K experiment – theta\_13



6. Reconstructed invariant mass  $(M_{inv}) < 105 \text{ MeV/c}^2$ 

### \* Suppress NC π<sup>0</sup> background

Find 2nd e-like ring by forcing to fit light pattern under the 2 e-like rings assumption, and then reconstruct invariant mass of these 2 e-like rings





demonstrate to reconstruct invariant mass using atmospheric v data







### CERN NA61/SHINE measurement







### Neutrino flux prediction







### UNIGE: Bravar, Abgrall, Murphy, Ravonel, Argyriades, Korzenev, Haesler

Results of pion production from thin target (2007 data)



N.Abgrall et al., arXiv:1102.0983 [hep-ex] submitted to Phys.Rev.C (2011)

Systematic uncertainty was evaluated in each  $(p, \theta)$  bin

typically 5-10%

The normalization uncertainty is 2.3% on the

 $\rightarrow$  Propagate the systematic uncertainty in each  $(p, \theta)$  bin into the expected number of

 $\rightarrow$  Input to T2K neutrino beam simulation





### Total # of protons used for analysis



Total # of protons used for this analysis is 1.43 x 10<sup>20</sup> pot 2% of T2K's final goal and ~5 times exposure of the previous report





Alain Blondel – UNIGE seminar -- The T2K experiment – theta\_13




## $v_{\mu}$ interaction rates at near detector

• Measure # of inclusive  $v_{\mu}$  charged current interaction (N<sup>Data</sup><sub>ND</sub>)



Event display (data)

High purity : 90% v<sub>µ</sub> Charged Current int. (50% CCQE)







World's Largest TPC with micro-pattern read out (MicroMeGas)

TPC modules built at CERN/UNIGE  $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ 





## A few ND280 neutrino interaction candidates







# Intrinsic Beam $v_e$ background at Far detector

- The number of beam v<sub>e</sub> background events at far detector is predicted using the v beam simulation based on NA61 measurements (pion) and FLUKA (kaon)
  - ND measurements ( $\mu$  momentum and event rate) are consistent with MC based on the  $\nu$  beam simulation

$$N_{SK \ beam \ \nu_e \ bkg.}^{exp} = R_{ND}^{\mu, \ Data} \times \underbrace{\frac{N_{SK \ beam \ \nu_e \ bkg.}^{MC}}{R_{ND}^{\mu, \ MC}}}_{\int \Phi_{\nu_e}^{SK}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}} \cdot \frac{M_{ND}^{SK}}{M^{ND}} \cdot \text{POT}^{SK}}$$





## The expected number of events for $\sin^2 2\theta_{13}=0$

The expected number of events with 1.43 x 10<sup>20</sup> p.o.t.

#### $N^{exp}_{SK tot.} = 1.5$ events







## Systematic uncertainty on Nexp SK



#### Neutrino flux uncertainty (1) $\nu$ flux (2) $\nu$ cross s (3) Near det

Uncertainties in hadron production and interaction are dominant sources

$$\underbrace{\text{certainty}}_{(2) \nu \text{ cross section}} (1) \nu \text{ flux} (2) \nu \text{ cross section} (3) \text{ Near detector} (4) \text{ Far detector} (5) \text{ Near det. statistics} (5) \text{$$

#### Error source

- Pion production
  - NA61 systematic uncertainty in each pion's (p, $\theta$ ) bin
- Kaon production
  - Used model (FLUKA) is compared with the data(Eichten et. al.) in each kaon's (p, $\theta$ ) bin
- Secondary nucleon production
  - Used model (FLUKA) is compared with the experimental data
- Secondary interaction cross section
  - Used model (FLUKA and GCALOR) is compared with the experimental data of interaction x-section (π, K and nucleon)



graphite target





. . .

#### Summary of v flux uncertainties on $N^{exp}_{SK}$ for $sin^22\theta_{13}=0$

|                              |                   | $N_{SK}^{exp} =$ | $R_{ND}^{\mu,\ Data}$                  | $\times  \frac{N_{SK}^{MC}}{R_{ND}^{\mu, MC}}$ |
|------------------------------|-------------------|------------------|----------------------------------------|------------------------------------------------|
| Error source                 | $R_{ND}^{\mu,MC}$ | $N_{SK}^{MC}$    | $\frac{N_{SK}^{MC}}{R_{ND}^{\mu, MC}}$ |                                                |
| Pion production              | 5.7%              | 6.2%             | 2.5%                                   |                                                |
| Kaon production              | 10.0%             | 11.1%            | 7.6%                                   | Hadron                                         |
| Nucleon production           | 5.9%              | 6.6%             | 1.4%                                   | production                                     |
| Production x-section         | 7.7%              | 6.9%             | 0.7%                                   | & Interaction                                  |
| Proton beam position/profile | 2.2%              | 0.0%             | 2.2%                                   |                                                |
| Beam direction measurement   | 2.7%              | 2.0%             | 0.7%                                   |                                                |
| Target alignment             | 0.3%              | 0.0%             | 0.2%                                   |                                                |
| Horn alignment               | 0.6%              | 0.5%             | 0.1%                                   |                                                |
| Horn abs. current            | 0.5%              | 0.7%             | 0.3%                                   |                                                |
| Total                        | 15.4%             | 16.1%            | (8.5%)                                 |                                                |

The uncertainty on  $N^{exp}_{SK}$  due to the beam flux uncertainty is 8.5% Error cancellation works for some beam uncertainties (factor 2)

error source (1)  $\nu$  flux

(2)  $\nu$  cross section (3) Near detector (4) Far detector

(5) Near det. statistics

## $\mathbf{v}$ int. cross section uncertainty

Evaluate uncertainty on F/N ratio by varying the cross section within its uncertainty

| N | lain v interaction in each event category $\neg$ |
|---|--------------------------------------------------|
|   | NC background : NC1 $\pi^0$                      |
|   | Beam $v_e$ background : $v_e$ CCQE               |
|   | Signal : ve CCQE                                 |
|   | ND CC event : CCQE(50%)                          |
|   | CC1π(23%)                                        |

Process

CCQE

CC  $1\pi$ 

CC other NC  $1\pi^0$ 

CC coherent  $\pi^0$ 

NC coherent  $\pi$ 

Cross section uncertainty

relative to the CCQF total x-section

100% (upper limit from [30])

 $30\% (E_{\nu} < 1 \text{ GeV}) - 20\% (E_{\nu} > 1 \text{ GeV})$ 

30%

$$\frac{\int \Phi_{\nu_{\mu}(\nu_{e})}^{\mathrm{SK}}(E_{\nu}) \cdot P_{osc.}(E_{\nu}) \cdot \sigma(E_{\nu})}{\int \Phi_{\nu_{\mu}}^{\mathrm{ND}}(E_{\nu}) \cdot \sigma(E_{\nu})} \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}$$

Cross section uncertainties are estimated by Data/MC comparison, model comparison and parameter variation



30% NC other  $\pi$ Final State Int. energy dependent ( $\sim \pm 10\%$  at 500 MeV) Uncertainty of  $\sigma(v_e) / \sigma(v_\mu) = \pm 6\%$ 





## $\nu$ int. cross section uncertainty on N<sup>exp</sup><sub>SK</sub> for sin<sup>2</sup>2 $\theta_{13}$ =0

ν flux

error source

(2)  $\nu$  cross section

(3) Near detector

(4) Far detector

(5) Near det. statistics

| Error source      | syst. error on $N_{SK}^{exp}$ |                         |
|-------------------|-------------------------------|-------------------------|
| CC QE shape       | 3.1%                          | -                       |
| $CC \ 1\pi$       | 2.2%                          |                         |
| CC Coherent $\pi$ | 3.1%                          |                         |
| CC Other          | 4.4%                          |                         |
| NC $1\pi^0$       | 5.3%                          |                         |
| NC Coherent $\pi$ | 2.3%                          |                         |
| NC Other          | 2.3%                          |                         |
| $\sigma(\nu_e)$   | 3.4%                          | Uncertainty in pion's   |
| FSI               | 10.1%                         | final state interaction |
| Total             | (14.0%)                       | is dominant             |
|                   |                               |                         |

The uncertainty on N<sup>exp</sup><sub>SK</sub> due to the v x-section uncertainty is 14%  $(\sin^2 2\theta_{13}=0)$ 





# Far detector uncertainty

(2)  $\nu$  cross section (3) Near detector (4) Far detector (5) Near det. statistics

(1)  $\nu$  flux

- Uncertainty due to the SK detector uncertainty
- Evaluation using control sample

$$\frac{\int \Phi_{\nu_{\mu}(\nu_{e})}^{\mathrm{SK}}(E_{\nu}) \cdot P_{osc.}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{\mathrm{ND}}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}}$$

One of big error sources:

detection efficiency of NC 1nº background

control sample with one data electron + one simulated  $\gamma$ 







#### Summary of Far detector systematic uncertainty

| Error source             | $\frac{\delta N^{MC}_{SK\nu_esig.}}{N^{MC}_{SK\nu_esig.}}$ | $\frac{\delta N^{MC}_{SK\ bkg.\ tot.}}{N^{MC}_{SK\ bkg.\ tot.}}$ |                              |
|--------------------------|------------------------------------------------------------|------------------------------------------------------------------|------------------------------|
| $\pi^0$ rejection        | -                                                          | 3.6%                                                             |                              |
| Ring counting            | 3.9%                                                       | 8.3%                                                             | Evaluated by                 |
| Electron PID             | 3.8%                                                       | 8.0%                                                             | atmospheric                  |
| Invariant mass cut       | 5.1%                                                       | 8.7%                                                             | v <sub>e</sub> enriched data |
| Fiducial volume cut etc. | 1.4%                                                       | 1.4%                                                             |                              |
| Energy scale             | 0.4%                                                       | 1.1%                                                             |                              |
| Decay electron finding   | 0.1%                                                       | 0.3%                                                             |                              |
| Muon PID                 | -                                                          | 1.0%                                                             |                              |
| Total                    | 7.6%                                                       | 15%                                                              |                              |

→ The total uncertainty on  $N^{MC}_{SK \text{ tot.}}$  is 14.7 % (sin<sup>2</sup>2 $\theta_{13}$ =0) (uncertainty on the background + solar term oscillated  $v_e$ )





## Total Systematic uncertainties

#### Summary of systematic uncertainties on N<sup>exp</sup><sub>SK total.</sub> for sin<sup>2</sup>20<sub>13</sub>=0 and 0.1

| Error source                             | $\sin^2 2\theta_{13} = 0$ | $\sin^2 2\theta_{13} = 0.1$ | Cf.                                                              |
|------------------------------------------|---------------------------|-----------------------------|------------------------------------------------------------------|
| O(1) Beam flux                           | $\pm 8.5\%$               | $\pm 8.5\%$                 | sin <sup>2</sup> 20 <sub>13</sub> =0:<br>#sia = 0.1 #bka = 1.4   |
| $\mathbf{O}(2) \ \nu$ int. cross section | $\pm 14.0\%$              | $\pm 10.5\%$                | #81g = 0.1 #0Kg = 1.4                                            |
| (3) Near detector                        | $^{+5.6}_{-5.2}\%$        | $^{+5.6}_{-5.2}\%$          | sin <sup>2</sup> 20 <sub>13</sub> =0.1:<br>#sia = 4.1 #bka = 1.3 |
| O(4) Far detector                        | $\pm 14.7\%$              | $\pm 9.4\%$                 |                                                                  |
| (5) Near det. statistics                 | $\pm 2.7\%$               | $\pm 2.7\%$                 |                                                                  |
| Total                                    | (+22.8 %)<br>-22.7 %      | $\binom{+17.6}{-17.5}\%$    |                                                                  |
|                                          |                           |                             |                                                                  |
|                                          |                           | (due to s                   | mall Far det.                                                    |

uncertainty for signal)

#### $N^{exp}_{SK tot.} = 1.5 \pm 0.3$ at $\sin^2 2\theta_{13} = 0$





## SK events in beam timing

• Events in the T2K beam timing synchronized by GPS



 $\Delta T_0 = T_{GPS} @SK - T_{GPS} @J-PARC - TOF(~985 \mu sec)$ 





## Number of T2K events at far detector

Number of events in on-timing windows (-2  $\sim$  +10  $\mu$ sec)

| Class / Beam run          | RUN-1 | RUN-2 | Total | non-beam   |
|---------------------------|-------|-------|-------|------------|
| POT (x 10 <sup>19</sup> ) | 3.23  | 11.08 | 14.31 | background |
| Fully-Contained (FC)      | 33    | 88    | 121   | 0.023      |

The accidental contamination from atmospheric v background is estimated using the sideband events to be 0.023





## Apply $\nu_{\rm e}$ event selection

defined before the data collection 6 selection cuts in addition FC cut

Fiducial volume cut

(distance between recon. vertex and wall > 200cm)







Single electron cut (# of ring is one & e-like)







Visible energy > 100 MeV No decay electron







#### Invariant mass cut ( $M_{inv} < 105 \text{ MeV/c}^2$ )







Reconstructed v energy cut ( $E_{rec} < 1250 \text{ MeV}$ ) : Final cut







## $\nu_e$ candidate event







# Look at the events properties











#### Vertex distribution of $v_e$ candidate events



- → Perform several checks. for example
  - \* Check distribution of events outside FV  $\rightarrow$  no indication of BG contamination
  - \* Check distribution of OD events → no indication of BG contamination
  - \* K.S. test on the R<sup>2</sup> distribution yields a p-value of 0.03

hmmmm....?





# Result of the v<sub>e</sub> appearance search with 1.43 x 10<sup>20</sup> p.o.t.

The observed number of events is 6

The expected number of events is  $1.5 \pm 0.3$  if  $\theta_{13} = 0$ 

the probability to observe six or more candidate events is 0.007 (equivalent to 2.5σ significance)

We will be eagerly waiting for more data to obtain a larger significance!





arXiv.org > hep-ex > arXiv:1106.2822

High Energy Physics - Experiment

#### Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam

T2K Collaboration: K.Abe (49), N.Abgrall (16), Y.Ajima (18), H.Aihara (48), J.B.Albert (13),
C.Andreopoulos (47), B.Andrieu (37), M.D.Anerella (6), S.Aoki (27), O.Araoka (18), J.Argyriades
(16), A.Ariga (3), T.Ariga (3), S.Assylbekov (11), D.Autiero (32), A.Badertscher (15), M.Barbi (40),
G.J.Barker (56), G.Barr (36), M.Bass (11), F.Bay (3), S.Bentham (29), V.Berardi (22), B.E.Berger
(11), I.Bertram (29), M.Besnier (14), J.Beucher (8), D.Beznosko (34), S.Bhadra (59), F.d.M.Blaszczyk
(8), A.Blondel (16), C.Bojechko (53), J.Bouchez (8, deceased), S.B.Boyd (56), A.Bravar (16),
C.Bronner (14), D.G.Brook-Roberge (5), N.Buchanan (11), H.Budd (41), D.Calvet (8), S.L.Cartwright
(44), A.Carver (56), R.Castillo (19), M.G.Catarresi (22), A.Cazes (32), A.Cervera (20), C.Chavez
(30), S.Choi (43), G.Christodoulou (30), et al. (364 additional authors not shown)

(Submitted on 14 Jun 2011)

The T2K experiment observes indications of  $\ln \sqrt{10} \le 10^{10} \le 1$ 





# Allowed region of $\sin^2 2\theta_{13}$ as a function of $\delta_{CP}$





| 0.03 < sin <sup>2</sup> 2θ <sub>13</sub> < 0.28 | 0.04 < sin²2θ <sub>13</sub> < 0.34 |  |
|-------------------------------------------------|------------------------------------|--|
| $sin^2 2\theta_{13} = 0.11$                     | $sin^{2}2\theta_{13} = 0.14$       |  |





# Final remarks



- 1. the T2K experiment is working very well!
- Although the significance is only 2.5 sigma the analysis procedure is such (cuts fixed in advance, sample defined by external events) that a statistical "fabrication" can be completely excluded.
- 3. T2K is now under reconstruction: beam expected to resume (if no bad surprise) in November 2011
- 4. if it is confirmed that  $\theta_{13}$  is "large" this will have consequences on the design of the next generation of experiments (good for NOvA in first instance)
- 5. this summer will be very exciting on the neutrino front: new results from (at least) MINOS, OPERA, DCHOOZ are expected

#### COME TO NUFACT11 at CERN/GENEVA 1-6 August 2011! http://nufact11.unige.ch





#### A few reserve slides







 $P\mu = 1061 \text{ MeV/c}$ 

TZ

1 decay-e

Pμ = 1025 MeV/c 1 decay-e



### Event display multi-ring μ-like event







#### Vertex and direction (FC, Evis>30MeV)



Points :Reconstructed event vertexArrow :1st-ring direction





### Super KamiokaNDE Energy scale stability








