
Quantum Computing 
at CERN

Sofia Vallecorsa
AI and Quantum Research - CERN IT

CERN



CERN Quantum Technology Initiative

2021 Roadmap: https://doi.org/10.5281/zenodo.5553774

High level objectives:

• Scientific and Technical Development

• Community Building

• Co-development

• Integration with national and international 
initiatives

What applications in HEP can
profit from quantum 

technologies?
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IBM Q-Net
Intel
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• Assess the areas of 
potential quantum 
advantage in HEP (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Scientific Objectives

Computing & Algorithms

• Identify and develop 
techniques for quantum 
simulation in collider 
physics, QCD, cosmology 
within and beyond the SM

• Co-develop quantum 
computing and sensing 
approaches by providing 
theoretical foundations 
to the identifications of 
the areas of interest

Simulation & Theory

• Develop and promote 
expertise in quantum 
sensing in low- and high-
energy physics 
applications

• Develop quantum sensing 
approaches with 
emphasis on low-energy 
particle physics 
measurements

• Assess novel 
technologies and 
materials for HEP 
applications

Sensing, Metrology & 
Materials

• Co-develop CERN 
technologies relevant to 
quantum infrastructures
(time synch, frequency 
distribution, lasers)

• Contribute to the 
deployment and 
validation of quantum 
infrastructures

• Assess requirements and 
impact of quantum 
communication on 
computing applications
(security, privacy)

Communications & 
Networks

• Identify areas of 
potential quantum 
advantage in HEP

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Computing & Algorithms

• Identify and develop 
techniques for quantum 
simulation in collider 
physics, QCD, cosmology 
within and beyond the SM

• Co-develop quantum 
computing and sensing 
approaches by providing 
theoretical foundations 
to the identifications of 
the areas of interest

Simulation & Theory

• Develop and promote 
expertise in quantum 
sensing in low- and high-
energy physics 
applications

• Develop quantum sensing 
approaches with 
emphasis on low-energy 
particle physics 
measurements

• Assess novel 
technologies and 
materials for HEP 
applications

Sensing, Metrology & 
Materials

• Co-develop CERN 
technologies relevant to 
quantum infrastructures
(time synch, frequency 
distribution, lasers)

• Contribute to the 
deployment and 
validation of quantum 
infrastructures

• Assess requirements and 
impact of quantum 
communication on 
computing applications
(security, privacy)

Communications & 
Networks



• More than 20 projects in all 
four quantum areas

• > 20 papers
>10 on peer-reviewed journals

• More than 30 talks and 
presentations at conferences 
and workshops

Scientific Production



• Assess the areas of 
potential quantum 
advantage in HEP (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Quantum Computing Objectives at CERN

Computing & Algorithms

• Identify areas of 
potential quantum 
advantage in HEP (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Computing & Algorithms

• Baseline for application prioritisation
and systematisation

• Formal approach to algorithms, 
methods, error characterisation and 
correction
• Quantum Machine Learning 
• Algorithms beyond QML

• Test different hardware
• Contribute to the development of a 

quantum infrastructure



Quantum Computing Infrastructure and the Quantum Hub

A quantum computing simulation cluster with different simulators is available 
for initial investigations up to 20 qubits

A collaboration with Intel, TUM and the Munich Leibniz centre is being set 
up to investigate applications of quantum simulation on HPC

CERN has acquired an Atos QLM 34 simulation appliance for projects 
requiring more than 30 qubits

CERN is a Hub Member of the IBM Quantum Network with quota access to 
all IBM quantum computers up to the recently released 127-qubit system

Collaborations with cloud providers for access to different quantum hardware 
are being discussed



Quantum Computing Platforms

Scale-up 
systems, HPC, 
Cloud QaaS

NISQ Universal 
Hardware

Annealers and 
quantum systems 
simulators

Quantum computing 
simulators (mainly 
open source)

Contribute to developing technologies and capacity in the 
CERN Member States

USER

CERN

Partner 1

Partner 3

Partner 2

UNIFIED 
QUANTUM 

COMPUTING 
PLATFORM



• Open-source extensible, scalable platform for running 
benchmarks on simulators (and quantum devices)

• Community-based
• Facilitate deployment on clusters (containers based)

• How the system works:
1. User submits desired benchmarks to server.
2. Server adds them to a queue of jobs to run.
3. Workers serve the queue, execute the jobs and store results 

database.
4. Server returns results to User.

Ahmed Darwish ”ABAQUS”, 
https://indico.cern.ch/event/1191490/contributions



Quantum 
Algorithms & 
Applications



Quantum Algorithms for HEP

Quantum Algorithms for: 
Sampling, searches

Linear algebra
Cryptography and 

communication

Re-think 
algorithms 

design
Define fair 

benchmarking

Potential applications:
• Monte Carlo and Event Generation
• Quantum Simulation
• Pattern Recognition
• Quantum Machine Learning



Use Quantum Computing to accelerate ML/DL.

Quantum circuits are differentiable and can be trained
minimizing a data dependent cost function:

1. Feature extraction and data encoding
• How to represent classical data in quantum states?

2. Model definition (kernel based or variational)
• Design wrt data

3. Optimisation and convergence in Hilbert space
• Convergence vs expressivity
• Barren plateau and vanishing gradients
• Classical optimisation via gradient-free or gradient-

based optimisers 
• …

Quantum Machine Learning

Belis, Vasilis, et al. "Higgs analysis 
with quantum classifiers." EPJ 
Web of Conferences. Vol. 251. EDP 
Sciences, 2021.

S.Y. Chang, poster at ”Quantum Tensor Network in Machine Learning, NeurIPS 2021 

Different encoding for QCNN 



Model definition

Flexible parametric ansatz: design can leverage 
data symmetries1

Trained using gradient-free or gradient-based
optimization in a classical loop

Data Embedding 𝒱! 𝑥 can be learned
Better generalization3

Variational algorithms Kernel methods

Feature maps as quantum kernels 
Identify kernel classes that relate to specific data
structures2

Use classical kernel-based training
Better accuracy3

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021).Image credit 
SwissQuantumHub

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020.

3 Jerbi, Sofiene, et al. "Quantum machine learning beyond kernel methods." arXiv preprint arXiv:2110.13162 (2021).



QML in High Energy Physics
Alexander Zlokapa, Alex Mott, Joshua Job, Jean-Roch Vlimant, 

Daniel Lidar, and Maria Spiropulu. Quantum adiabatic machine 
learning by zooming into a region of the energy surface.

Physical Review A, 102:062405, 2020. 
DOI:10.1103/PhysRevA.102.062405.

Koji Terashi, Michiru Kaneda, Tomoe Kishimoto, Masahiko Saito, Ryu 
Sawada, and Junichi Tanaka. Event classification with quantum 
machine learning in 20 high-energy physics. Computing and 
Software for Big Science, 5(1), January 2021.

Sau Lan Wu, Jay Chan, Wen Guan, Shaojun Sun, Alex Wang, Chen 
Zhou, Miron Livny, Federico Carminati, Alberto Di Meglio, Andy C Y Li, 

and et al. Application of quantum machine learning using the 
quantum variational classifier method to high energy physics 

analysis at the lhc on ibm quantum computer simulator and 
hardware with 10 qubits. Journal of Physics G: Nuclear and Particle 

Physics, 48(12):125003, Oct 2021

Alessio Gianelle, Patrick Koppenburg, Donatella 
Lucchesi, Davide Nicotra, Eduardo Rodrigues, Lorenzo 
Sestini, Jacco de Vries, and Davide Zuliani. Quantum 
Machine Learning for 𝑏-jet identification. 
arXiv:2202.13943, 2022.

Vishal S Ngairangbam, Michael Spannowsky, and 
Michihisa Takeuchi. Anomaly detection in high-energy 
physics using a quantum autoencoder. arXiv preprint 
arXiv:2112.04958, 2021.

Samuel Yen-Chi Chen, Tzu-Chieh Wei, Chao 
Zhang, Haiwang Yu, and Shinjae Yoo. Quantum 
convolutional neural networks for high energy 
physics data analysis. arXiv preprint: 2012.12177, 
2020.
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QML at CERN

Tüysüz, Cenk, et al. "Hybrid quantum classical graph neural 
networks for particle track reconstruction." Quantum 
Machine Intelligence 3.2 (2021): 1-20.

M. Shenk, V. Kain, Quantum Reinformcement Learning, 
BQiT 2021, 2022 CERN openlab Tech Workshop

p0=5%

Vasilis Belis, Samuel González-Castillo, Christina Reissel, Sofia 
Vallecorsa, Elías F. Combarro, Günther Dissertori, and Florentin
Reiter. Higgs analysis with quantum classifiers. EPJ Web of 
Conferences, 251:03070, 2021

Borras, Kerstin, et al. "Impact of quantum noise on the 
training of quantum Generative Adversarial 
Networks." arXiv preprint arXiv:2203.01007 (2022).

Chang S.Y. et al., Running the Dual-PQC 
GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21

O. Kiss, Quantum Born Machine for 
event generation, ACAT2021

Kinga Wozniak, Unsupervised clsutering for a 
Randall–Sundrum Graviton at 3.5TeV narrow 
resonance, 5th IML workshop, May 2022

Bravo-Prieto, Carlos, et al. "Style-based 
quantum generative adversarial networks 
for Monte Carlo events." arXiv preprint 
arXiv:2110.06933 (2021).



Multiple QML prototypes for different applications
Increasing level of precision
Robustness against noise
Same initial hints at advantages

Our results so far.. 

Scale is still a problem on current quantum 
hardware
Complex data pre-processing 
Data discretization?



Representation Learning

Brown, Tom, et al. "Language models are few-shot 
learners." Advances in neural information processing systems 33 
(2020): 1877-1901.

• Generative Models learn the representation of an intractable probability distribution, pdata
defined on ℝn

• Don’t define explicit mathematical expression of pmodel ≈ pdata
• Trained as generators ℊ:ℝ! → ℝ" that map samples from a tractable distribution 𝒵 supported in 

ℝ! to points in ℝn

• Different tasks: data compression, anomaly detection, event generation, …
• Multiple flavors: Boltzman Machines, (Variational) Auto-Encoder, Generative Adversarial 

Networks, … 



Quantum Generative Models

QCBM
Sample variational pure state | ⟩ψ(θ)
by projective measurement through 
Born rule: 𝐩𝛉 𝐱 = |,𝐱|𝛙(𝛉 ⟩) |𝟐 .

QGAN
Multiple implementations, mostly classical-quantum hybrid

Quantum Generator

Measurement Real
Data

Fake
Data

Classical 
Discriminator

Classical 
Data

Evaluate Gradients &
Update Parameters 

Uniform 
Initialization

QBM
Network of stochastic binary units with a quadratic energy function
that follows the Boltzman distribution (Ising Hamiltonian)

+ QVAE, general QNN…

Delgado and Hamilton, arXiv:2203.03578 (2022)
Zoufal, et al., npj Quantum Inf 5, 103 (2019)
Leadbeater et al., Entropy 2021, 23, 1281.
Amin, et al. Physical Review X 8.2 (2018): 021050.

n dimensional 
binary strings
map to 2n bins of 
the discretized 
dataset.



Muon Force Carriers, in muon fixed-target 
experiments (FASER) or muon interactions in 
calorimeters (ATLAS)1. 

Generate multivariate distribution (E, pt, η)

Maximum Mean Discrepancy for training

QCBM for event generation

1 Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)

Kiss, Grossi, et al., Phys. Rev. A 106, 022612 (2022)

MMD(P,Q) =  𝔼$~&
'~&

𝐾 𝑋, 𝑌 + 𝔼$~(
'~(

𝐾 𝑋, 𝑌 − 2𝔼$~&
'~(

𝐾 𝑋, 𝑌

O. Kiss - QTI CERN



Mean difference between 
the correlations in the MC 
and generated samples

Simulation Noisy 
simulation

IBMQ 
Mumbai

Classical

0.12 0.06 0.06 0.01

Kiss, Grossi, et al., Phys. Rev. A 106, 022612 (2022)

Multivariate probability distribution

+ Implement 
conditional 𝒑(𝒚|𝒙) wrt 
incoming particle 
energy Ein. 



qGAN as a data loader
Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

Exact 

distribu�on 

loading

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Classical 

preprocessing

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

loading 

through qGAN

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

qGAN training

Classical 

preprocessing

Quantum data 

prepara�on 

Cross section integration using Quantum Amplitude Estimation
Focus on electroweak process 

Test on  1 + 𝑥) distribution:
• 10k events, 3 qubits, 

circular entanglement

Agliardi, Gabriele, et al. "Quantum integration of elementary 
particle processes." arXiv preprint arXiv:2201.01547 (2022)

Data encoding in quantum states affects quality of integration
Test QGAN for data embedding  and compare to direct loading

𝜎 =
1
𝐹
0𝑑Φ 𝑀 #Θ Φ − Φ$

matrix element

phase-space factor

phase-space 
cuts 



qGAN for event generation

Generate  Mandelstam (s,t) + y
variables for t-tbar production
Introduce a style-based
approach

Bravo-Prieto et al. "Style-based quantum generative 
adversarial networks for Monte Carlo events." Quantum 6, 
777 (2022) , arXiv preprint arXiv:2110.06933 (2021).

IBM Q Santiago

Quantum simulator



QML training process is robust against
noise (error mitigation is needed in 
extreme cases)

Robustness against noise

Borras, Kerstin, et al. "Impact of quantum noise on the training of quantum 
Generative Adversarial Networks." ACAT2021, arXiv preprint 
arXiv:2203.01007 (2022).

Borras, Kerstin, et al. "Impact of quantum noise on the training of quantum 
Generative Adversarial Networks."



Agent interacts with environment
• Follow policy 𝝅: 𝑆 → 𝐴
• Find policy 𝜋∗ maximizing reward: 𝐺+ = ∑, 𝛾,𝑅+-,

Quantum Reinforcement Learning 

Expected reward is estimated by value function 𝑸(𝒔, 𝒂)
• DQN: Deep Q-learning (feed-forward neural network)
• FERL: Free energy based RL (clamped Quantum Boltzmann Machine)

RL book: Sutton & Barto

Michael Schenk et al., Hybrid actor-critic algorithm for quantum reinforcement 
learning at CERN beam lines. arXiv:2209.11044
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Clamped QBM

Clamped QBM (visible nodes are treated as biases)
• F𝑸 𝒔, 𝒂 ≈ negative free energy of classical spin 

configurations 𝑐
• Sampling 𝑐 using (simulated) quantum annealing
• Discrete, binary-encoded state and action spaces

%𝑄 𝑠, 𝑎 ≈ −𝐹 𝒗 = − 𝐻𝒗"## −
1
𝛽2

$

ℙ 𝑐 𝒗 logℙ 𝑐 𝒗

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf


Beam optimisation in linear accelerators

• Action: (discrete) deflection angle 
• State: (continuous) BPM position 
• Reward: integrated beam intensity on 

target
• Optimality: what fraction of possible states 

does agent take the right decision

• Training efficiency: FERL 
massively outperforms classical 
Q-learning (8±2 vs. 320±40 
steps with experience replay)

Michael Schenk et al., Hybrid actor-critic algorithm for 
quantum reinforcement learning at CERN beam lines, 
e-Print: 2209.11044 [quant-ph]

NO exp. replay exp. replay

One-dimensional beam target steering task at the CERN TT24-T4 beam line



Early work pointed toward
possible advantage in 
terms of sample 
complexity and/or  fast 
convergence

Expressive models

Alexander Zlokapa, Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar, and Maria 
Spiropulu. Quantum adiabatic machine learning by zooming into a region of the energy 

surface. Physical Review A, 102:062405, 2020. DOI:10.1103/PhysRevA.102.062405.

Michael Schenk, Elías F. Combarro, Michele Grossi, Verena Kain, Kevin Shing Bruce Li, 
Mircea-Marian Popa, Sofia Vallecorsa, Hybrid actor-critic algorithm for quantum 
reinforcement learning at CERN beam lines. arXiv:2209.11044

High effective dimension yields fewer
parameters than classical case



Actor-Critic Q-learning training D-Wave Advantage

CERN AWAKE facility
2GeV electron 
beam line

QBM
QA

Successful
evaluation the real
beam-line

Real
Simulated

Michael Schenk et al., Hybrid actor-critic algorithm for quantum reinforcement
learning at CERN beam lines, e-Print: 2209.11044 [quant-ph]



Quantum vs classical data
Correlate expected model performance to dataset properties
Convergence vs expressivity robustness studies
Algorithms beyond QML

Research directions



Quantum machine learning for quantum data

Huang, et al., Science 376, 6598 (2022) 

Work directly with quantum states.

Task: Drawing phase diagrams

Cong, et al., Nat. Phys. 15, 1273–1278 (2019)

1. Supervised classification using a 
convolutional QNN using the 
groundstates as input data. 

2. Advantageous since quantum states are 
exponentially hard to save 
classically. 

3. Bottleneck: we need access to 
classical training labels!  Interpolation 
does not work

O. Kiss - QTI CERN



Our solution: 
Train in easy subregions, where the 
model is integrable, and generalize. 

Model: Axial Next Nearest Neighbor Ising 
(ANNNI) Hamiltonian:

Which is integrable for 𝜅 = 0 or ℎ = 0.
Binary Cross-entropy

Variational quantum data 

Monte Carlo,
DMRG

Senk, Physics Reports, 170, 4 (1988)

Saverio Monaco et al., Quantum phase detection generalisation
from marginal quantum neural network models, 
arXiv:2208.08748v1.

O. Kiss - QTI CERN



Some results
Learn a similarity function between the data.
Kottman, et al., Phys. Rev. Research 3, 043184 (2021)

1. Generalisation from few 
training data  Caro et al., Nat 
Commun 13, 4919 (2022).

2. Performance increases 
with system size. 

3. No need for expensive 
training labels.

4. QCNN gives quantitative
predictions.

5. Both techniques are    
unable to find the floating 
phase.

Autoencoder(95%)

O. Kiss - QTI CERN



Advantage for QML?
Classical Intractability: quantum algorithm that 
cannot be efficiently simulated classically1,2

• No established recipe for classical data
• Use exponential advantage in Hilbert space, while 

preserving converge ? (Algorithm expressivity vs 
generalization) 

Metrics to evaluate quantum vs classical kernel: 
• Geometric difference between quantum and classical 

kernels
• Model complexity
• Approximate dimension of the quantum feature space
• Propose projected quantum kernels reducing 

expressivity 

35

1Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in Neural Information Processing Systems 34 (2021).
2 Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). https://doi.org/10.1038/s41467-021-22539-9



Analize the performance of quantum kernels

• Focus on H(tbb) classification 
• quantum kernels keep data in low-dimensional Hilbert spaces
• model complexity increases with the number of qubits for all ML models. 
• Model complexity are similar (sometimes below classical models)
• Projected kernels don’t  help

F. Di Marcantonio et al., The Role of Data in Projected 
Quantum Kernels: the
Higgs Boson Discrimination.

V. Belis, EPJ Web of 
Conferences 251, 
03070 (2021)



6Li Ground state preparation 
with the Variational Quantum Eigensolver (VQE)

14.10.22 O. Kiss - QTI CERN 37

6Li nuclei with an 4He inert core (12 orbitals 
in the shell model):

Unitary Coupled Clusters (UCC) ansatz
Hartree Fock 
solution

Cluster operators

Single fermionic 
excitation terms

Double fermionic 
excitation terms

Variational principle:

We are looking for a state which 
minimize the expectation value of H0.



Comparison of different ansatz

14.10.22 O. Kiss - QTI CERN 38

The effect of shuffling the fermionic excitations 
operators. We should order them in descending 
order of magnitude (of the corresponding term 
in the hamiltoninan). 

Best approach: train the ansatz 
recursvily in descending order.
Qubit Based Excitation UCC:  
adapted to NISQ devices

1% barrier 
needed for most 
applications

Kiss et al., Phys. Rev. C 106, 034325 (2022)



The CERN QTI is studying impact of Quantum Technologies  in High Energy Physics:

• Some preliminary hints of advantage

• So far..  we can do «as good as classical methods». In many cases, limitations are hardware-
related

• Need more robust studies to estimate performance and drive model development

We are now formulating a longer term research plan

• Identify cases where quantum approach could be more effective than classical algorithms... 

• Study performance beyond near-term hardware

• …

Perspective



QT4HEP conference
CERN, 1- 4 November 2022

More information: 
https://indico.cern.ch/event/1190278



Sofia.Vallecorsa@cern.ch

Thanks!

https://quantum.cern/

https://openlab.cern/quantum

https://quantum.cern/
https://openlab.cern/quantum


What the future brings…

23.06.22 42



CERN QTI Roadmap: 
• Di Meglio, Alberto, Doser, Michael, Frisch, Benjamin, Grabowska, Dorota, Pierini, Maurizio, & Vallecorsa, 

Sofia. (2022). CERN Quantum Technology Initiative Strategy and Roadmap (1.0_Rev3). Zenodo. 
https://doi.org/10.5281/zenodo.5846455

Snowmass:
• Humble, Travis S., et al. "Snowmass White Paper: Quantum Computing Systems and Software for High-

energy Physics Research." arXiv preprint arXiv:2203.07091 (2022).
• Delgado, Andrea, et al. "Quantum Computing for Data Analysis in High-Energy Physics." arXiv preprint 

arXiv:2203.08805 (2022)

Review article : 
• Gray, Heather M., and Koji Terashi. "Quantum Computing Applications in Future Colliders." Frontiers in 

Physics (2022): 473.

23.06.22 43



Quantum Theory

pQCD and 
Standard 
Model : collider 
physics

Heavy Ion:
quark gluon 
plasma, heavy ion 
collisions, …

Lattice:
theory inputs for 
nuclear and particle 
physics, first principle 
calculations,…

Cosmo, 
AstroParticle:
properties and 
evolution of the early 
universe, dark sector,…

Strings/QFT:
quantum gravity, 
string theory, …

BSM :
dark matter model 
building, new physics, 
BSM explanation of 
experimental anomalies



Non-LHC Experiments

CERN Neutrino Platform
CERN’s undertaking to foster and contribute 
to fundamental research in neutrino physics 
at particle accelerators worldwide

ALPHA (successor 
of ATHENA)
makes, captures 
and studies atoms 
of antihydrogen 
and compares 
these with 
hydrogen atoms.

Antihydrogen Experiment: Gravity, 
Interferometry, Spectroscopy (AEGIS)
direct measurement of the Earth's 
gravitational acceleration, g, on 
antihydrogen.

BASE
Antiproton Trap
compares protons with 
their antimatter 
equivalents.

CERN Axion Solar Telescope
search for hypothetical 
"axions“, proposed to explain 
why there is a subtle difference 
between matter and 
antimatter.

Atomic Spectroscopy And 
Collisions Using Slow 
Antiprotons
studies the fundamental 
symmetries between matter and 
antimatter by precision 
spectroscopy of atoms containing 
an antiproton.

CERN Neutrino Platform
ALPHA (successor 
of ATHENA)

Antihydrogen Experiment: Gravity, 
Interferometry, Spectroscopy (AEGIS)

BASE
Antiproton Trap

CERN Axion Solar Telescope



Quantum Field Theory.  Ex. Sign problems in particle theory
• Dynamical Simulations of Lattice Gauge Theories
• Finite-Density Nuclear Matter
• Challenges related to digitization and truncation of filed representation (on a finite number of quantum 

states) and redundancy in the Hilbert space1

Cross section integration as quantum amplitude estimation3

Event generation with quantum generative models or direct simulation
Parton showering as quantum random walk2

Theory and Simulation

1 D. Grabowska’s presentation at the CERN QTI workshop (https://indico.cern.ch/event/1098355)
2 A quantum walk approach to simulating parton showers Khadeejah Bepari, Sarah Malik, Michael 
Spannowsky, Simon Williams arxiv:2109.13975 and presentation at the CERN QTI workshop 
(https://indico.cern.ch/event/1098355)
3Agliardi, Gabriele, et al. "Quantum integration of elementary particle processes." arXiv preprint 
arXiv:2201.01547 (2022)

https://indico.cern.ch/event/1098355
https://indico.cern.ch/event/1098355


Change of quantum state 
caused by the interaction 
with an external system:
• transition between 

superconducting and 
normal-conducting

• transition of an atom from 
one state to another

• change of resonant 
frequency of a system 
(quantized)

Quantum sensing
M. Doser, Physics frontiers, 9/10 Mar 2022



Hybrid setup for anomaly detection
Kinga Wozniak, Unsupervised clsutering for a 
Randall–Sundrum Graviton at 3.5TeV narrow 
resonance, 5th IML workshop, May 2022

Unsupervised Q-means Supervised QSVM

Supervised QSVM

Di-jet events (Δφ, Δη,pT). Train AE on QCD sidebands. 
Train classifiers on signal region.

Unsupervised Q-means



Quantum Sensing for High-Energy Physics

Strategy

Applications

Scope
High-Energy Physics, particle 
tracking, calorimetry, identification 
in HEP detectors

Quantum “priming” of detectors before 
measurement, signal enhancement
by laser excitation, quantum effects due to size, 
cryogenics

Chromatic particle trackers composed of arrays of nanodots of varying size,
nanocrystals (eg. XPbBr3) as scintillator or charged particle tracking for HEP detectors
Calorimeters and low-energy single-particle (photons, mip’s, ions,...) detectors
made of arrays of nanowires (SNSPD)
2D-structures (graphene) for gaseous detector signal amplification, synergies with
atomic and quantum optics experiment control/DAQ
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Given the size of the Hilbert space a compromise between 
expressivity, convergence and generalization performance is 
needed.
Classical gradients vanish exponentially with the number of 
layers (J. McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent between 
batches.

Quantum gradient decay exponentially in the number of 
qubits

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical 

Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Model Convergence and Barren Plateau

QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 
Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173




