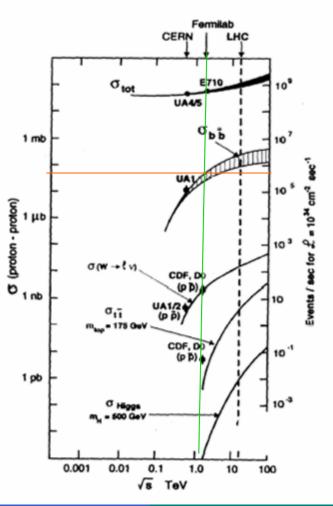
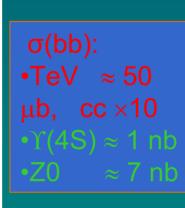
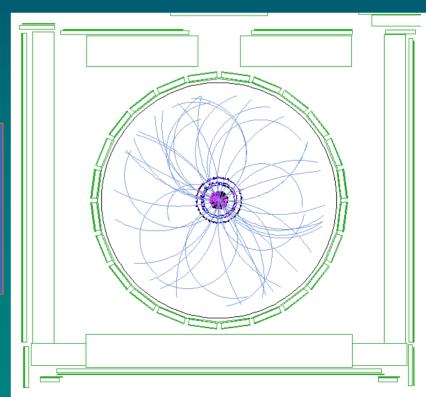
Beauty(ful) and Charm(ing) physics with CDF II


Mario Campanelli DPNC Université de Genève

Introduction: why?


CDF is known in the physics community for having discovered the top quark, and running at the world's largest energy accelerator

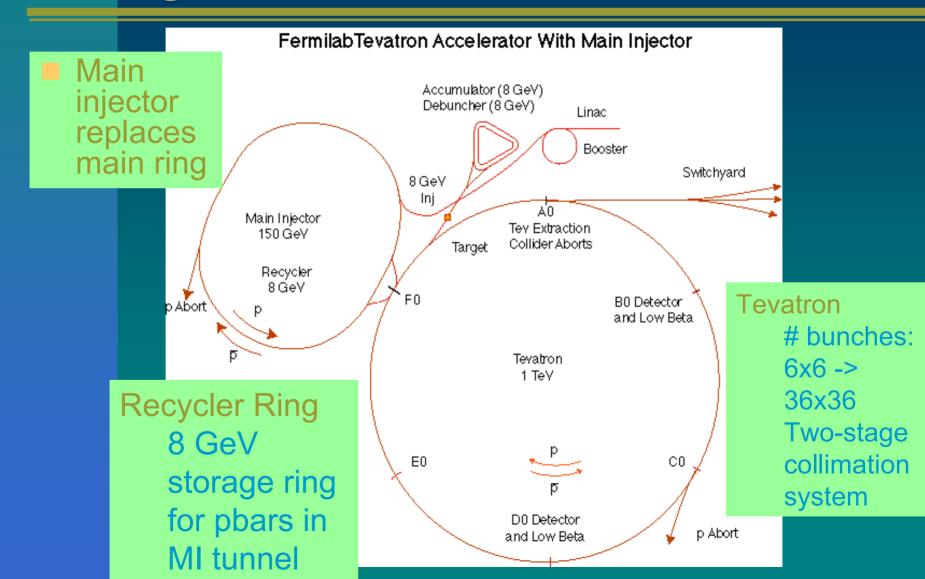

Does it make sense to study low-energy events, a field dominated by dedicated experiments running at b factories?

Introduction: why b physics at Tevatron

Extremely high cross section
 Access to heavy states (B_s, Λ_b)
 Relatively "clean" events

Introduction: why b physics at Tevatron

However:

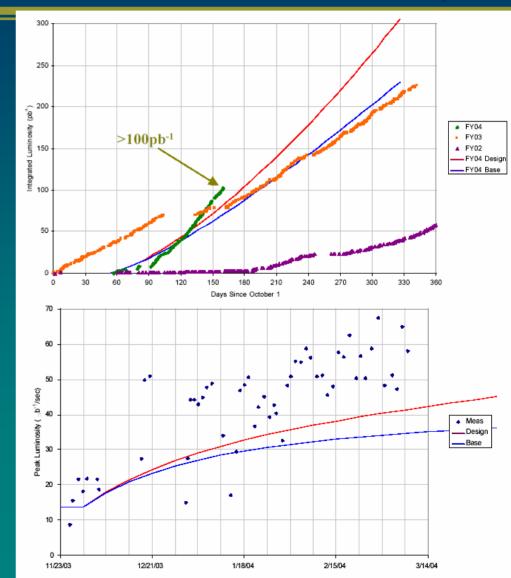

- Luminosity factor 1000 lower than b-factories
- -Not optimal calorimetry (and PID)
- Large backgrounds (important combinatorics, trigger issues)
- Not obvious a priori: more details, please!

The accelerator

The Tevatron is the largest-energy accelerator ever built. It serves two collider experiments (CDF and D0), plus several fixed targets (KTeV, NuTeV, DoNuT etc.) From 2001 it started phase 2 to increase collider luminosity

Changes between Run I -> Run II

Initial and revised luminosity goals


Initial planning for RunII was to achieve instantaneous luminosities of 2x10³², for an integrated luminosity of 2 fb⁻¹ over a 2-3 year period and 15 fb⁻¹ before LHC.

First goals were not reached, schedule revised by DOE reviews (oct. 2002, july 2003)

Projected Integrated Luminosity

The progress of Tevatron luminosity

1.5 years after that looks like the accelerator is much better understood. performances exceed (revised) expectations, still far from design goals

Reasons for improvements

Fight for better Tevatron

	10/02	03/03	09/03	02/04	p/p onl
Record Luminosity, e30	36	41	50	63	n/a
Protons/bunch	170e9	205e9	245e9	245e9	same
Pbars/bunch	22e9	23e9	25e9	30e9	same
P-loss at 150 GeV	14%	10%	8%	5%	5%
Pbar-loss at 150	9%	4%	2%	2%	2%
P-loss on ramp	6%	5%	5%	4%	3% *
Pbar-loss on ramp	8%	11%	8%	6%	2%
Pbar-loss in squeeze	5%	2%	3%	1%	0%
at the beginning of store	:				
Pbar lifetime at HEP, hr	~40	~35	~35	~30	~900
Proton lifetime at HEP, hr	~90	~60	~20	~100	~300 *
Eff.emittance lifetime, hr	~14	~26	~31	~16	n/a
Luminosity lifetime, hr	~10	~13	~10	~9	n/a
-					

DoE Review 02/25/04, Tevatron breakout session

- Shiltsev

Collider Detector Fermilab

Muon Chamber (collision hall)

 $\mbox{ }$ position and $\mbox{ }_{\mbox{ }}$

4 systems of scintillators and proportional chambers
min scattering resolution [12/p;25/p] cm/p

CENTRAL and PLUG Calorimeter

energy and direction

2 systems of passive layers-scintillators

- Scintillators
- 100 ns resolution

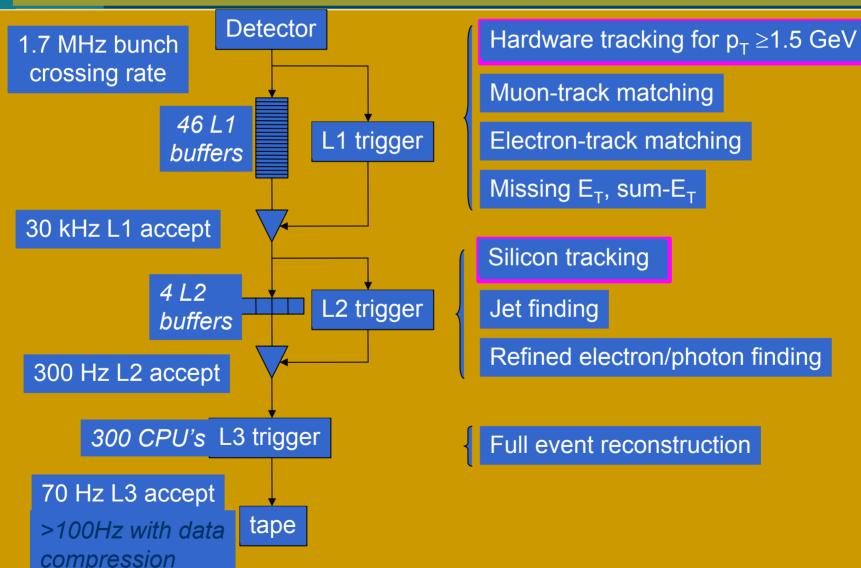
COT

- position
- drift chamber
- spatial resolution
 - 100 µm

Silicon Detector

- The first Si detector at hadron machine
- With 750,000 channels, the largest Silicon detector in the world!
- position
- 3 systems of single or double sided detector
- down to 10 µm spatial resolution (3D)

Trigger issues


1.7 MHz events in central region Only 70 Hz can be stored on tape

Process	Cross-	Event Rate	
	section		
Inelastic pp	60 mb	6 MHz	
pp →bb (b p_T >6 GeV, η <1)	10 µb	1 kHz	
pp→WX→ℓvX	5 nb	0.4 Hz	
$pp \rightarrow ZX \rightarrow \ell \ell X$	0.5 nb	0.04 Hz	
$pp \rightarrow tt \rightarrow WWbb \rightarrow \ell \nu$	2 pb	0.0002 Hz	
bbX			
$pp \rightarrow WH \rightarrow \ell \nu bb$ (M _H =120GeV)	15 fb	15 10-7 Hz	

Assume L =100x10³⁰ cm⁻²s⁻¹, *ℓ*=electron or muon

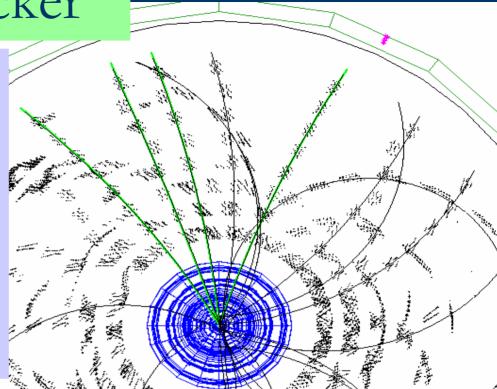
Finding needles in haystacks: the CDF trigger

Strategies to trigger on Heavy Flavors

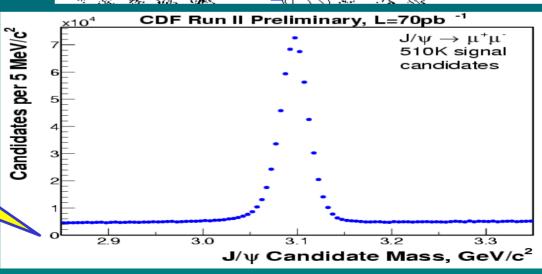
Di-lepton - dilepton sample

- pT(μ/e)>1.5/4.0 GeV/c

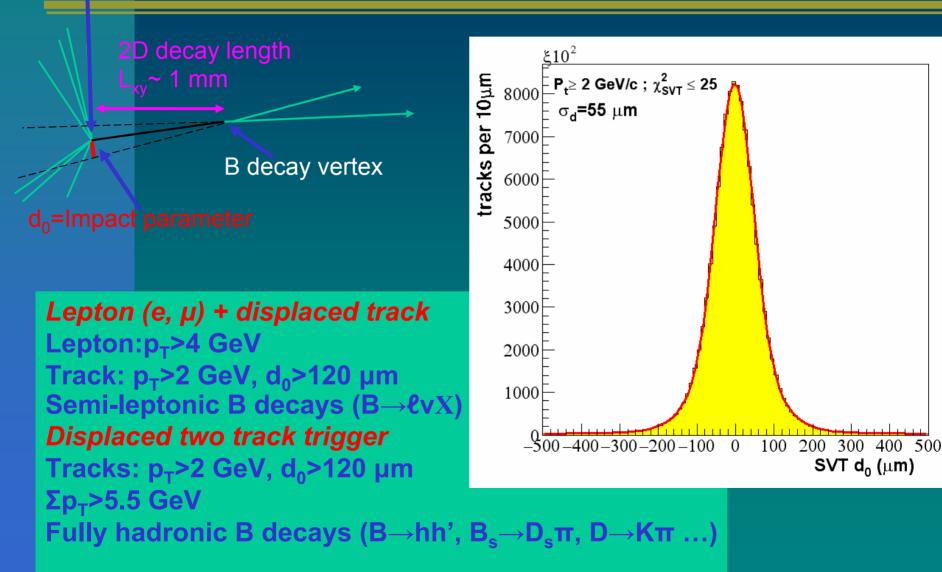
Traditional


- J/ψ modes, masses, lifetime, x-section
- Yield 2x Run I (low Pt threshold, increased acceptance)
- lepton + displaced track semileptonic sample
 - $pT(e/\mu)>4$ GeV/c 120 μ m<d0(Trk)<1mm, pT(Trk)>2 GeV/c
 - Semileptonic decays, Lifetimes, flavor tagging.
 - B Yields 3x Run I

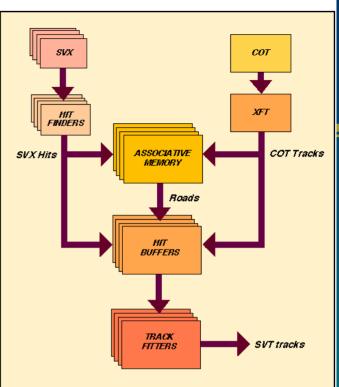
Two displaced vertex tracks - hadronic sample

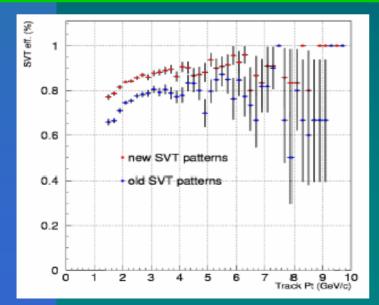

- pT(Trk)>2 GeV/c, 120 μm<d0(Trk)<1mm, S pT>5.5 GeV/c
- Branching ratios, Bs mixing, ...

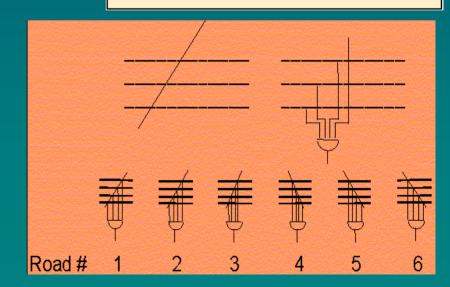
eXtremely Fast Tracker


- Heart of CDF Run II trigger L1 tracks p_T >1.5GeV every 132ns Efficiency=96% $\sigma(\Phi)$ =5mr $\sigma(p_T)$ =(1.74 p_T)%
- L1 electron = L1 track + EM cluster L1 muon = L1 track + muon stub
- L1 high p_T lepton triggers for W/Z L1 low p_T lepton/track triggers for B

Low p_T di-muon trigger: 2 L1 muons p_T >1.5 GeV Collect J/Ψ's for calibration and B physics

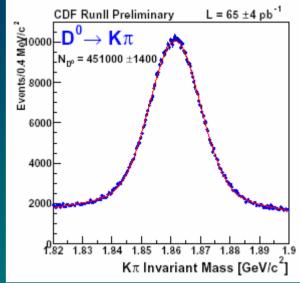

The SVTExploit long b, c lifetimes in TriggerProton-antiproton
collision pointL1 track + Si hits = Impact parameter @L2
A first at a hadron collider!
CDF is a charm/ B Factory!

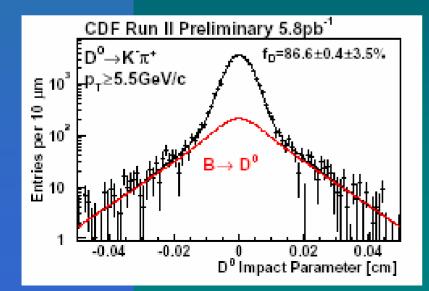



SVT architecture

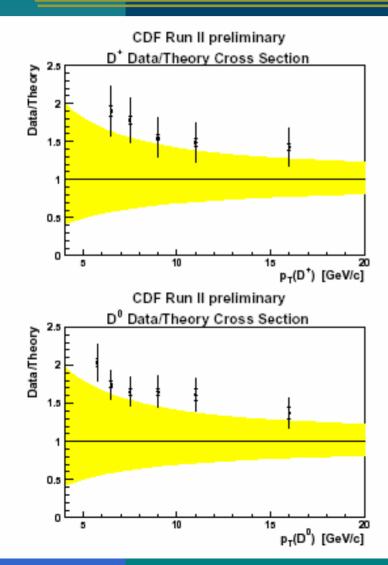
The SVT

The Silicon Vertex tracker allows reconstructing track parameters (including impact parameter) on-line. Based on an associative memory, pre-defined roads stored and compared to detecor information.





Now we know what the C in CDF stands for... (K.Pitts, LP'03)

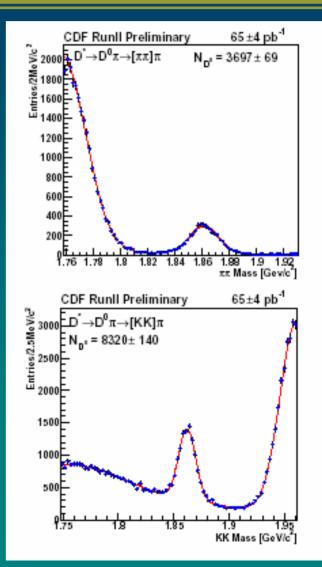

Two-Track Trigger : p_T>2 GeV, d₀>100m, Σp_t>5.5 GeV selects a huge sample of D⁰ (prompt or from B)

Charm cross section

Done with few runs (syst. lim) • $\sigma(D^0)pT>5.5 \text{ GeV} = 13.3 \pm 0.2 \pm 1.5 \mu b$ • $\sigma(D^*)pT>6.0 \text{ GeV} = 5.2 \pm 0.1 \pm 0.8 \mu b$ • $\sigma(D^+)pT>6.0 \text{ GeV} = 4.3 \pm 0.1 \pm 0.7 \mu b$ • $\sigma(D^+_s)pT>8 \text{ GeV} = 0.75 \pm 0.05\pm0.22 \mu b$

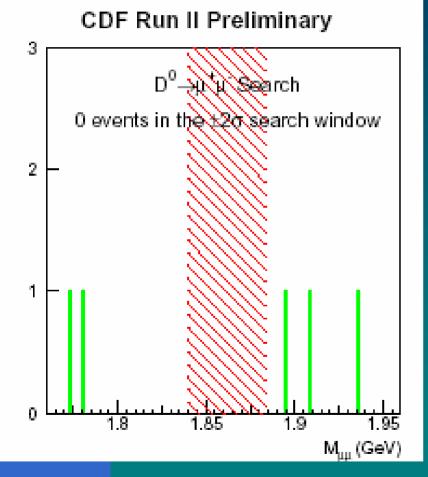
Agrees with Cacciari Nason JHEP 0309, 006 (2003), but on the high side

Cabibbo-suppressed decays and asymmetries

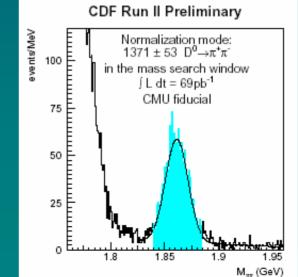

D0 decays other than Kπ seen in mass plot. Γ(D0->KK)/Γ(D0->Kπ)=9.38±0.18±0.10% Γ(D0->ππ)/Γ(D0->Kπ)=3.686±0.076±0.036%

compare with FOCUS (2003) Γ(D0->KK)/Γ(D0->Kπ)=9.93±0.14±0.14% Γ(D0->ππ)/Γ(D0->Kπ)=3.53±0.12±0.06%

CP asymmetry: tagging the soft π from D* decays.

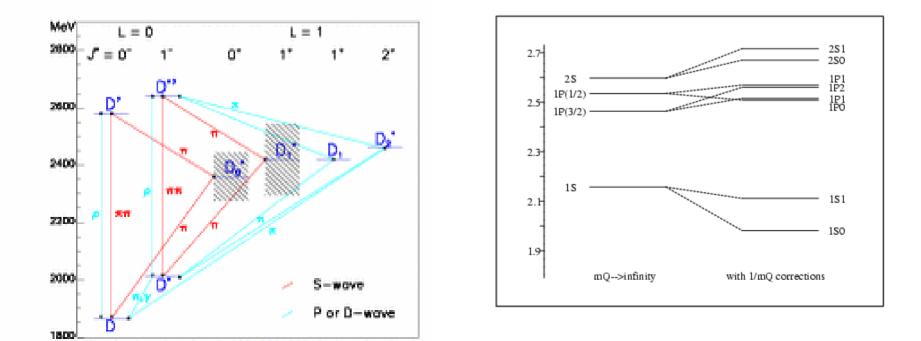

 $A(D0 \rightarrow KK) = 2.0 \pm 1.7 \pm 0.6 \%$

 $A(D0 \rightarrow \pi\pi) = 3.0 \pm 1.9 \pm 0.6 \%$



FCNC $D^0 \rightarrow \mu \mu$ decays

eventsMeV


SM Br is $3 \ge 10^{-13}$ Can grow by 10^7 in R-violating SUSY D0-> $\pi\pi$ used as reference sample 0 events observed, 1.8 ± 0.7 from BG BR(D0-> $\mu\mu$)< 2.4 $\ge 10^{-6}$ at 90% CL (improves PDG by a factor 2)

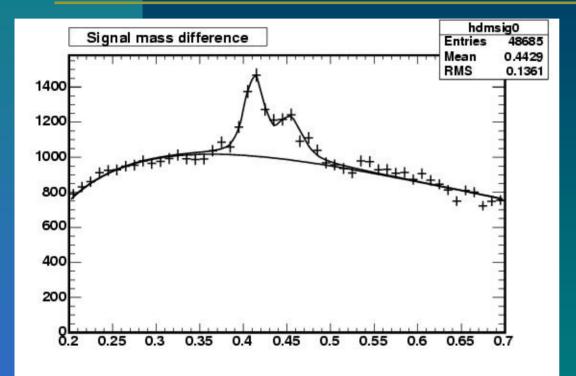
Orbitally-excited charm mesons

Total angular momentum of a meson: J=s_q+s_Q+L. Depending on relative spin orientation, 4 P-wave mesons (L=1)

In heavy quark limit, masses of mesons with same $j_q = s_q + L$ are degenerate. $1/m_o$ corrections introduce hyperfine splitting, particularly visible for $j_q = 3/2$ states, decaying via a suppressed D-wave, (width $\cong 20$ MeV). Width of $j_q = 1/2$ states is about 200 MeV.

Decay topology

J=3/2 narrow resonances: $D_1(2420)$ and $D_2^*(2460)$. Mass is known with a precision of about 2 MeV and width with about 5 MeV. Studied in CDF in the decay

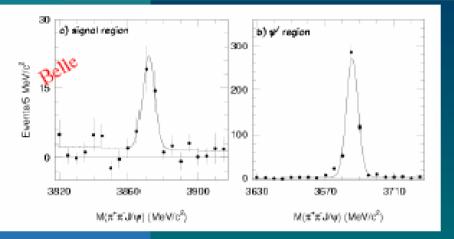

 π^{\pm}

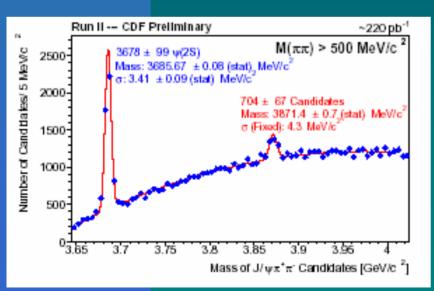
 π^{\mp}

two strong and a weak decay, giving rise to a displaced vertex from the D⁰.

These kind of events are observed for the first time in RunII due to the impact parameter trigger done thanks to the SVT.

D** signals: 7000 and 4000 events


D** candidates are created combining the D* candidates with all tracks (assumed π) with opposite charge and Pt>1.5 GeV


Detector resolution is much better in the mass difference D**-D*, where the two peaks are clearly resolved

Fitted with 2 BWxGaus Plus BG described as $e^{-am} m^b \sqrt{(m-m_{\pi})}$

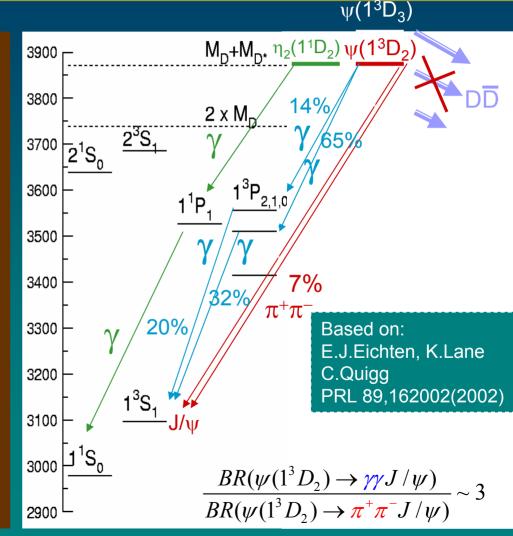
Errors on masses ≈ 1 MeV (PDG: 2 MeV)

X(3872) confirmed by CDF

New unexpected narrow state observed by Belle in J/Ψππ
 M(X) = 3872.0 ± 0.6 ± 0.5 MeV
 CDF has 2M J/Ψ
 We observe a 11σ signal with mass
 M(X) = 3871.4 ± 0.7 ± 0.4 MeV

What is it?

Charmonium?


•DD molecule?

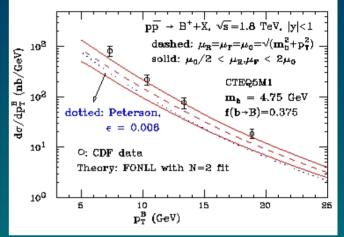
Possible explanations

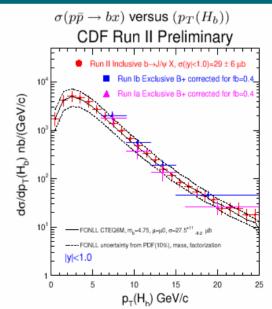
A ψ (1³D₂) state:

- Because D-states have negative parity, spin-2 states cannot decay to DD
- They are narrow as long as below the DD* threshold
- $\eta_2(1^1D_2)$ preferentially decays to $h_c(1^1P_1)$. Decays to $\pi^+\pi^- J/\psi$ would be of magnetic type and are suppressed.
- Some models predict large widths for $\psi(1^{3}D_{2}) \rightarrow \pi^{+}\pi^{-}J/\psi$
- All models predict even larger widths for $\psi(1^{3}D_{2}) \rightarrow \gamma \chi_{c} (1^{3}P_{2,1})$ Should easily see $\psi(1^{3}D_{2}) \rightarrow \gamma \gamma J/\psi$.

Discovery is very recent.

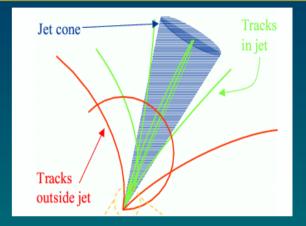
B production from J/Ψ

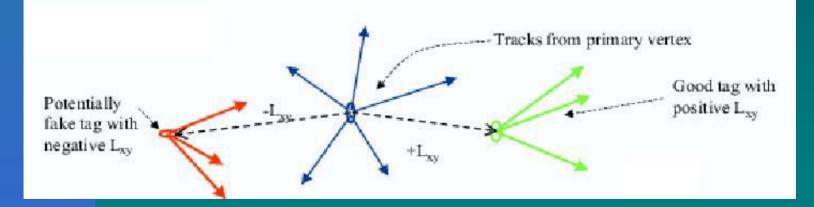

- Runl b cross-section ~ 3x NLO QCD
- theoretical approaches: new physics, Next-to-Leading-log resummations, non perturbative fragmentation function from LEP, new factorization schemes... discrepancy reduced to 1.7 ± 0.5(theo) ± 0.5(exp) (see M.Cacciari in two weeks)
- Only top 10% in Pt of the total x-section measured
- New measurements to lower p_T(B) :
- Inclusive J/Psi cross section up to PT(J/Psi)=0 (first time hadron collider)


 $\sigma(pp->J/\Psi X)_{|y(J/\Psi)|<0.6} = (4.08 \pm 0.02 \text{ (stat)} +0.60 -0.48 \text{ (syst)}) \mu b$

Bottom Quark Production cross-section

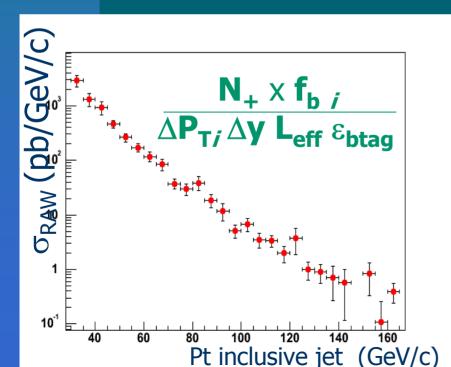
 $\sigma(pp \rightarrow b X) |y| < 1.0 = (29.4 \pm 0.06 \text{ (stat) } \pm 6.2(\text{sys})) \mu b$

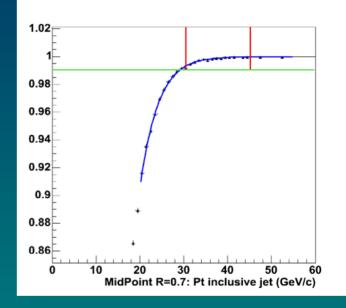

FONLL $\sigma(pp-b X)_{|y(|<1.0} = (27.5^{+11}_{-8.2}) \mu b$



B production from secondary vertex (Monica)

Search for high-pt secondary verteces inside a jet (midpoint with R<0.7), if ≥ 2 tracks with large impact parameter

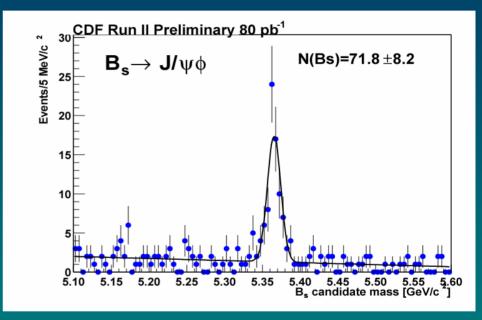



Positive tags for efficiency, negative tags for background estimation

B production: samples and first results

Inclusive sample Datasets: ST05, Jet20, Jet50, Jet70, Jet100

Each sample used in P_t range where ε>99%

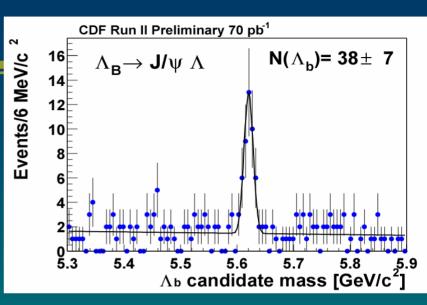


Preliminary cross section using efficiency and b jet fraction from MC

Measuring B masses

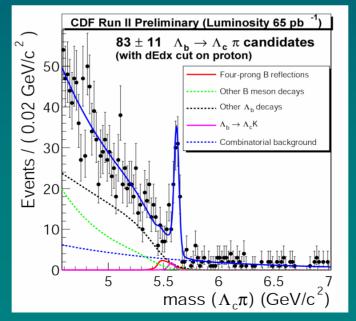
- Measure masses using fully reconstructed $B \rightarrow J/\psi X$ modes
- High statistics $J/\psi \rightarrow \mu^+\mu^-$ and $\psi(2s) \rightarrow J/\psi\pi^+\pi^-$ for calibration.
- Systematic uncertainty from tracking momentum scale
 - Magnetic field
- Material (energy loss)
 B⁺ and B⁰ consistent with world average.
 - B_s measurements are world's best.

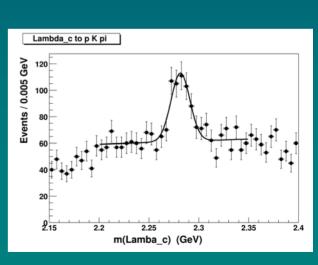
 CDF result:
 M(B_s)=5365.5
 ±1.6 MeV


 World average:
 M(B_s)=5369.6
 ±2.4
 MeV

 $\Lambda_{\rm b}$ and $\Lambda_{\rm c}$

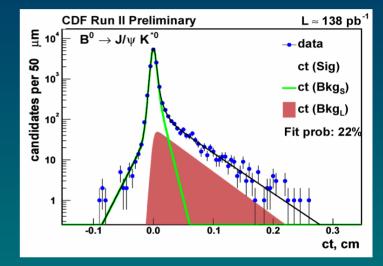
 Λ_b mass measured in J/ Ψ mode best world measurement

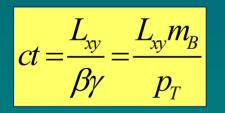

 CDF result:
 M(∧b)=5620.4 ±2.0
 MeV

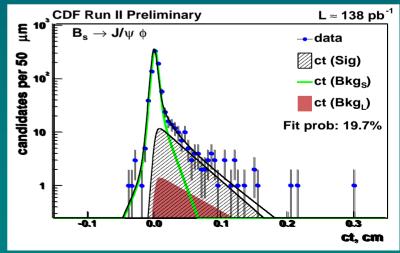

 World average:
 M(∧b)=5624.4 ±9.0
 MeV

Also seen in $\Lambda_c \pi$ mode, will be used for mass soon

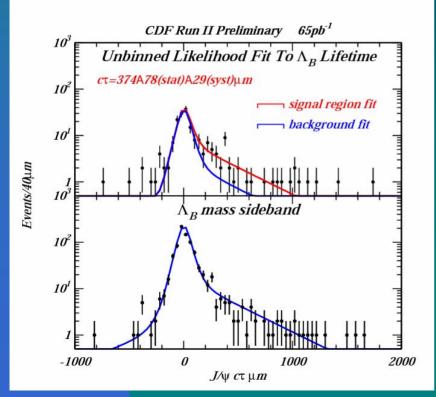
BR($\Lambda_b \rightarrow \Lambda_c \pi^{\pm}$) = (6.0 ±1.0(stat) ± 0.8(sys) ± 2.1(BR)) x 10⁻³

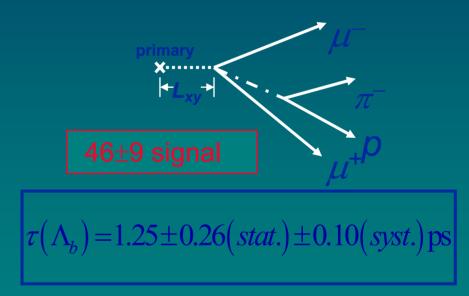





Lifetimes

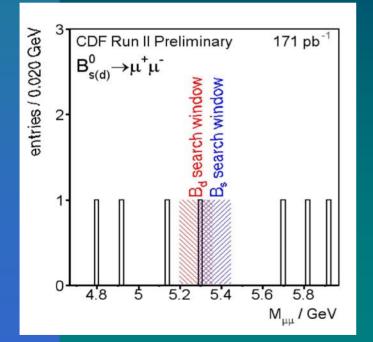
Exclusive J/ Ψ modes $\tau(B^0)$ 1.63 ± 0.05(*stat.*) ± 0.04 (*syst.*) ps $\tau(B^+)$ 1.51 ± 0.06(*stat.*) ± 0.02 (*syst.*) ps $\tau(B_s)$ 1.33 ± 0.14(*stat.*) ± 0.02 (*syst.*) ps




 $B_s \rightarrow J/\psi \phi$ with $J/\psi \rightarrow \mu^+ \mu^-$ and $\phi \rightarrow K^+ K^ B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{*0}$ check technique, systematics

 $\Lambda_{\rm b}$ lifetimes

■ Use <u>fully reconstructed</u> $\Lambda_b \rightarrow J/\psi \Lambda$ $J/\psi \rightarrow \mu^+\mu^-$ and $\Lambda \rightarrow p\pi^-$ − Previous LEP/CDF measurements: semileptonic $\Lambda_b \rightarrow \Lambda_c I \nu$



First lifetime from fully reconstructed A_b decay!

Also for beauty: rare $B \rightarrow \mu\mu$ decays

■ BR(Bs $\rightarrow \mu\mu$) ~ 10⁻⁹ in SM (SUSY physics two orders of magnitude enhancement)

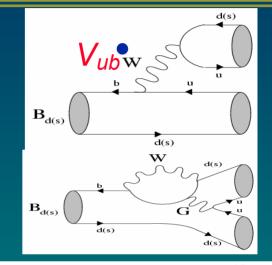
■ Blind analysis optimized for 300-400 pb⁻¹ (~ 1 ± 0.3 expected bkg)

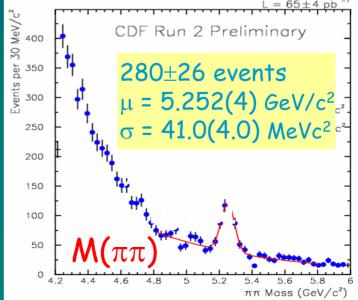
Limits at 90% C.L. BR(Bs->MuMu) < 5.8 E-7 BR(Bd->MuMu) < 1.5 E-7

B_s factor 3 better than best published limit (Run I)
 B_d slightly better than Belle's at LP03: 1.6 E⁻⁷@90%CL

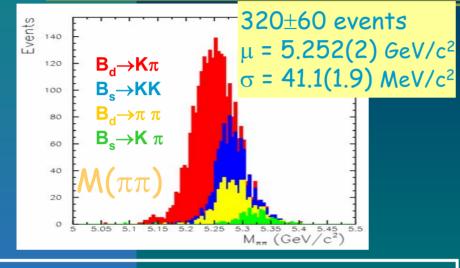
Finding beauty in only two tracks

charmless two-body decays

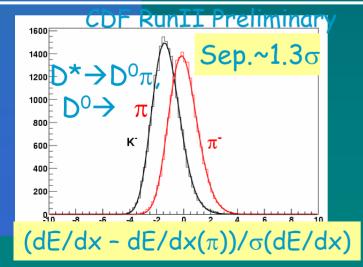

 longer term B_s modes help extract unitarity angle γ


Signal is a combination of:

- $B^0 \rightarrow \pi^+ \pi^- BR \sim 5 \times 10^{-6}$
- $B^0 \rightarrow K^+ \pi^- BR \sim 2 \times 10^{-5}$
- $-B_s \rightarrow K^+ K^- BR \sim 5 \times 10^{-5}$
- $B_{s} \rightarrow \pi^{+} K^{-} BR \sim 1 \times 10^{-5}$


Requirements

- Displaced track trigger
- Good mass resolution
- Particle ID (*dE/dx*)

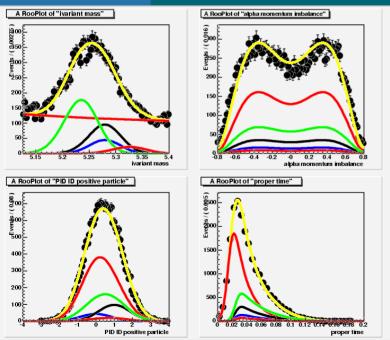


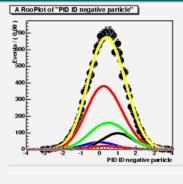
Composition of the B->hh peak

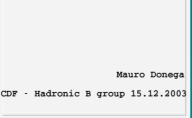
kinematics & dE/dx to separate contributions

modeYield (65 pb⁻¹) $B^0 \rightarrow K\pi$ 148±17(stat.)±17(syst) $B^0 \rightarrow \pi\pi$ 39±14(stat.)±17(syst) $B_s \rightarrow KK$ 90±17(stat.)±17(syst) $B_s \rightarrow K\pi$ 3±11(stat.)±17(syst)

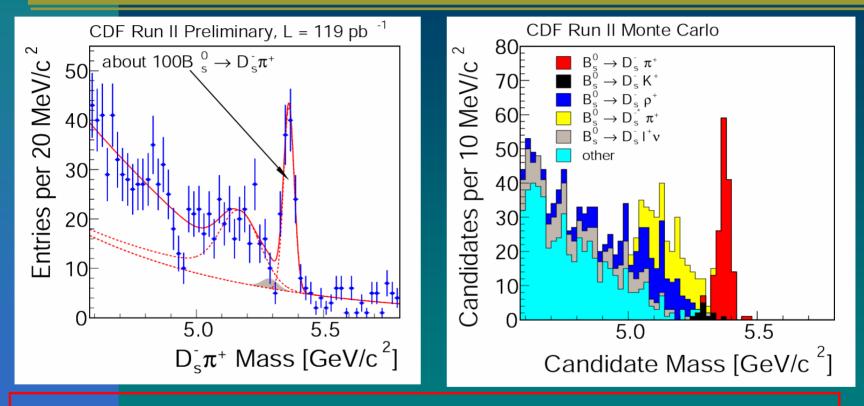
First observation of $B_s \rightarrow K^+K^- !!$


Result: $\frac{f_{S}BR(B_{S} \rightarrow KK)}{f_{d}BR(B^{0} \rightarrow K\pi)} = 0.74 \pm 0.20 \pm 0.22$ **Measure A_{CP}** $\frac{N(\overline{B} \rightarrow K^{-}\pi^{+}) - N(B \rightarrow K^{+}\pi^{-})}{N(\overline{B} \rightarrow K^{-}\pi^{+}) + N(B \rightarrow K^{+}\pi^{-})} = 0.02 \pm 0.15 \pm 0.02$


More involved: using B->hh for $\Delta\Gamma_s$ (Mauro)



ΔΓ_s/Δm_s =-3π/2 m_b²/m_t²η(ΔΓ_s)/η(Δm_s)
 SM: ΔΓ_s/Δm_s = 3.7^{+0.8}_{-1.5} 10⁻³
 LQCD: ΔΓ_s/Γ_s=0.12±0.06
 Present 95% C.L. limit: ΔΓ_s/Γ_s<0.54

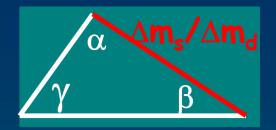


Disentangle on a statistical basis contributions to the B->hh peak, then fit lifetimes for the different charges

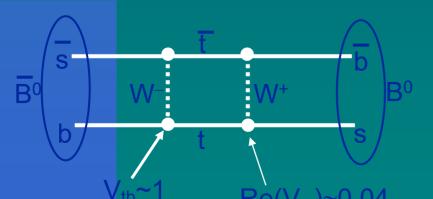
Expected sensitivity: •0.29 at 500 pb⁻¹ •0.10 at 2 fb⁻¹

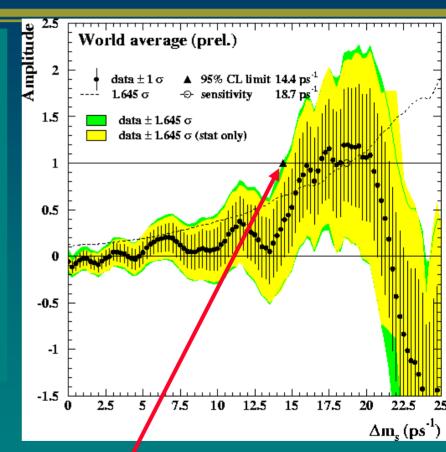
Bs: signal reconstruction in Ds π

$BR(B_s \rightarrow D_s \pi^{\pm}) = (4.8 \pm 1.2 \pm 1.8 \pm 0.8 \pm 0.6) \times 10^{-3}$

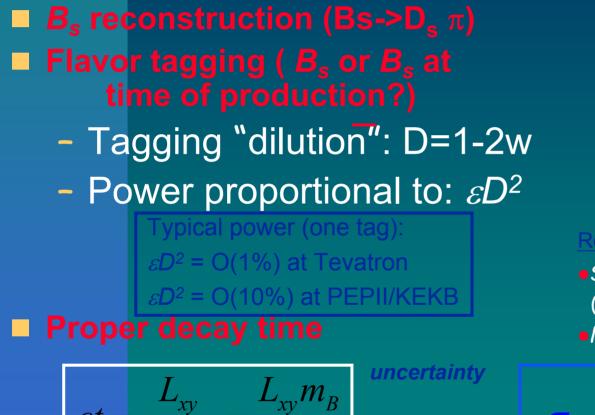

New measurement !(Stat)Previous limit set by OPAL: BR $(B_s \rightarrow D_s \pi^{\pm}) < 13\%$

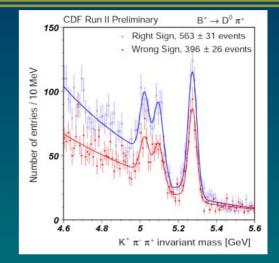
BR result uses less data than shown in plot.


 (f_d/f_d)


(sys)

Towards B_s Mixing


- Measurement of ∠m_s helps improve our knowledge of CKM triangle.
- Combined world limit on *B_s* mixing
 - $\Delta m_s > 14.4 \text{ ps}^{-1} @95\% \text{CL}$
 - B_s fully mixes in <0.15 au
- B_s oscillation much faster than B_d because of coupling to top quark:
 Re(V_{ts})≈0.040 > Re(V_{td})≈0.007



Combined limit comes from 13 measurements from LEP, SLD & CDF Run I

Ingredients for Bs mixing

- Crucial for fast oscillations (i.e. B_s)

<u>Results</u>

 Same-side (B⁺) *ED²*=(2.1±0.7)% (B⁺/B⁰/B_s correlations different)
 Muon tagging *ED²*=(0.7±0.1)%

Bs: expected sensitivities

Current performance:

- S=1600 events/fb⁻¹ (*i.e.* $\sigma_{effective}$ for produce+trigger+recon)
- S/B = 2/1
- $\varepsilon D^2 = 4\%$
- $\sigma_t = 67 \text{fs}$

 2σ sensitivity for $\Delta m_s = 15 \text{ ps}^{-1}$ with ~0.5 fb⁻¹ of data

surpass the current world average

With "modest" improvements

- S=2000 fb (improve trigger, reconstruct more modes)
- S/B = 2/1 (unchanged)
- $\varepsilon D^2 = 5\%$ (kaon tagging)
- σ_t = 50fs (event-by-event vertex + L00)

5σ sensitivity for $\Delta m_s = 18 \text{ps}^{-1}$ with ~1.7fb⁻¹ of data (2005?) 5σ sensitivity for $\Delta m_s = 24 \text{ps}^{-1}$ with ~3.2fb⁻¹ of data (2007?)

 Δm_s =24ps⁻¹ "covers" the expected region based upon indirect fits.

Final remarks

CDF has a huge program in charm and beauty physics- I just scratched the surface
 despite non-dedicated, it plays a major role in the field

- best for light (charm->largest sample in the world) and heavy (B_s, Λ) states
- B_s oscillations will be seen in Run II (unless something really strange over there)
- Most of this success is due to the craziness of few people who believed more than 10 years ago to the possibility of reconstructing on-line tracks at trigger level... any idea for the LHC?