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Outline
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 Brief introduction to neutrino oscillation physics 

 Why should we do long baseline neutrino experiments ?

What kind of beam?

What kind of background?

 Two kinds of detector:
Assumptions 
Expectations

Conclusions
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A bit of theory

Wolfgang Pauli
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Neutrino sources
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Atmospheric neutrinos
Energy: 

~ 0.1 - 100 GeV
Flight length: 

~ 10 - 10’000 km

Solar neutrinos
Energy:
~ 0.1- 10 MeV
Flight length:
~ 108 km

Accelerator neutrinos
Energy: ~ 1 - 10 GeV
Flight length: ~ 0.1 -1000 km

Reactor neutrinos
Energy: ~ 3 MeV
Flight length: ~ 0.1 - 10 km
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How did we learn about neutrino oscillation?
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 First hint of neutrino oscillation: discrepancy between # of solar 
neutrinos observed and theoretical models: solar neutrino problem. 
Observing behavior of νe

 Strong evidence of νμ → ντ  by the Super-K collaboration in 1998 

using atmospheric neutrinos.

More evidence of neutrino mixing by the SNO collaboration in 
2002. 

 Confirmation by K2K & KamLAND 



∆m2ij = m2
j −m2

i
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Measurements of oscillation
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 Because of the mixing of eigenstates, the neutrinos of a given 
flavor will oscillate to another flavor as follows:

 This gives us a chance to measure the parameters of the mixing 
matrix and the two mass splittings.

With:

proportional to L/E

p(να → νβ) = δαβ − 4
∑

i>j

(U∗
αiUβiUαjU

∗
βj) sin2 Φij

±2
∑

i>j

(U∗
αiUβiUαjU

∗
βj) sin 2Φij

Φij =
∆m2

ijL

4E
=

1.27∆m2
ij(eV 2)L(km)

E(GeV )
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Example of Super-Kamiokande Data

7

Electron Muon
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We see a deficit of upward going muon events
νμ → ντ  and we do not see tau in the detector.

Downward neutrino 

Upward neutrino 
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Neutrino mixing
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Similar to quark mixing through the CKM matrix.
Neutrino weak interaction eigenstates  ≠ neutrino mass 
eigenstates.
 They are related by a mixing matrix U (PMNS matrix).
 U is a 3x3 Unitary matrix             3 angles and 1 CP phase

Atmospheric = θ23                                              Solar = θ12    

Cij=cosθij

Sij=sinθij

Not well known yet
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What we already know:
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Atmospheric neutrinos:
 from Super-K

CHOOZ experiment:

∆m2
12 ≈ ±7.9× 10−5eV 2

sin2(2θ13) < 0.1 at 90%C.L.

KamLAND + solar 
neutrinos:from KamLAND

∆m2
23 ≈ ±2.1× 10−3eV 2

sin2(2θ23) = 1

sin2(2θ12) = 0.85
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Why do long baseline 
neutrino experiments?

π+ µ+

e+νµ

νe

protons

νµ
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Open question - CP phase δ
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C = Charge conjugation: (particle ↔ antiparticle)

P = Parity (image  ↔  mirror image)

Why is CP violation important?

Needed condition to explain matter-antimatter asymmetry in universe 

What we already know:

CP is violated in the quark sector ( = there is a non-zero CP phase in the CKM 
matrix)
CP violation in quark sector is not big enough to account for matter- 
 antimatter  asymmetry.
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Open question - mass hierarchy
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Theoretical:
Allow us to validate/rule out model
For example: GUT’s model tends to favor normal hierarchy

Experimental:
The sensitivity of neutrinoless double beta decay depends on the mass 
hierarchy

 Δm2
12 Δm2

23  ≈10-3  eV2

 Δm2
23

Normal 
νe

νµ

ντ Δm2
12  ≈10-5  eV2

Not to scale

Inverted 
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How to look for CP violation and mass hierarchy?
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Long baseline → lots of matter effect → Good for mass hierarchy

CP violation does not care about long baseline as much.
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First generation of νe appearance experiments
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We still don't know if θ13  is non-zero and this question 
will be addressed by a new generation of experiments.  

The T2K (Tokai to Kamioka) 
experiment will start to 
run in 2009
L= 295km   E≈0.8GeV  

The NOνA proposal (Fermilab), 
proposed to start running in 2014
L≈ 800km  E ≈ 4 GeV 
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The Hyper-K project
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In addition to νe appearance:
 Also good for: 

 - solar & atmospheric ν
 - proton decay searches
 - supernova

  1 Mton detector split 
 into at least 
    2 sub-detectors.

! Total Volume   Fiducial V.
SK     50 kt!      23 kt
HK! 1000 kt       2x270 kt
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The Hyper-K project

15

In addition to νe appearance:
 Also good for: 

 - solar & atmospheric ν
 - proton decay searches
 - supernova

  1 Mton detector split 
 into at least 
    2 sub-detectors.

! Total Volume   Fiducial V.
SK     50 kt!      23 kt
HK! 1000 kt       2x270 kt

Could be built in Korea
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Why put a detector in Korea?
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 Main Physics reasons:
 Observe both first and second 
oscillation maximum in νe 
appearance.

Practical reasons:
 We (will) already have the beam.
 The Hyper-K project already 
needs at least 2 sub-detectors.
 Having 2 identical detectors on 
the same beam minimizes 
systematic uncertainty.

Prob(νµ→νe) 
Eν =0.75(Gev)‏

1050                295       0 
L(km)



Fanny Dufour, Genève, June 2009

Where in Korea?
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The neutrino beam emerges 
in the sea, east of Korea.

In Korea, the smallest off-
axis angle available is 1.0°.

And it was found that it 
gives the best results to 
probe mass hierarchy and 
CP violation.

OA=1.0
OA=1.5
OA=2.0
OA=2.5
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http://j-parc.jp/en/past/construction-e0903.html

What kind of beam?

http://j-parc.jp/en/past/construction-e0903.html
http://j-parc.jp/en/past/construction-e0903.html
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Making the νμ beam
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Super-K and Korea

 For T2KK: 30 GeV proton synchrotron
  1.66 MW

 Protons hit target,
pions (and kaons) created
 
 Pions focused and decay
 in decay pipe:
  π →µ νµ  

                K→µ νµ

  but also K → e νe , π e νe     

To have a narrow energy band
 we use an off-axis beam



Eν =
m2

π −m2
µ

2(Eπ − pπ cos θ)
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Narrow energy band: Off-axis Beam

 The energy of the outgoing neutrino is:

 At off-axis angle of  θ, Eν 
presents a maximum

 Gives a neutrino beam with 
a narrow energy spectrum:

Lower integrated flux
Higher peak flux 

Eπ  (GeV)‏

E ν
  (

G
eV

‏( OA0°
OA2°

OA2.5°
OA3°

Eν as a function of Eπ

Neutrino energy spectrum
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Flux and appearance in Korea
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Small off-axis angle:
!(high energy tail)‏

1st appearance peak
 more NC background

Big off-axis angle:
(narrow peak)

Low background
Low statistics at high E
Only 2nd appearance peak
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Two kinds of 
detectors

GLACIER

ICARUS
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How do they work?
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Water Cherenkov:
Look for Cherenkov rings:

Particle ID: (EM shower 
versus mu-like particle)
No charge ID
Need to be above 
Cherenkov threshold

ie: Usuallly we don’t see 
the proton in a CCQE 
interaction

Liquid Argon Time Projection 
Chamber: 

Particle ID based on dE/dx
Maybe possible to imbed 
the detector in magnetic 
field --> Charge ID
The proton is 
reconstructed in CCQE 
interaction.
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Challenge to build massive detectors
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Water Cherenkov

Cost of PMT ’s

But mainly we know how to 
build very large Water 
Cherenkov detector. 
CF Super-Kamiokande.

Liquid Argon

Several meters drifts: 
need very pure Argon

Long wires:       
mechanical robustness, 
tensioning, assembly

Signal processing:  noise 
due to long wires

http://www-lartpc.fnal.gov/summary.htm

http://www-lartpc.fnal.gov/summary.htm
http://www-lartpc.fnal.gov/summary.htm
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Three possible liquid Argon detectors
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LANND, MODULAR: Modules with 
wires

FLARE: Large volume with wires

GLACIER: Large volume without 
wires
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Experimental challenges - Background
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νµ

nn

νµ

π0

 good e/µ ring 
identification: 0.7% 

0.2-0.3% Known from 
near detector

Mainly for Water 
Cherenkov

 νµ  → µ  with e/µ misidentification 

 νe contamination in the beam
K → π νe e
µ → e νµ νe

 π0 when one of the γ is missed: 

- produced by neutral current



Fanny Dufour, Genève, June 2009

Difference between electron and muon (Cherenkov)
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Electrons create EM showers:
fuzzy ring

Muons do not make showers:
clear ring
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Difference between electron and muon (Cherenkov)

27

Electrons create EM showers:
fuzzy ring

Muons do not make showers:
clear ring
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Difference between electron and muon (Cherenkov)

27

Electrons create EM showers:
fuzzy ring

Muons do not make showers:
clear ring
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Difference between electron and muon (Cherenkov)
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Electron Muon

Electrons create EM showers:
fuzzy ring

Muons do not make showers:
clear ring
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Muon and electron in liquid argon
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Antonio Bueno, NP08,
ICARUS images
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Main BG in Water Cherenkov?
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νµ

nn

νµ

π0

Main source of background come from π0 

produced by neutral current when one of 
the γ is missed.

νe Signal π0 BG 
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e/π0 in liquid Argon
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PID on dE/dX and topology
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Efficiency for both technologies (Assumptions)
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Water Cherenkov Liquid Argon

Energy (GeV) QE non-QE BG (NC) QE non-QE BG (NC)

0.35-0.85 ~80%

cut
needed

to 
remove

NC

~ 40%

cut
needed

to 
remove

NC

~ 1% 90% 
cf. MODULar

2008 paper

~ 0.1%
cf. 

MODULar

and
Icarus

0.85-1.5 ~ 3%

1.5-2.0 ~ 3%

2.0-3.0  ~ 4%

3.0-4.0 ~ 4%
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T2KK sensitivities



Fanny Dufour, Genève, June 2009

The T2KK setup
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Volume 2 x 270 kton WC / 270 kton WC + 100 kton LAR

Beam Power 1.66 MW

Running time 5 yrs nu + 5 yrs antinu

1 year is 107 seconds

Proton energy 30 GeV

Tot # of POT 3.45 x 1021 POT

Distance 295 km and 1050 km

Off-axis angle 2.5 ° (Kamioka) and 1.0 ° (Korea) Off-axis
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1 degree off-axis in Korea with Water Cherenkov
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Sin2(2θ13)=0.04, neutrino, normal hierarchy

Spectrum at Kamioka                 Spectrum at Korea 1.0° OA
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1 degree off-axis in Korea with LAr
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Sin2(2θ13)=0.04, neutrino, normal hierarchy

Spectrum at Kamioka                 Spectrum at Korea 1.0° OA
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Sensitivities T2KK (far detector at 1° off-axis)
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Mass hierarchy                            CP violation

For the given setup, Water Cherenkov and Liquid Argon are 
very much comparable.

Water Cherenkov
LAr TPC
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Sensitivity as a fraction of CP
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Water Cherenkov
LAr TPC

Mass hierarchy                               CP violation

For the given setup, Water Cherenkov and Liquid Argon are 
very much comparable.
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Summary
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A detector in Korea allows to extract information from the first and the 
second νe appearance maximum.

I tested two options for the Korean detector: 
Water Cherenkov and Liquid Argon

Both solutions are comparable if:
Water Cherenkov is three times bigger than the liquid Argon.
The liquid Argon is basically background free (except from a known beam 
νe  contamination).
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backups
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Photo-coverage
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“Thanks” to the accident in SK,
we have MC corresponding to
20% and 40% photo-coverage

We tested our likelihood on both
samples, and it gives very similar
results.

40%

20%
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Photo-coverage results

41

For SK-I MC
40% coverage

For SK-II MC
20% coverage

Running on 100 yr
of SK-I MC and 
60 yr of SK-II MC

350 MeV < E < 850 MeV

Signal
  CCQE
BG

ⅴe efficiency : 85%:

NC efficiency : 27%

ⅴe efficiency : 84%:

NC efficiency : 28%
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Definition of χ2 analysis
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k=1,4

i=1,7

j=1,15

74 15

The oscillation analysis was done for: 1.66MW beam
! ! ! 0.27Mton at Kamioka! !
! ! ! 0.27Mton in Korea! ! ! ! ! ! !
! ! ! 5 years running of neutrino !! ! ! !
! ! ! 5 years running of antineutrino 

With the following energy bins (MeV):
! ! ! 400-500, 500-600, 600-700, 700-800,
! ! ! 800-1200, 1200-2000, 2000-3000 

We have 15 
systematic 
errors.
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Systematic errors
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Systematic errors Value

BG normalization below 1.2 GeV (Kamioka) 5%

BG normalization above 1.2 GeV (Kamioka) 5%

BG normalization below 1.2 GeV (Korea) 5%

BG normalization above 1.2 GeV (Korea) 5%

BG norm. between νe and anti-νe below 1.2 GeV 5%

BG norm. between νe and anti-νe above 1.2 GeV 5%

BG spectrum (common for Kamioka and Korea) 5%

Signal normalization below 1.2 GeV 5%

Signal normalization above 1.2 GeV 20%

[σ(νμ)/σ(νe)]/[σ(νμ)/σ(νe)] below 1.2 GeV 5%

[σ(νμ)/σ(νe)]/[σ(νμ)/σ(νe)] above 1.2 GeV 5%

Efficiency difference between Kamioka and Korea < 1.2GeV 1%

Efficiency difference between Kamioka and Korea > 1.2GeV 1%

Energy scale difference between Kamioka and Korea 1%

Energy scale difference between near and Kamioka/Korea 1%

Error on BG
variables

Error on 
Signal 
variables

Error on 
Kamioka/
Korea
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Likelihood analysis sample
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We use the Super-K atmospheric 
Monte Carlo and we keep events 
if they are:

 single ring
 electron-like
 with no decay electron
 inside the fiducial volume
! and fully contained

NB: the νμ mis-ID BG is not 
plotted because it is always 
below 0.01 0      1.0    2.0     3.0     GeV

1.0

0.8

0.6

0.4

0.2

0

Precuts efficiency

νe CCQE
νe non-CCQE
NC
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Final likelihood efficiency
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We did a study
of S/√B and we
found that 
keeping 80% of 
the signal is 
what 
gives the best 
results.

Cut that keeps 80% of signal
Energy (rec) νe NC
0-350 MeV 86% 12%

350-850 MeV 81% 28%
850 MeV-1.5GeV 77% 23%

1.5 - 2.0 GeV 77% 29%
2.0 - 3.0 GeV 82% 15%
3.0 - 4.0 GeV 84% 19%
4.0 - 5.0 GeV 83% 25%
5.0 - 10.0 GeV 77% NA

Precuts NC reduction  ~ 90%
Total reduction ~ 97%
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Likelihood variables
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Background
Signal  (Main signal bin)‏

Likelihood variables:

Standard SK variables:
! ring parameter, PID parameter

Variables related to πo  in SK.

Variables using beam direction 
info.
!

Background
Signal  (Main signal bin)‏

Likelihood variables:

Standard SK variables:
! ring parameter, PID parameter

Variables related to πo  in SK.

Variables using beam direction 
info.
!

Likelihood per energy bin
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NC energy response
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True E (GeV)

Re
co

ns
tr

uc
te

d 
E 

(G
eV

) The energy response
of neutral current 
events is completely 
non linear since what
we observe is the 
pion and this pion can
have any energy.

νµ

nn

νµ

π0
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2.5 degree off-axis in Korea
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Spectrum at Kamioka                 Spectrum at Korea 2.5° OA

Sin2(2θ13)=0.04, neutrino, normal hierarchy
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T2KK Sensitivities
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Mass hierarchy                            CP violation

Normal Normal

OA = 1.0
OA = 1.5
OA = 2.0
OA = 2.5

Inverted Inverted

2σ
3σ

▸ The best results for mass hierarchy is given with the far detector
! ! located at 1° off-axis angle. 
▸ The results for CP violation are comparable.


