

#### Outline

- Brief introduction to neutrino oscillation physics
- Why should we do long baseline neutrino experiments?
- What kind of beam?
- What kind of background?
- Two kinds of detector:
  - Assumptions
  - Expectations
- Conclusions

A bit of theory



#### Neutrino sources

#### Atmospheric neutrinos

Energy:

~ 0.1 - 100 GeV

Flight length:

~ 10 - 10'000 km



#### Solar neutrinos

Energy:

 $\sim 0.1$ - 10 MeV

Flight length:

 $\sim 10^8 \text{ km}$ 



#### Reactor neutrinos

Energy: ~ 3 MeV

Flight length: ~ 0.1 - 10 km





#### Accelerator neutrinos

Energy: ~ 1 - 10 GeV

Flight length: ~ 0.1 -1000 km



#### How did we learn about neutrino oscillation?

- First hint of neutrino oscillation: discrepancy between # of solar neutrinos observed and theoretical models: solar neutrino problem. Observing behavior of  $v_e$
- Strong evidence of  $v_{\mu} \rightarrow v_{\tau}$  by the Super-K collaboration in 1998 using atmospheric neutrinos.
- More evidence of neutrino mixing by the SNO collaboration in 2002.
- Confirmation by K2K & KamLAND

#### Measurements of oscillation

Because of the mixing of eigenstates, the neutrinos of a given flavor will oscillate to another flavor as follows:

$$p(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} (U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2 \Phi_{ij}$$
$$\pm 2 \sum_{i>j} (U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin 2\Phi_{ij}$$

With: 
$$\Phi_{ij} = \frac{\Delta m_{ij}^2 L}{4E} = \frac{1.27 \Delta m_{ij}^2 (eV^2) L(km)}{E(GeV)}$$

proportional to L/E

$$\Delta m^2 i j = m_j^2 - m_i^2$$

 This gives us a chance to measure the parameters of the mixing matrix and the two mass splittings.

# Example of Super-Kamiokande Data



We see a deficit of upward going muon events  $v_{\mu} \rightarrow v_{\tau}$  and we do not see tau in the detector.

#### Neutrino mixing

- Similar to quark mixing through the CKM matrix.
- Neutrino weak interaction eigenstates ≠ neutrino mass eigenstates.
- They are related by a mixing matrix U (PMNS matrix).
- U is a  $3\times3$  Unitary matrix  $\longrightarrow$  3 angles and 1 CP phase

$$\left(egin{array}{c} 
u_e \\

u_\mu \\

u_ au
\end{array}
ight) = \left[egin{array}{c} U_{lpha i} \ \end{array}
ight] \left(egin{array}{c} 
u_1 \\

u_2 \\

u_3 \end{array}
ight) \qquad egin{array}{c} 
\mathcal{C}_{ij} = \cos heta_{ij} \\
\mathcal{S}_{ij} = \sin heta_{ij} 
\end{array}
ight]$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & C_{23} & S_{23} \\ 0 & -S_{23} & C_{23} \end{pmatrix} \begin{pmatrix} C_{13} & 0 & S_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -S_{13}e^{-i\delta} & 0 & C_{13} \end{pmatrix} \begin{pmatrix} C_{12} & S_{12} & 0 \\ -S_{12} & C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric =  $\theta_{23}$  Not well known yet

Solar =  $\theta_{12}$ 

#### What we already know:

# Atmospheric neutrinos: from Super-K



# KamLAND + solar neutrinos: from KamLAND



 $\sin^2(2\theta_{13}) < 0.1$  at 90% C.L.



Why do long baseline neutrino experiments?

## Open question - CP phase $\delta$

- C = Charge conjugation: (particle ↔ antiparticle)
- P = Parity (image ↔ mirror image)





\*Needed condition to explain matter-antimatter asymmetry in universe

#### What we already know:

- \*\* CP is violated in the quark sector ( = there is a non-zero CP phase in the CKM matrix)
- \*\* CP violation in quark sector is not big enough to account for matterantimatter asymmetry.

## Open question - mass hierarchy



#### Theoretical:

Allow us to validate/rule out model
 For example: GUT's model tends to favor normal hierarchy

#### Experimental:

 The sensitivity of neutrinoless double beta decay depends on the mass hierarchy

# How to look for CP violation and mass hierarchy?

$$P[\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})] = \frac{\sin^{2}2\theta_{13}s_{23}^{2}\sin^{2}(\phi_{31}) - 1/2s_{12}^{2}\sin^{2}2\theta_{13}s_{23}^{2}(2\phi_{21})\sin(2\phi_{31})}{+ 2J_{r}\cos\delta(2\phi_{21})\sin(2\phi_{31})} \mp 4J_{r}\sin\delta(2\phi_{21})\sin^{2}(\phi_{31})} \right\} \text{ Vacuum terms}$$

$$\pm \cos2\theta_{13}\sin^{2}2\theta_{13}s_{23}^{2}\frac{(4Ea(x))}{(\Delta m_{31}^{2})}\sin^{2}\phi_{31}}{(\Delta m_{31}^{2})}$$

$$\mp \frac{(a(x)L)}{2}\sin^{2}2\theta_{13}\cos2\theta_{13}s_{23}^{2}\sin(2\phi_{31})}{+ c_{23}^{2}\sin^{2}2\theta_{12}(\phi_{21})^{2}}$$
Solar term 
$$\phi_{ij} = \frac{(\Delta m_{ij}^{2}L)}{(4E)}$$

- CP terms.
- Mass hierarchy terms.

Long baseline  $\rightarrow$  lots of matter effect  $\rightarrow$  Good for mass hierarchy CP violation does not care about long baseline as much.

 $a(x) = \sqrt{(2)}G_E N_a(x)$ 

# First generation of $\nu_e$ appearance experiments

We still don't know if  $\theta_{13}$  is non-zero and this question will be addressed by a new generation of experiments.

The T2K (Tokai to Kamioka) experiment will start to run in 2009
L= 295km E≈0.8GeV





The NOVA proposal (Fermilab), proposed to start running in 2014  $L \approx 800 \text{km}$   $E \approx 4 \text{ GeV}$ 

# The Hyper-K project

In addition to ve appearance:

- Also good for:
  - solar & atmospheric v
  - proton decay searches
  - supernova

1 Mton detector split into at least2 sub-detectors.

Total Volume Fiducial V.
SK 50 kt 23 kt
HK 1000 kt 2x270 kt



## The Hyper-K project

In addition to ve appearance:

- Also good for:
  - solar & atmospheric  $\nu$
  - proton decay searches
  - supernova

Total Volume Fiducial V. SK 50 kt 23 kt HK 1000 kt 2x270 kt



#### Why put a detector in Korea?

#### Main Physics reasons:

• Observe both first and second oscillation maximum in  $v_e$  appearance.

#### Practical reasons:

- We (will) already have the beam.
- The Hyper-K project already needs at least 2 sub-detectors.
- Having 2 identical detectors on the same beam minimizes systematic uncertainty.



Where in Korea?

The neutrino beam emerges in the sea, east of Korea.

In Korea, the smallest off-axis angle available is 1.0°.

And it was found that it gives the best results to probe mass hierarchy and CP violation.





## Making the $\nu_{\mu}$ beam

- For T2KK: 30 GeV proton synchrotron
   1.66 MW
- Protons hit target,pions (and kaons) created
- Pions focused and decay in decay pipe:

$$\pi \to \mu \, \nu_{\mu}$$
 
$$K \to \mu \, \nu_{\mu}$$
 but also  $K \to e \, \nu_e \, , \pi \, e \, \nu_e$ 

 To have a narrow energy band we use an off-axis beam



Super-K and Korea

#### Narrow energy band: Off-axis Beam

• The energy of the outgoing neutrino is:

$$E_{\nu} = \frac{m_{\pi}^2 - m_{\mu}^2}{2(E_{\pi} - p_{\pi} \cos \theta)}$$

- At off-axis angle of  $\theta$ ,  $E_v$  presents a maximum
- Gives a neutrino beam with a narrow energy spectrum:
  - Lower integrated flux
  - Higher peak flux



 $E_v$  as a function of  $E_{\pi}$ 



**Neutrino energy spectrum** 

#### Flux and appearance in Korea

# Small off-axis angle: (high energy tail)

- √1<sup>st</sup> appearance peak
- more NC background

# Big off-axis angle: (narrow peak)

- √Low background
- Low statistics at high E
- \*Only 2<sup>nd</sup> appearance peak









## How do they work?



#### Water Cherenkov:

Look for Cherenkov rings:

- Particle ID: (EM shower versus mu-like particle)
- No charge ID
- Need to be above Cherenkov threshold ie: Usuallly we don't see the proton in a CCQE interaction



# Liquid Argon Time Projection Chamber:

- Particle ID based on dE/dx
- Maybe possible to imbed the detector in magnetic field --> Charge ID
- The proton is reconstructed in CCQE interaction.

# Challenge to build massive detectors



Water Cherenkov

Cost of PMT's

But mainly we know how to build very large Water Cherenkov detector. CF Super-Kamiokande.



#### Liquid Argon

- Several meters drifts: need very pure Argon
- Long wires: mechanical robustness, tensioning, assembly
- Signal processing: noise due to long wires

## Three possible liquid Argon detectors



LANND, MODULAR: Modules with wires





FLARE: Large volume with wires

GLACIER hep-ph/0402110



GLACIER: Large volume without wires

# Experimental challenges - Background

•  $\nu_{\mu} \to \mu$  with e/ $\mu$  misidentification

good e/ $\mu$  ring identification: 0.7%

•  $v_e$  contamination in the beam  $K \to \pi \ v_e \ e$   $\mu \to e \ v_\mu \ \bar{v}_e$ 

0.2-0.3% Known from near detector

- $\pi^0$  when one of the  $\gamma$  is missed:
  - produced by neutral current

Mainly for Water
Cherenkov



Electrons create EM showers:
fuzzy ring
Muons do not make showers:
clear ring





Electrons create EM showers:
fuzzy ring
Muons do not make showers:
clear ring





Electrons create EM showers: fuzzy ring Muons do not make showers: clear ring



## Muon and electron in liquid argon

Antonio Bueno, NPO8, ICARUS images





Fanny Dufour, Genève, June 2009 (Phys. Rev. D 74 (2006) 112001)

Run 103 Event 4142

#### Main BG in Water Cherenkov?

• Main source of background come from  $\pi^0$ produced by neutral current when one of the  $\gamma$  is missed.





29

# $e/\pi^0$ in liquid Argon



**Electrons** 

Single track (mip scale) starting from a single vertex

Multiple secondary tracks can be traced back to the same primary vertex

PID on dE/dX and topology

# Efficiency for both technologies (Assumptions)

|              | Water Cherenkov                     |                                 |         | Liquid Argon       |        |                               |
|--------------|-------------------------------------|---------------------------------|---------|--------------------|--------|-------------------------------|
| Energy (GeV) | QE                                  | non-QE                          | BG (NC) | QE                 | non-QE | BG (NC)                       |
| 0.35-0.85    | ~80%                                | ~ 40%  cut needed  to remove NC | ~ 1%    | 90%<br>cf. MODULar |        | ~ 0.1% cf. MODULar and Icarus |
| 0.85-1.5     | cut<br>needed<br>to<br>remove<br>NC |                                 | ~ 3%    | 2008 paper         |        |                               |
| 1.5-2.0      |                                     |                                 | ~ 3%    |                    |        |                               |
| 2.0-3.0      |                                     |                                 | ~ 4%    |                    |        |                               |
| 3.0-4.0      |                                     |                                 | ~ 4%    |                    |        |                               |

# T2KK sensitivities



#### The T2KK setup

Volume

Beam Power

Running time

1 year is

Proton energy

Tot # of POT

Distance

Off-axis angle



2 x 270 kton WC / 270 kton WC + 100 kton LAR

1.66 MW

5 yrs nu + 5 yrs antinu

10<sup>7</sup> seconds

30 GeV

 $3.45 \times 10^{21} POT$ 

295 km and 1050 km

2.5 ° (Kamioka) and 1.0 ° (Korea) Off-axis

### 1 degree off-axis in Korea with Water Cherenkov



 $Sin^2(2\theta_{13})=0.04$ , neutrino, normal hierarchy

### 1 degree off-axis in Korea with LAr



#### 1000 Number of events Off-axis angle = 2.5° Signal δ<sub>CP</sub>=-45° Signal δ<sub>CP</sub>=0° 800 N = 4947Signal δ<sub>CP</sub>=45° N = 4355All BG (v e MC) N = 2571600 Beam v<sub>e</sub> BG (MC) N = 1729. 400 200 103 Energy (MeV)

#### Spectrum at Korea 1.0° OA



 $Sin^2(2\theta_{13})=0.04$ , neutrino, normal hierarchy

Number of events

# Sensitivities T2KK (far detector at 1° off-axis)



For the given setup, Water Cherenkov and Liquid Argon are very much comparable.

### Sensitivity as a fraction of CP



For the given setup, Water Cherenkov and Liquid Argon are very much comparable.

### Summary

- A detector in Korea allows to extract information from the first and the second  $v_{\rm e}$  appearance maximum.
- I tested two options for the Korean detector:
  - Water Cherenkov and Liquid Argon
- Both solutions are comparable if:
  - Water Cherenkov is three times bigger than the liquid Argon.
  - The liquid Argon is basically background free (except from a known beam v contamination).

# backups

#### Photo-coverage

"Thanks" to the accident in SK, we have MC corresponding to 20% and 40% photo-coverage





We tested our likelihood on both samples, and it gives very similar results.

#### Photo-coverage results



Running on 100 yr of SK-I MC and 60 yr of SK-II MC



350 MeV < E < 850 MeV

# Definition of $\chi^2$ analysis

The oscillation analysis was done for: 1.66MW beam

- 0.27Mton at Kamioka
- 0.27Mton in Korea5 years running of neutrino
  - 5 years running of antineutrino



We have 15 systematic errors.

With the following energy bins (MeV):

400-500, 500-600, 600-700, 700-800,

800-1200, 1200-2000, 2000-3000

$$\chi^2 = \sum_{k=1}^{\mathbf{4}} \left( \sum_{i=1}^{\mathbf{7}} \frac{\left( N(e)_i^{\text{obs}} - N(e)_i^{\text{exp}} \right)^2}{\sigma_i^2} \right) + \sum_{j=1}^{\mathbf{15}} \left( \frac{\epsilon_j}{\tilde{\sigma}_j} \right)^2$$

### Systematic errors

| Systematic errors                                                                                                     | Value |
|-----------------------------------------------------------------------------------------------------------------------|-------|
| BG normalization below 1.2 GeV (Kamioka)                                                                              | 5%    |
| BG normalization above 1.2 GeV (Kamioka)                                                                              |       |
| BG normalization below 1.2 GeV (Korea)                                                                                |       |
| BG normalization above 1.2 GeV (Korea)                                                                                | 5%    |
| BG norm. between $ve$ and anti- $ve$ below 1.2 GeV                                                                    |       |
| BG norm. between ve and anti-ve above 1.2 GeV                                                                         |       |
| BG spectrum (common for Kamioka and Korea)                                                                            |       |
| Signal normalization below 1.2 GeV                                                                                    |       |
| Signal normalization above 1.2 GeV                                                                                    |       |
| [ $\sigma$ ( $\nu$ $\mu$ )/ $\sigma$ ( $\nu$ $e$ )]/[ $\sigma$ ( $\nu$ $\mu$ )/ $\sigma$ ( $\nu$ $e$ )] below 1.2 GeV |       |
| [ $\sigma$ ( $\nu$ $\mu$ )/ $\sigma$ ( $\nu$ $e$ )]/[ $\sigma$ ( $\nu$ $\mu$ )/ $\sigma$ ( $\nu$ $e$ )] above 1.2 GeV |       |
| Efficiency difference between Kamioka and Korea < 1.2GeV                                                              |       |
| Efficiency difference between Kamioka and Korea > 1.2GeV                                                              |       |
| Energy scale difference between Kamioka and Korea                                                                     | 1%    |
| Energy scale difference between near and Kamioka/Korea                                                                |       |

Error on BG variables

Error on Signal variables

Error on Kamioka/ Korea

### Likelihood analysis sample

We use the Super-K atmospheric Monte Carlo and we keep events if they are:

- single ring
- electron-like
- with no decay electron
- inside the fiducial volume and fully contained

NB: the  $\nu$   $\mu$  mis-ID BG is not plotted because it is always below 0.01



### Final likelihood efficiency

We did a study of S/\B and we found that keeping 80% of the signal is what gives the best results.

|                | Cut that keeps 80% of signal |     |
|----------------|------------------------------|-----|
| Energy (rec)   | ν <sub>e</sub>               | NC  |
| 0-350 MeV      | 86%                          | 12% |
| 350-850 MeV    | 81%                          | 28% |
| 850 MeV-1.5GeV | 77%                          | 23% |
| 1.5 - 2.0 GeV  | 77%                          | 29% |
| 2.0 - 3.0 GeV  | 82%                          | 15% |
| 3.0 - 4.0 GeV  | 84%                          | 19% |
| 4.0 - 5.0 GeV  | 83%                          | 25% |
| 5.0 - 10.0 GeV | 77%                          | NA  |

Precuts NC reduction ~ 90% Total reduction ~ 97%

#### Likelihood variables

#### Likelihood per energy bin



#### Likelihood variables:

Standard SK variables: ring parameter, PID parameter

Variables related to  $\pi$  o in SK.

Variables using beam direction info.

#### Background

Signal (Main signal bin)

# NC energy response



The energy response of neutral current events is completely non linear since what we observe is the pion and this pion can have any energy.



#### 2.5 degree off-axis in Korea



#### Spectrum at Korea 2.5° OA



 $Sin^2(2\theta_{13})=0.04$ , neutrino, normal hierarchy

#### T2KK Sensitivities



- ▶ The best results for mass hierarchy is given with the far detector located at 1° off-axis angle.
- ▶ The results for CP violation are comparable.