Search for the Higgs Boson at the LHC

Karl Jakobs Physikalisches Institut Universität Freiburg

Outline of the talk:

- 1. Introduction, the Higgs boson in the Standard Model
- 2. The Standard Model Higgs boson search
 - ATLAS and CMS results in various channels (with some focus on $H \rightarrow WW \rightarrow lv lv$)
 - The combination of searches
- 3. Prospects and outlook

Disclaimer: I will try to highlight the most important results on searches for the Higgs boson. The coverage is not complete, i.e. not all results available will be presented.

The Standard Model of Particle Physics

- (i) Constituents of matter: quarks and leptons
- (ii) Four fundamental forces (described by quantum field theories, except gravitation)
- (iii) The Higgs field (problem of mass)

Why do we need the Higgs Boson?

The Higgs boson enters the Standard Model to solve two fundamental problems:

Masses of the vector bosons W and Z:

Experimental results: $M_W = 80.399 \pm 0.023$ GeV / c^2 $M_Z = 91.1875 \pm 0.0021$ GeV / c^2

A local gauge invariant theory requires massless gauge fields

Divergences in the theory (scattering of W bosons)

$$W^{+}$$
 W^{+} W^{+} W^{+} W^{+} W^{+} W^{+} W^{+} W^{+} W^{-} W^{-} W^{-} W^{-} W^{-} W^{-} W^{-} W^{-} W^{-}

$$-iM(W^+W^- \to W^+W^-) \sim \frac{S}{M_W^2}$$
 for $S \to \infty$

The Higgs mechanism

Spontaneous breaking of the SU(2) x U(1) gauge symmetry

· Scalar fields are introduced

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

Potential:
$$V(\phi) = \mu^2(\phi * \phi) + \lambda(\phi * \phi)^2$$

• For $\mu^2 < 0$, $\lambda > 0$, minimum of potential:

$$\phi_1^2 + \phi_2^2 + \phi_3^2 + \phi_4^2 = v^2$$
 $v^2 = -\mu^2/\lambda$

$$v^2 = -\mu^2/\lambda$$

Perturbation theory around ground state:

$$\phi_0(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix} \Rightarrow \text{3 massive vector fields:} \qquad m_{W^{\pm}} = \frac{1}{2} vg \qquad m_Z = \frac{m_W}{\cos \theta_W}$$

$$m_{W^{\pm}} = \frac{1}{2} v g$$

$$m_Z = \frac{m_W}{\cos \theta_W}$$

1 massless vector field:

$$m_{\gamma} = 0$$

1 massive scalar field:

The Higgs boson H $m_H = \sqrt{\lambda v^2}$

$$m_H = \sqrt{\lambda v^2}$$

v = vacuum expectation value $v = \frac{1}{\sqrt{\sqrt{2}G_E}} = 246 \text{ GeV}$

$$v = \frac{1}{\sqrt{\sqrt{2}G_E}} = 246 \text{ GeV}$$

The Higgs mechanism (cont.)

• Coupling terms of W- and Z-bosons and fermions to the Higgs field:

 The introduced scalar fields can also be used to generate fermion masses

$$m_f = g_f v / \sqrt{2} \Rightarrow g_f = m_f \sqrt{2} / v$$

(where g_f is the coupling of the Higgs field to the fermion)

• Higgs boson self-coupling $L=\ldots-\lambda v{\bf h}^3-\frac{1}{4}\lambda{\bf h}^4$

and finally

Higgs boson regulates divergences in the WW scattering cross section

The Higgs boson as a UV regulator

Scattering of longitudinally polarized W bosons

$$-iM(W^+W^- \to W^+W^-) \sim \frac{s}{m_W^2}$$
 for $s \to \infty$

Higgs boson guarantees unitarity (if its mass is < ~1 TeV)

$$-iM(W^+W^- \rightarrow W^+W^-) \sim m_H^2 \quad \text{for} \quad s \rightarrow \infty$$

Higgs Boson Decays

The decay properties of the Higgs boson are fixed, if the mass is known:

Constraints on the Higgs boson mass

- 1. Constraints from theory
- 2. Indirect limits from electroweak precision data (theory and experiment)
- 3. Limits from Direct Searches (LEP, Tevatron)

(i) Tighter Higgs mass constraints from theory:

Stronger bounds on the Higgs-boson mass result from the energy dependence of the Higgs coupling λ (Q²)

(if the Standard Model is assumed to be valid up to some scale Λ)

$$\lambda(Q^2) = \lambda_0 \left\{ 1 + \frac{3\lambda_0}{2\pi^2} \log(2\frac{Q^2}{v^2}) + \dots - \frac{3g_t^4}{32\pi^2} \log(2\frac{Q^2}{v^2}) + \dots \right\} \quad \text{where} \quad \lambda_0 = \frac{m_h^2}{v^2}$$

Hambye, Risselmann et al.

Upper bound: diverging coupling

(Landau Pole)

Lower bound: stability of the vacuum

(negative contribution from

top quark dominates)

Mass bounds depend on scale Λ up to which the Standard Model should be valid

(ii) Indirect limits from electroweak precision data (m_W and m_t)

Sensitivity to the Higgs boson and other new particles via quantum corrections:

(iii) Constraints from direct searches

m_H > 114.4 GeV

- from direct searches at LEP
- $m_H < 156 \text{ GeV}$.or. $m_H > 177 \text{ GeV}$ from direct searches at the Tevatron

Data taking in 2011

Original goal to collect 1 fb⁻¹ already surpassed in June 2011

- World record on instantaneous luminosity on 22. April 2011: 4.67 10³² cm⁻² s⁻¹ (Tevatron record: 4.02 10³² cm⁻² s⁻¹) meanwhile: > 10³³ cm⁻² s⁻¹
- Collect per day as much luminosity as in 2010
- Data taking efficiency is high
- Pile-up is high (high intensity bunches)

Production Cross Sections at the LHC

Rates for L = 10^{34} cm⁻² s⁻¹: (LHC)

 W → e v Z → e e 	150 /s 15 /s
bb pairstt pairs	5 10 ⁶ /s
Inelastic proton-proton reactions:	10 ⁹ /s

An impressive number of processes has already been measured

Excellent agreement with the Standard Model predications

Higgs boson production at the LHC

Higher order corrections:

- Spira, Djouadi, Graudenz, Zerwas (1991)
- Dawson (1991)
- Harlander, Kilgore (2002)
- Anastasiou, Melnikov (2002)
- Ravindran, Smith, van Neerven (2003)

Independent variation of renormalization and factorization scales (with 0.5 m_H < μ_F , μ_R < 2 m_H)

Useful Higgs Boson Decays at Hadron Colliders

at high mass:

Lepton final states (via H → WW , ZZ)

at low mass:

Lepton and Photon final states (via H → WW*, ZZ*)

Tau final states

The dominant **bb decay mode** is only useable in the associated production mode (ttH, W/Z H)

(due to the huge QCD jet background, leptons from W/Z or tt decays)

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$

- Large H \rightarrow WW BR for m_H \sim 160 GeV/c²
- Neutrinos → no mass peak,
 - → use transverse mass
- · Large backgrounds: WW, Wt, tt
- Two main discriminants:
 - (i) Lepton angular correlation

(ii) Jet veto: no jet activity in central detector region

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\ell\ell} + \mathbf{p}_{\rm T}^{\rm miss})^2}$$

Channel with highest sensitivity!
Sensitive to a Standard Model Higgs boson already now, with 1 fb⁻¹!

Search for H → WW → Iv Iv

 $L_{int} = 1.70 \text{ fb}^{-1}$

- Select events with two opposite sign leptons (e, μ) $p_T(I_1) > 25$ GeV $p_T(I_2) > 20$ GeV (e), 15 GeV (μ)
- First look at invariant mass distributions → good agreement for all channels

ee, $\mu\mu$: large Z/γ^* production background (Drell-Yan), can be rejected by Z mass veto $e\mu$: residual contribution from $Z \rightarrow \tau\tau - e\nu\nu \; \mu\nu\nu$ and top production

Additional discrimination: missing transverse energy

$$E_{\mathrm{T,rel}}^{\mathrm{miss}} = \left\{ \begin{array}{ll} E_{\mathrm{T}}^{\mathrm{miss}} & \text{if } \Delta\phi \geq \pi/2 \\ E_{\mathrm{T}}^{\mathrm{miss}} \cdot \sin \Delta\phi & \text{if } \Delta\phi < \pi/2 \end{array} \right.$$

Apply additional cuts on: Z-mass veto (previous slide) $|m_{||} - m_{Z}| < 15 \text{ GeV}$ (ee, $\mu\mu$) $E_{T,rel}^{miss} > 40 \text{ GeV}$ (ee, $\mu\mu$), > 25 GeV (e μ)

Split sample according to jet multiplicity (E_T > 25 GeV)
 (different production modes, different background compositions)

- Jet distribution well described

observed events: 4051

expected background: 4000 ± 500

→ Select 0- and 1-jet events

	WW	Z/γ^* + jets	tt	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
$m_{\ell\ell} > 15 \text{ GeV},$ $m_{e\mu} > 10 \text{ GeV}$	80 ± 100	970000 ± 70000	6200 ± 600	630 ± 70	1200 ± 100	970000 ± 70000	997813
$ m_Z - m_{\ell\ell} > 15 \text{ GeV} \qquad 12$	220 ± 80 60 ± 50	91000 ± 7000 300 ± 200	5500 ± 600 2700 ± 300	560 ± 60 310 ± 40	92 ± 9 28 ± 4	98000 ± 7000 4000 ± 500	104253 4051

• Further discrimination using m_{\parallel} and $\Delta \varphi$ between the two leptons:

Transverse mass distributions:

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\ell\ell} + \mathbf{p}_{\rm T}^{\rm miss})^2}$$

- No evidence for an excess above Standard Model backgrounds
- Use statistical methods to quantify this and extract a limit on the production cross section

- number of events at various cut stages-

0 jet

	Signal	WW	W + jets	Z/γ^* + jets	tī	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
Jet Veto	82 ± 17	430 ± 40	70 ± 40	160 ± 150	37 ± 13	28 ± 7	11 ± 3	740 ± 160	738
$ \mathbf{P}_{\mathrm{T}}^{\ell\ell} > 30 \text{ GeV}$	79 ± 17	390 ± 40	60 ± 30	28 ± 11	35 ± 12	25 ± 7	10 ± 3	540 ± 80	574
$m_{\ell\ell} < 50 \text{ GeV}$	56 ± 12	98 ± 13	17 ± 7	12 ± 7	6 ± 3	4.8 ± 1.5	1.2 ± 0.4	139 ± 20	175
$\Delta \phi_{\ell\ell} < 1.3$	48 ± 11	76 ± 10	9 ± 4	8 ± 6	5 ± 2	4.8 ± 1.5	1.1 ± 0.3	105 ± 16	131
$0.75 m_H < m_T < m_H$	34 ± 7	43 ± 6	5 ± 2	2 ± 4	2.2 ± 1.4	1.2 ± 0.8	0.7 ± 0.3	53 ± 9	70
ee	5.2 ± 1.2	6.2 ± 0.9	0.9 ± 0.4	0.8 ± 1.4	0.3 ± 0.3	0 ± 0.3	0.07 ± 0.05	8.2 ± 1.7	9
еµ	17 ± 4	22 ± 3	2.8 ± 1.3	0 ± 1.3	1.1 ± 0.5	0.8 ± 0.6	0.31 ± 0.19	27 ± 4	32
$\mu\mu$	11 ± 2	14 ± 2	1.0 ± 0.6	1 ± 3	0.8 ± 1.1	0.4 ± 0.4	0.31 ± 0.09	18 ± 5	29

1 jet

	Signal	WW	W + jets	Z/γ^* + jets	tt	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
1 jet	41 ± 7	158 ± 16	31 ± 19	60 ± 60	390 ± 100	140 ± 20	10.7 ± 1.4	800 ± 120	756
b-jet veto	40 ± 7	154 ± 16	29 ± 18	60 ± 50	140 ± 40	54 ± 9	10.6 ± 1.4	450 ± 70	440
$P_{\rm T}^{\rm tot} < 30~{ m GeV}$	32 ± 6	127 ± 13	16 ± 9	30 ± 30	90 ± 20	41 ± 7	7.0 ± 0.9	310 ± 50	312
$Z \rightarrow \tau \tau$ veto	32 ± 6	124 ± 14	14 ± 7	30 ± 20	84 ± 19	39 ± 7	6.8 ± 1.4	300 ± 30	301
$m_{\ell\ell} < 50 \text{ GeV}$	22 ± 5	27 ± 5	2.1 ± 1.0	8 ± 6	17 ± 6	9 ± 2	1.5 ± 0.4	64 ± 10	69
$\Delta \phi_{\ell\ell} < 1.3$	19 ± 4	21 ± 4	1.8 ± 0.9	4 ± 5	14 ± 5	8 ± 2	1.2 ± 0.3	50 ± 9	54
$0.75 m_H < m_T < m_H$	12 ± 3	10 ± 2	0.8 ± 0.4	1.1 ± 1.8	6.9 ± 1.9	3.4 ± 1.4	0.6 ± 0.3	23 ± 4	23
ee	1.7 ± 0.4	1.4 ± 0.4	0.12 ± 0.06	0.07 ± 0.12	0.6 ± 0.3	0.5 ± 0.3	0.10 ± 0.09	2.8 ± 0.7	5
еµ	6.3 ± 1.5	5.7 ± 1.3	0.5 ± 0.3	0.6 ± 1.0	3.7 ± 1.3	2.0 ± 1.0	0.39 ± 0.20	13 ± 3	11
$\mu\mu$	3.9 ± 0.9	3.3 ± 0.7	0.1 ± 0.2	0.5 ± 0.5	2.6 ± 1.5	1.0 ± 0.9	0.08 ± 0.06	8 ± 2	7

How are the backgrounds normalized?

- Most important backgrounds are WW continuum production and tt production
 Both are well described by the Standard Model calculations / Monte Carlos
- Cross-check / normalization is performed in defined control regions
 - * WW control region:

remove cuts on $\Delta \phi$ cut and require:

$$m_{||} > 80 \text{ GeV/c}^2$$
 (e μ)
 $m_{||} > m_Z + 15 \text{ GeV/c}^2$ (ee, $\mu\mu$)

- * tt control region via b-tag selections
- Z+jets / Drell-Yan (suffers from E_T^{miss} / lepton mismodelling)

Number of events in WW control region

	Signal	WW	W + jets	Z/γ^* + jets	tī	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
ее + еµ + µµ	1.4 ± 0.3	190 ± 20	18 ± 15	5 ± 7	22 ± 9	13 ± 4	7 ± 3	250 ± 50	238
ee	0.020 ± 0.011	22 ± 3	3 ± 3	1 ± 5	3.8 ± 1.9	1.1 ± 1.0	0.29 ± 0.09	30 ± 6	45
еµ	1.4 ± 0.3	126 ± 17	14 ± 10	0.9 ± 0.7	13 ± 6	8 ± 2	5 ± 3	170 ± 40	150
$\mu\mu$	0.030 ± 0.012	38 ± 5	1.6 ± 1.5	4 ± 3	5 ± 2	4.0 ± 1.4	1.1 ± 0.3	53 ± 8	43

Systematic uncertainties

Table 2: Experimental sources of systematic uncertainty per object or event.

Source of Uncertainty	Treatment in the analysis
Jet Energy Resolution (JER)	~ 14%, see Ref. [69]
Jet Energy Scale (JES)	Takes into account close-by jets effect, jet flavor composition uncertainty
	and event pile-up uncertainty in addition to global JES uncertainty
	Global JES $< 10\%$ for $p_T > 15$ GeV and $ \eta < 4.5$, see Ref. [70]
	Pile-up uncertainty 2-5% for $ \eta < 2.1$ and 3-7% for 2.1 < $ \eta < 4.5$
	These are summed in quadrature before application.
Electron Selection Efficiency	Separate systematics for electron identification,
_	reconstruction and isolation, added in quadrature
	Total uncertainty of 2-5% depending on η and E_T
Electron Energy Scale	Uncertainty smaller than 1%, depending on η and E_T
Electron Energy Resolution	Energy varied within its uncertainty, 0.6% of the energy at most
Muon Selection Efficiency	0.3-1% as a function of η and $p_{\rm T}$
Muon Momentum Scale	η dependent scale offset in p_T , up to $\sim 0.13\%$
Muon Momentum Resolution	$p_{\rm T}$ and η dependent resolution smearing functions, $\leq 5\%$
b-tagging Efficiency	$p_{\rm T}$ dependent scale factor uncertainties, 5.6-15%, see Ref. [68]
b-tagging Mis-tag Rate	up to 21% as a function of $p_{\rm T}$, see Ref. [68]
Missing Transverse Energy	13.2% uncertainty on topological cluster energy
	Electron and muon p_T changes from smearing propagated to MET
	Effect of out-of-time pileup: MET smeared by 5 GeV in 1/3 of MC events
Luminosity	3.7% [25]

Sensitivity and exclusion

- Calculate cross sections that can be excluded with a 95% C.L. = σ_{95}
- Normalize them to the Standard Model cross sections for a given Higgs mass

Excluded mass regions (95% C.L.):

 $154 < m_H < 186 \text{ GeV}$

Expected exclusion: $135 < m_H < 196 \text{ GeV}$

- The observed limits at neighboring mass points are highly correlated due to the limited mass resolution in this final state;
- Jump in the expected and observed limits at 220 GeV is caused by a change in the selection at that point

Significance for H → WW

The expected (dashed) and observed (solid) signal significances

The expected (dashed) and observed (solid) probabilities for the background-only scenario, P_0

Significance for H → WW

The expected (dashed) and observed (solid) signal significances

The expected (dashed) and observed (solid) probabilities for the background-only scenario, P_0

What does the CMS experiment see?

 $L_{int} = 1.55 \text{ fb}^{-1}$

- A very similar analysis
- Good agreement between data and expectations from Standard Model processes without a Higgs boson

Results from CMS on the H \rightarrow WW \rightarrow $\ell\nu$ $\ell\nu$ search: L = 1.55 fb⁻¹ (large fraction of 2011 data)

 $II + E_T^{miss} + 0$ jets

$$II + E_T^{miss} + 1 jet$$

- Data are in "reasonable" agreement with expectations from Standard Model processes;
- Important background normalized using control regions in data (like ATLAS)

CMS sensitivity and exclusion

Excluded mass regions (95% C.L.):

147 < m_H < 194 GeV

Expected exclusion: $135 < m_H < 200 \text{ GeV}$

Very similar results as the ATLAS collaboration:

Similar sensitivity, similar excluded mass range, 2σ like excess at low mass

What can be the cause of this excess?

- H → WW is a "difficult" channel!
 - no resonant structure / mass reconstruction not possible
- Excess can be due to:
 - First indications of a signal?
 - A statistical fluctuation?
 - systematic uncertainties in modelling of the Standard Model backgrounds (low mass)
 correlated systematic uncertainties between the two experiments, since they use the same Monte Carlo generators
- More data needed to perform many more systematic checks
- Support from other channels needed, e.g. H → ZZ* or H → γγ

$H \rightarrow ZZ^{(*)} \rightarrow \ell\ell\ell\ell$

$$\sigma BR = 5.7 \text{ fb} (m_H = 100 \text{ GeV})$$

Background: Top production

tt → Wb Wb →
$$\ell \nu$$
 c $\ell \nu$ $\ell \nu$ c $\ell \nu$ σ BR ≈ 1300 fb

Associated production Z bb

$$Z bb \rightarrow \ell\ell c\ell\nu c\ell\nu$$

$P_{T}(1,2) > 20 \text{ GeV}$ $P_{T}(3,4) > 7 \text{ GeV}$ $|\eta| < 2.5$ Isolated leptons

$$M(\ell\ell) \sim M_Z$$

 $M(\ell'\ell') \sim M_Z$

Background rejection:

Leptons from b-quark decays

- → non isolated
- → do not originate from primary vertex

(B-meson lifetime: ~ 1.5 ps)

Dominant background after isolation cuts: ZZ continuum

Discovery potential in mass range from ~130 to ~600 GeV/c²

$H \rightarrow ZZ^{(*)} \rightarrow \mu\mu \ \mu\mu$ candidate event

ATLAS results on $H \rightarrow ZZ^* \rightarrow 4$ I searches

- Data corresponding to 2.28 fb⁻¹ (taken up to August 2011) included
- No excess above Standard Model expectations visible

$$L_{int} = 1.96 - 2.28 \text{ fb}^{-1}$$

- Rare decay → still limited by the available integrated luminosity
- Challenging for $m_H < 130$ GeV, requires low p_T leptons
- However, Standard Model sensitivity already reached at high mass

ATLAS and CMS results for $H \rightarrow ZZ^* \rightarrow 4$ I over the full mass range

Decay modes at low mass: $H \rightarrow \gamma \gamma$

Main backgrounds:

γγ irreducible background

γ-jet and jet-jet (reducible)

 $\begin{array}{ll} \sigma_{\gamma j+jj} \sim 10^6 \; \sigma_{\gamma \gamma} & \text{with large uncertainties} \\ \rightarrow \text{need} \; \; R_j > 10^3 & \text{for } \epsilon_{\gamma} \approx 80\% \; \; \text{to get} \\ & \sigma_{\gamma j+jj} \; \; \text{$^{\prime\prime}$} \; \sigma_{\gamma \gamma} \end{array}$

MC SIMULATION

Signal expectation x 10, for 1 fb⁻¹

- Main exp. tools for background suppression:
 - photon identification
 - γ / jet separation (calorimeter + tracker)

Sensitivity in the low mass region, however, higher integrated luminosities required

ATLAS results on H $\rightarrow \gamma \gamma$ searches

Data corresponding to 1.08 fb⁻¹ analyzed, more to come soon...

 $L_{int} = 1.08 \text{ fb}^{-1}$

Sensitivity to Standard Model Higgs boson cross section not yet reached, as expected

- Sensitivity is stable / flat in the low mass region, access to the 115 GeV region;
- Channel is less sensitive to pile-up

More channels at low mass?

With higher integrated luminosities more channels are expected to contribute:

(i) Tau decay mode via Vector Boson Fusion: qq H → qq ττ (challenging)

(ii) bb decay mode via the associated production with vector bosons or top quarks:

WH, ZH or ttH with H → bb (very challenging)

Higgs boson search at high mass?

- Search at high mass is easier at the LHC;
- Higgs boson decays nearly 100% into WW or ZZ pairs, which give charged leptons, neutrinos, b-jets,...
- Important search channels:

•
$$H \rightarrow WW \rightarrow \ell_V \ell_V$$

•
$$H \rightarrow WW \rightarrow \ell v qq$$

•
$$H \rightarrow ZZ \rightarrow \ell\ell \ell\ell$$

•
$$H \rightarrow ZZ \rightarrow \ell\ell qq$$

•
$$H \rightarrow ZZ \rightarrow \ell\ell \nu\nu$$

Results from ATLAS on various high mass search channels: $L = 1.04 - 2.28 \text{ fb}^{-1}$ (up to data taken shortly before Lepton-photon conference)

Also in these channels: data are consistent with expectations from Standard Model background processes

→ work out significances / statistics

Current status of the Higgs boson search at the LHC -ATLAS and CMS-

- The two collaborations show similar performance
 - in terms of analysis power in the collaboration (many channels)
 - in terms of sensitivity
 - in terms of conclusions on the existence of the Higgs boson

Putting everything together The grand combination of channels

V. Sharma

- So far: ATLAS and CMS combinations available (summer conferences)
- Combination ATLAS + CMS is also ready; will be released this Friday, at HCP conference

Current status of the Higgs boson search at the LHC -ATLAS and CMS combinations-

Excluded mass regions (95% C.L.):

$$146 < m_H < 232 \text{ GeV}$$

 $256 < m_H < 282 \text{ GeV}$
 $296 < m_H < 466 \text{ GeV}$

Excluded mass regions (95% C.L.):

$$145 < m_H < 216 \text{ GeV}$$

 $226 < m_H < 288 \text{ GeV}$
 $310 < m_H < 400 \text{ GeV}$

Prospects (new future)

- What can be done with 5 fb⁻¹ of data?
 Will most likely be shown in December this year, council meeting at CERN
- How much luminosity is needed for a 3σ evidence or a 5σ discovery? (in particular at low mass)
- Can the Higgs be ruled out?
 or can it be discovered with the 2011/2012 data?

Expectations for higher integrated luminosities -95% C.L. exclusion limits-

- 95% C.L. exclusion can be reached with 5 fb⁻¹ in one experiment
- However, needs the combination of all low-mass channels

Expectations for higher integrated luminosities -discovery significances-

- For a 3σ effect in one experiment for a Higgs boson with a mass of 115 GeV more than 10 fb⁻¹ will be needed
- Significant gain by increasing the energy from 7 to 8 TeV; 3σ with ~10 fb⁻¹
- · Combined result of the two experiments will be interesting!

What, if no Higgs boson is found

Well, this would be a big discovery!

The Standard Model would be proven to be wrong

Maybe Nature is not as simple as thought?

In this case: the LHC is a unique facility to investigate further

- It might "only" take more running time
 (e.g modified couplings in more complicated Higgs scenarios, like composite Higgs bosons)
- We all might get many years older before WW scattering is precisely measured
- Invisibly decaying Higgs sceanrios are very very difficult to be measured at the LHC

What, if the Higgs boson will be found soon

- Well, this would be a big discovery!
 - → Measure its parameters and prove that it is a Higgs boson

Example:

Precision on ratio of couplings to W coupling at the 20% level, needs high luminosity

Higgs boson self coupling very difficult to measure; maybe not even possible at the sLHC (needs further studies)

 A discovery of a light Higgs boson would also indicate "new physics"

Summary and Conclusions

- LHC machine and detectors are running extremely well!
- An impressive list of high quality physics measurements has already been performed
- The search for the Higgs boson has started very well
 - So far: data consistent with the Standard Model background hypothesis without a Higgs boson signal
 - Important new mass ranges have been excluded;
 however, the most interesting one not yet covered, but sensitivity will be reached soon
- Exiting times ahead of us!