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� Diamond Detectors
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� Radiation Hardness 
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Thanks for the material from the RD42 and ADAMAS collaborations!



Challenges Ahead

� Luminosity upgrades of 
the LHC will increase the 
luminosity by factor ~3. 

� Luminosity ~ Radiation 
damage.

� Need new technologies in 
the innermost layers to 
survive the radiation 
levels.
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Diamond

� 1941 – Diamond as particle 
detector (Stetter)

� 1953- CVD process, synthesis of 
diamond (Eversole)

� ~1980 – polycrystalline CVD 
diamond.

� 1995 – first diamond strip detector

� 1996 – first diamond pixel detector

� 2011 – first 3D diamond detector
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Diamond properties

– Low dielectric constant � low capacitance
– Low leakage current � low noise
– Room temperature operation
– Fast signal collection time

Property________________ Diamond____ Silicon
band gap 5.47 1.12
mass density [g/cm3] 3.5 2.33
dielectric constant 5.7 11.9
resistivity [Ωcm] >1011 2.3e5
breakdown [kV/cm] 1e3...20e3 300
e mobility  [cm2/Vs] 2150 1350
h mobility [cm2/Vs] 1700 480
therm. conductivity [W / cm K] 10..20 1.5
radiation length [cm] 12 9.4
Energy to create an eh-pair [eV] 13 3.6
ionisation density  MIP [eh/mm] 36 89
ion. dens. of a MIP [eh/ 0.1 ‰ X0] 450 840

–MIP signal ~2 smaller at same X0

–Efficiency < 100% (pCVD)
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Development of CVD Diamond 

for detector applications
� Today two main manufacturers of 

detector grade diamond

� ElementSix Ltd

� large polycrystalline wafers

� single crystal diamonds

� II-VI Semiconductors

� large polycrystalline wafers

� relatively recent entry

� Alternative sources

� Diamond on Iridium (DoI) (Audiatec, 
Germany)

� Hetero-epitaxially grown -> large area

� Highly oriented crystallites.

30.5.2018Alexander Oh, UNIGE Seminar

6

5’’ waver

single crystal

DoI, 155ct



Diamond in current HEP experiments
� Beam monitors to protect 

experiments against beam losses at 
the LHC, CERN.

� For Silicon Vertex systems careful 
monitoring is crucial.

� Beam monitors have to be radiation 
hard.

� Abort beam when monitors signal 
dangerous beam conditions.

� False signals must be avoided.

� During run-1 diamond beam 
monitors operated in ATLAS, CMS, 
and LHCb.

� Previously diamond beam monitors 
were installed in BaBar(SLAC), CDF & 
D0 (Tevatron).
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ATLAS DBM

Beam
monitors Particle

trackers



ATLAS beam conditions monitor

� Use 2x polycrystalline CVD 
diamonds per station 
(10 x 10 mm).

� 4 stations on each side of the 
ATLAS pixel detector

� z = ±183.8 cm (~12.5ns) and r ~ 5 cm
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ATLAS beam conditions monitor

� Single particle counting with 

σ=0.7ns.

� Distinguish between collision 

events and out-of-time 

background.

� Good stability in run-1

� Used for luminosity determination.
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Run 2:
ATLAS Diamond Beam Monitor

� 8 mini-trackers of 3 planes each using pixel-detectors.

� polycrystalline diamond sensors, 18mm x 21mm, δ>250µm.

� bump-bonded to FE-I4 pixel read-out chip.

� 336 x 80 pixels

� pixel size : 50µm x 250 µm

� Purpose:

� Bunch-by-bunch 
luminosity monitor 
(aim < 1 % per BC per LB) 

� Bunch-by-bunch 
beam spot monitor 
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Run 2: 
ATLAS Diamond Beam Monitor

� Installed in ATLAS during LS1, but 

switched off due to unexpected death 

of Si and Diamond modules.

� DBM recommissioned in 2017/18 with 

50% working modules.
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Examples of diamond detectors 

in related areas

� Synchrotron labs

� beam position monitor

� Radiation Therapy

� small field dosimetry

� Heavy Ion (GSI, FAIR)

� beam diagnostic

� particle tracking and TOF

� hadron spectroscopy
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[1]  M. Pomroski, CEA-LIST, MRS Fall meeting, Boston 28/11/2012

[2] F. Marsolat et al. / Diamond & Related Materials 33 (2013) 63–70

3 µm thick membrane
in 40 µm thick scCVD

[2]

[1]

scCVD dosimeter,
0,4 mm3 active vol. [2]



Radiation Hardness
� Irradiated polycrystalline and single crystal CVD 

diamond.

� Protons 25MeV, 70MeV, 300MeV, 800MeV, 24GeV

� Pions 300MeV

� Signal response tested in test-beam.

� 120 GeV proton

� strip-detector pattern, E = ±2V/µm

� Samples pre-exposed to Sr90 to fill traps (aka pumping)

� Require track on active area, no threshold on strip 
signals.

� Build signal of two highest signals within 10 strips around 
the track.
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Radiation Hardness

� “Charge Collection Distance” (CCD) is 

measured.

� Traps reduce the life-time of charge carriers, or 

“Schubweg” (λ). 

� Relation between CCD and λ:
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Radiation damage is fitted

with simple damage model:

damage constant

particle flux



Radiation Hardness

� 24 GeV protons

� kλ = 0.67 ± 0.04 ×10-18 

cm2µm-1

� polycrystalline diamond 

sample offset by 

Φ~5×1015 to account for 

existing traps.

� Poly and single crystal 

diamond show consistent 

damage constants.

30.5.2018Alexander Oh, UNIGE Seminar

18

https://www.research-collection.ethz.ch/handle/20.500.11850/222412



Radiation Hardness

� Summary of RD42 irradiation results:
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*normalized to 24GeV protons
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High Rate tests
� Tests the pulse height as function of particle rate.

� Test single and poly crystalline diamond.

� Irradiated and un-irradiated.
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Investigations 

triggered by 

indication of rate 

dependence of 

of single crystal 

diamond pixel 

detector installed 

in CMS in 2012.



High Rate tests
� single and poly sample irradiated 

with 5×1013 reactor n.

� Tested with 250MeV pions. 

� Slight rate dependence observed 
in irradiated single crystal sample.

� No rate dependence observed for 
irradiated polycrystalline sample.
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Planar 3D
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� Electrode spacing determines drift distance to induce 1e charge.

� 3D has shorter electrode spacing compared to planar.

� Charge carriers need less drift distance (and time) in 3D then in  planar to 

induce equal signal.

� Influence of traps and resulting limited lifetime suppressed in 3D.

3D Diamond Detectors



3D Diamond Research -

A relatively young field

� Laser induced phase change in diamond.

� E.g.  T.V. Kononenko et al, Diamond & Related Materials 18 (2009) 
196–199 
“Femtosecond laser microstructuring in the bulk of diamond “

� 3D “Pad” detector

� E.g. S. Lagomarsino et al, Appl. Phys. Lett. 103, 233507 (2013), “Three-
dimensional diamond detectors: Charge collection efficiency of 
graphitic electrodes”

� 3D “strip array” detector with position resolution.

� E.g. F. Bachmaier et al, NIM A, 786, (2015) 97-104,  
“A 3D diamond detector for particle tracking”

� Radiation damage studies.

� Eg. S. Lagomarsino et al, Applied Physics Letters 106, 193509 (2015)
“Radiation hardness of three-dimensional polycrystalline diamond 
detectors”

� Improvements in graphitization process.

� Eg. B. Sun et al., Applied Physics Letters 105, 231105 (2014), “High 
conductivity micro-wires in diamond following arbitrary paths”
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University of Manchester,  Laser 
Processing Research Center.

� Wavelength = 800 nm

� Repetition rate = 1 kHz

� Pulse duration = 100 fs

� Spot size  = 10µm

� Pulse Energy ~ 1 µJ

� Spatial light modulator
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� Comparison SLM vs

standard process.
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Simulated

depth = 40µm

Measured

depth = 40µm

depth = 80µm

depth = 130µm

27

Std. SLM

Resistivity 1 Ωcm 0.1 Ωcm

Diameter ~3µm ~1µm

Diamond to 

graphite ratio
~4 ~0.2



� Comparison SLM vs

standard process.
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Std. SLM

Resistivity 1 Ωcm 0.1 Ωcm

Diameter ~3µm ~1µm

Diamond to 

graphite ratio
~4 ~0.2

STD

SLM



X-polariser image 29

4
m

m
4 mm

• Optical grade scCVD diamond.

4 m
m

4 mm

• Post processing.
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SEM surface image

• Seed surface

30

• Exit surface

With SLM

10um/s

400nJ

2um 5um

Without SLM

10um/s

400nJ

Without SLM

10um/s

400nJ

5um2um 5um
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31Internal structure

Patrick S. Salter et al., 
APPLIED PHYSICS LETTERS 111, 
081103 (2017)

• Prepare sample with 

horizontal graphitic 

wires.

• STEM image of wire 

cross section.

• Optical and spectral 

data points to 

micro-cracks and 

nano-clusters of sp2

bonded carbon.

• Micro wires are not 

macroscopic 

structures!
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5um/s 10um/s 20um/s 30um/s

100nJ x x

200nJ x x x

300nJ x x x

400nJ x x x

500nJ x x

600nJ x

Laser translation speed 

La
se

r 
b

e
a

m
 e

n
e

rg
y

• Repeat with and without SLM correction.

Patrick Salter, Oxford

Iain Haughton, AO, Manchester



34IV curves

• Ohmic and barrier potential curves observed. 
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Continuous.
Bulk effect?

Micro gaps?
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35Barrier potential

2Uϕ
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36Resistance measurement

∆U-
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Raman – with SLM 40

• Resistance increase as power law 
� multi-photon process.

• Clear discrepancy at 30um/s.

Resistance
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Raman – with SLM 41Barrier energy

U
ϕ

[V
]

• Reduction in barrier with increased energy.

• Discrepancy at 30um/s.
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Raman – with SLM 42

• Multiple passes reduces resistance and 

increases uniformity of the columns.

Multiple passes
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Raman – with SLM 43

• Multiple passes also reduces Uϕ.

Multiple passes

U
ϕ

[V
]
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SLM parallel processing? 45
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3D Detector Characterization

�Proton Micro-beam: 4.5 MeV p
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4.5 MeV 

protons

Read-out 

channel 1

Proton micro-beam 
measurementsEnergy deposition -

Bragg peak

• Single particle beam.

• Rate ~ 1kHz.

• Beam position resolution < 

2µm.

Read-out 

channel 2

3D diamond

detector
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(TR)IBIC
(Time Resolved) Ion Beam Induced Current

Instantaneous
current
pulses 

Integrating
amplifiers

Shaping
amplifiers

Multi Channel 
Analyzer and 

Data Acquisition 

• Two read-out channels and amplification chains.

∝Q

~ 2µs ~ 0.1µs
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49Signal efficiency at -2V and -20V
Square

Hexagonal

Signal
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50Signal efficiency at -2V and -20V
Signal
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TRIBIC

30.5.2018Alexander Oh, UNIGE Seminar

51
Ub=-20V



TRIBIC: Results
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CubicHexagonal

Comparison with TCAD Simulation model:

• basic features qualitatively reproduced.

• Reasonable agreement, but simplified model.



3D Diamond detector tests with 

relativistic charged particles

� Types

� 100x100um cell size ganged to form strips

� 100x100um cell size, bonded to pixel read-out

� 50x50um cell size, bonded to pixel read-out

� All detectors made from polycrystalline diamond.

� Beam tests

� CERN beam line H6 : protons ~ 120 GeV/c

� PSI : pions ~ 250 MeV/c
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3D Diamond prototype

� Proto-type

� Strip detector with back 
side contact

� 3D metal only pattern

� 3D metal + graphitic 
columns 

� Cubic cell base size 150µm

� 99 cells

� Measure response with 
120 GeV protons.

� Paper published NIMA
"A 3D diamond detector for 
particle tracking", NIM A, 786 (2015)
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Strip
3D mask

no 

columns

3D mask 

with 

columns

Read-outBias

Cell
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Analysis steps

• Ub(3D)=40V

• Ub(strip)=500V

• Identify continuous region of 
intact cells for analysis.

• Exclude contribution of 
negative signals.

• Average charge
Strip: 16.8ke
3D: 15.9ke 

• MP:
Strip: 14.7ke
3D: 15ke

3D and Strip show comparable response.

Conclusion -> 3D works!



Test of first 3D pCVD diamond 
detectors
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� Ub(3D)=75V

� Ub(strip)=500V

� Selected 16 adjacent 

cells 



� Red line estimate the Mean for Full Charge Collection (100%)

Test of first 3D pCVD diamond 
detectors
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71% of 

Full Charge 

Collection, 

corresponding to 

~13 ke.

Highest charge 

collection ever 

measured for pCVD 

diamonds

Measured 

Mean 904

Full Charge 

Mean:   1269
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In May/Sept 2016 tested the first full 3D device fabricated in pcCVD with 
three dramatic improvements:

1. An order of magnitude more cells (1188 vs 99).
2. Smaller cell size (100um vs 150um).
3. Higher column production efficiency (>99% vs ~90%).

HV side Readout side
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In May/Sept 2016 tested the first full 3D device 

fabricated in pcCVD with three dramatic improvements:

1. An order of magnitude more cells (1188 vs 99).

2. Smaller cell size (100um vs 150um).

3. Higher column production efficiency (>99% vs

~90%).

Readout side

Some issues with handling 

procedures led to:

• Surface contamination.

• Some breaks in surface 

metallisation.

� All fixable!
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• Largest charge collection to date in pcCVD

diamond!

• >85 % of charge collected in continuous region. 

• Analysis in progress on full detector.
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� First assembly with ROC 

chip produced.

� Bump bonded in Princeton.

� Cr-Au on bias side.

� Ti-W under-bump metal.

� Indium bumps on sensor.
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Bump pads

3D sensor

3D sensor bonded to ROC

Pixel 3D, pCVD, 100x100

Bump pads
Columns
Bias grid
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• Production of first pixel device using CMS readout 

electronics.

• Active region 3x3 mm with cell size ~100x100 um.

Pixel 3D, pCVD, 100x100



� Tested at PSI testbeam.

� 3D diamond device and 

Silicon reference planar 

device.

� Pixel threshold 1500e.

� Check hit efficiency over 

time.

� Device works!
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3D Diamond

Silicon planar

ε(hit) = 99.3%

ε(hit) = 98.5%

RD42 Preliminary

RD42 Preliminary

Pixel 3D, pCVD, 100x100



Next generation 3D Diamond

� Produced 3500 Cell pixel 
protoype, 50x50um cell size.

� Sample production:

� Oxford (2x cubic cells)

� Manchester set-up in 
progress (expected 
production date end of 
month.)

� Bump bonding 

� For ROC (CMS) Princeton.

� For FE-I4 (ATLAS) IFAE.

� Data taking in August 2017 at 
PSI.

� This week in testbeam at 
CERN
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50x50 µm cell 3D Diamond

Preliminary Results (50µmx50µm 
pixels)

� Readout with CMS pixel 
readout.

� Bump bonding issue in upper 
right edge  (Indium bump 
deposition machine not 
working properly)

� 6 columns (3x2) ganged 
together.

� Preliminary hit efficiency 
99.2% 

� Preliminary:
Collect >90% of charge!

� Rate dependence tested with 
10 kHz/cm-2 and 
10 MHz/cm-2 -> 
no dependence observed.
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RD42 Preliminary

RD42 Preliminary



Summary

� Diamond systems are used as beam and luminosity 

monitors in current HEP experiments.

� Radiation hardness and rate dependence has been 

studied.

� 3D diamond has been demonstrated to work.

� The understanding of diamond as a detector material is 

advancing.
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BACKUP
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3D Diamond detector for 

medical dosimetry
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Dosimetry application

� Planning of dose distribution 

delivered dose distribution 

challenging with narrow field 

beams.

� Need high spatial resolution of 

tissue equivalent dose deposited.

� Target numbers:

� Dose uncertainty <1%

� Spatial resolution ~0.1mm
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Dosimetry application
� Diamond key properties 

for dosimetry

� Tissue equivalence 

� Radiation hardness

� Room temperature 

operation

� bio-compatibility

� 3D Advantage

� Flexible active volume

� Radiation hardness

� Potential for 3D position 

information

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 
VOL. 61, NO. 4, AUGUST 2014

100 µm 100 µm
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Dosimetry application

� The Christie Hospital, 

Manchester

� medical linear accelerator 

(Elekta Synergy Sband) 

� 6MV and 10MV accelaration.

� 10x10cm radiation field.

� Dose rate dependence.

� Photon beam profile.
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The Christie
Manchester
Florence
Perugia



Dosimetry application

� Test set-up:
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Asymmetric leakage current.

Ileak < 1nA for  -100V to +60V

The Christie
Manchester
Florence
Perugia



Dosimetry application

First 3D diamond results:

� Pre-irradiated with 5 Gy.

� Clear response to presence  

to 6MV photons.

� Return to baseline <1s, 

no significant baseline shift.

� Plateau stability needs further 

studies.
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On-off response to 6MV photon beam with 4Gy/min.
Variation of bias voltage.

The Christie
Manchester
Florence
Perugia



First 3D diamond results:

� Good linearity of ~1% over 

dose rate range of 

2-4  Gy/min. 
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Dose rate linearity for 6MV photons at -80V

Dosimetry application

The Christie
Manchester
Florence
Perugia



First 3D diamond results:

� Good linearity of ~1% over 

dose rate range of 

2-4  Gy/min. 

� Good linearity of ~2% over 

dose range of 0.5 to 7 Gy.
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Dose linearity for 6MV photons at -80V

Dosimetry application

The Christie
Manchester
Florence
Perugia



First 3D diamond results:

� Good linearity of ~1% over 

dose rate range of 

2-4  Gy/min. 

� Good linearity of ~2% over 

dose range of 0.5 to 7 Gy.

� Beam width well reproduced 

to 1% when compared to 

GafChromic film 

measurement.
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10cm beam profile measured with 
3D diamond at -80V, 4Gy/min and film.

Dosimetry application

The Christie
Manchester
Florence
Perugia



Next generation:

� Next generation tests with variable 

array sizes.

The Christie
Manchester
Florence
Perugia
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