

The University of Manchester

Diamond Detectors -Status and Perspectives

Alexander Oh University of Manchester

Alexander Oh, UNIGE Seminar

MANCHESTER 1824

- Diamond Detectors
- Installations in experiments
- Radiation Hardness
- 3D Diamond detectors

Challenges Ahead

Diamond

- 1941 Diamond as particle detector (Stetter)
- 1953- CVD process, synthesis of diamond (Eversole)
- ~1980 polycrystalline CVD diamond.
- 1995 first diamond strip detector
- 1996 first diamond pixel detector
- 2011 first 3D diamond detector

Δ

Diamond properties

Property	Diamond	Silicon
band gap	5.47	1.12
mass density [g/cm³]	3.5	2.33
dielectric constant	5.7	11.9
resistivity [Ωcm]	>10 ¹¹	2.3e:
breakdown [kV/cm]	1e320e3	300
e mobility [cm²/Vs]	2150	1350
h mobility [cm²/Vs]	1700	480
therm. conductivity [W / cm K]	1020	1.5
radiation length [cm]	12	9.4
Energy to create an eh-pair [eV]	13	3.6
ionisation density MIP [eh/mm]	36	89
ion. dens. of a MIP [eh/ 0.1 $\%$ X ₀]	450	840
- Low dielectric constant \rightarrow low	capacitance	

- Low leakage current → low noise
- Room temperature operation
- Fast signal collection time

- –MIP signal ~2 smaller at same X_0
- –Efficiency < 100% (pCVD)

The University of Manchester

Development of CVD Diamond for detector applications

- Today two <u>main manufacturers</u> of detector grade diamond
 - ElementSix Ltd
 - Iarge polycrystalline wafers
 - single crystal diamonds
 - II-VI Semiconductors
 - Iarge polycrystalline wafers
 - relatively recent entry
- Alternative sources
 - Diamond on Iridium (Dol) (Audiatec, Germany)
 - Hetero-epitaxially grown -> large area
 - Highly oriented crystallites.

30.5.2018

Alexander Oh, UNIGE Seminar

Diamond in current HEP experiments

Area (sq.

- Beam monitors to protect experiments against beam losses at the LHC, CERN.
 - For Silicon Vertex systems careful monitoring is crucial.
 - Beam monitors have to be radiation hard. cm.)
 - Abort beam when monitors signal dangerous beam conditions.
 - False signals must be avoided.
- During run-1 diamond beam monitors operated in ATLAS, CMS, and LHCb.
- Previously diamond beam monitors were installed in BaBar(SLAC), CDF & D0 (Tevatron).

ATLAS beam conditions monitor

Use 2x polycrystalline CVD pCVD Diamond diamonds per station $(10 \times 10 \text{ mm}).$ Agilent MGA-62653 500MHz (22dB) Mini Circuits GALI-52 1GHz (20dB) 4 stations on each side of the ATLAS pixel detector ■ z = ±183.8 cm (~12.5ns) and r ~ 5 cm MIP "dou 45° decker' 38\cm 183cm

ATLAS beam conditions monitor

- Single particle counting with σ=0.7ns.
 - Distinguish between collision events and out-of-time background.
- Good stability in run-1

MANCHESTER

Run 2: ATLAS Diamond Beam Monitor

- 8 mini-trackers of 3 planes each using pixel-detectors.
- polycrystalline diamond sensors, 18mm x 21mm, δ >250 μ m.
- bump-bonded to FE-I4 pixel read-out chip.
 - 336 x 80 pixels
 - pixel size : 50μm x 250 μm
- Purpose:
 - Bunch-by-bunch luminosity monitor (aim < 1 % per BC per LB)
 - Bunch-by-bunch beam spot monitor

Run 2: ATLAS Diamond Beam *N*

- Installed in ATLAS during LS1, but switched off due to unexpected death of Si and Diamond modules.
- DBM recommissioned in 2017/18 with 50% working modules.

Examples of diamond detectors in related areas

- Synchrotron labs
 - beam position monitor
- Radiation Therapy
 - small field dosimetry
- Heavy Ion (GSI, FAIR)
 - beam diagnostic
 - particle tracking and TOF
 - hadron spectroscopy

 $0,4 \text{ mm}^3$ active vol. [2]

3 μm thick membrane in 40 μm thick scCVD [1]

M. Pomroski, CEA-LIST, MRS Fall meeting, Boston 28/11/2012
 F. Marsolat et al. / Diamond & Related Materials 33 (2013) 63705 2018

- Irradiated polycrystalline and single crystal CVD diamond.
 - Protons 25MeV, 70MeV, 300MeV, 800MeV, 24GeV
 - Pions 300MeV
- Signal response tested in test-beam.
 - 120 GeV proton
 - strip-detector pattern, $E = \pm 2V/\mu m$
 - Samples pre-exposed to Sr90 to fill traps (aka pumping)
 - Require track on active area, no threshold on strip signals.
 - Build signal of two highest signals within 10 strips around the track.

- "Charge Collection Distance" (CCD) is measured.
- Traps reduce the life-time of charge carriers, or "Schubweg" (λ).
 - Relation between CCD and λ :

24 GeV protons

MANCHESTER

- $k_{\lambda} = 0.67 \pm 0.04 \times 10^{-18}$ cm²µm⁻¹
- polycrystalline diamond sample offset by $\Phi \sim 5 \times 10^{15}$ to account for existing traps.
- Poly and single crystal diamond show consistent damage constants.

https://www.research-collection.ethz.ch/handle/20.500.11850/222412

Summary of RD42 irradiation results:

Particle Species	Relative Damage Constant, κ
24 GeV p	1
800 MeV p	1.85 ± 0.13
70 MeV p	2.5 ± 0.4
25 MeV p	4.5 ± 0.6
fast neutrons	4.5 ± 0.5
$200 \text{ MeV} \pi$	2.5 - 3

*normalized to 24GeV protons

MANCHESTER

High Rate tests

- Tests the pulse height as function of particle rate.
- Test single and poly crystalline diamond.
- Irradiated and un-irradiated.

High Rate tests

- single and poly sample irradiated with 5×10¹³ reactor n.
- Tested with 250MeV pions.
- Slight rate dependence observed in irradiated single crystal sample.
- No rate dependence observed for irradiated **polycrystalline** sample.

3D Diamond Detectors

- Electrode spacing determines drift distance to induce 1e charge.
- 3D has shorter electrode spacing compared to planar.
- Charge carriers need less drift distance (and time) in 3D then in planar to induce equal signal.
- Influence of traps and resulting limited lifetime suppressed in 3D.

3D Diamond Research -A relatively young field

- Laser induced phase change in diamond.
 - E.g. T.V. Kononenko et al, Diamond & Related Materials 18 (2009) 196–199
 "Femtosecond laser microstructuring in the bulk of diamond "
- 3D "Pad" detector

MANCHESTER

1824

- E.g. S. Lagomarsino et al, Appl. Phys. Lett. 103, 233507 (2013), "Threedimensional diamond detectors: Charge collection efficiency of graphitic electrodes"
- 3D "strip array" detector with position resolution.
 - E.g. F. Bachmaier et al, NIM A, 786, (2015) 97-104,
 "A 3D diamond detector for particle tracking"
- Radiation damage studies.
 - Eg. S. Lagomarsino et al, Applied Physics Letters 106, 193509 (2015) "Radiation hardness of three-dimensional polycrystalline diamond detectors"
- Improvements in graphitization process.
 - Eg. B. Sun et al., Applied Physics Letters 105, 231105 (2014), "High conductivity micro-wires in diamond following arbitrary paths"

University of Manchester, Laser $\stackrel{\frown}{=}$ Processing Research Center.

- Wavelength = 800 nm Repetition rate = 1 kHz
 - Pulse duration = 100 fs
 - Spot size = 10µm
 - Pulse Energy ~ 1 µJ
 - Spatial light modulator

30.5.2018

SLM – Phase Spatial Light Modulation

The University of Manchester Comparison SLM vs standard process. Simulated depth = $40\mu m$ Std. SLM Resistivity $1 \Omega cm$ 0.1 Ωcm Diameter ~3µm ~1µm Diamond to ~4 ~0.2 Measured graphite ratio $depth = 40 \mu m$ n, n2>n nominal depth = $80\mu m$ focusing depth aberrated focus depth = $130 \mu m$

Alexander Oh, UNIGE Seminar

MANCHESTER 1824

Comparison SLM vs standard process.

	Std.	SLM
Resistivity	l Ωcm	0.1 Ωcm
Diameter	~3µm	~1µm
Diamond to graphite ratio	~4	~0.2

X-polariser image

• Optical grade scCVD diamond.

• Post processing.

Alexander Oh, UNIGE Seminar

30.5.2018

31

Patrick S. Salter et al., APPLIED PHYSICS LETTERS 111,

- Prepare sample with horizontal graphitic
- STEM image of wire cross section.
- Optical and spectral data points to micro-cracks and nano-clusters of sp² bonded carbon.
- Micro wires are not macroscopic structures!

Parameter space scan

Patrick Salter, Oxford Iain Haughton, AO, Manchester

		Laser translation speed			
		5um/s	10um/s	20um/s	30um/s
Laser beam energy	100nJ	Х	Х		
	200nJ	Х	Х	Х	
	300nJ		Х	Х	Х
	400nJ		Х	Х	Х
	500nJ			Х	Х
	600nJ				Х

• Repeat with and without SLM correction.

IV curves

• Ohmic and barrier potential curves observed.

Alexander Oh, UNIGE Seminar

30.5.2018

Barrier potential

The University of Manchester

Alexander Oh, UNIGE Seminar

- Reduction in barrier with increased energy. ullet
- Discrepancy at 30um/s. •

• Multiple passes also reduces U_{ϕ} .

30.5.2018

3D Detector Characterization

Proton Micro-beam: 4.5 MeV p

Alexander Oh, UNIGE Seminar

Alexander Oh, UNIGE Seminar

30.5.2018

Hexagonal

(d)

30.5.2018

(c)

The University of Manchester

Alexander Oh, UNIGE Seminar

Alexander Oh, UNIGE Seminar

TRIBIC

MANCHESTER 1824

Alexander Oh, UNIGE Seminar

U_b=-20V

TRIBIC: Results

Comparison with TCAD Simulation model:

- basic features qualitatively reproduced.
- Reasonable agreement, but simplified model.

3D Diamond detector tests with relativistic charged particles

- Types
 - 100x100um cell size ganged to form strips
 - 100x100um cell size, bonded to pixel read-out
 - 50x50um cell size, bonded to pixel read-out
- All detectors made from polycrystalline diamond.
- Beam tests
 - CERN beam line H6 : protons ~ 120 GeV/c
 - PSI : pions ~ 250 MeV/c

Thanks for material from the RD42 collaboration!

3D Diamond prototype

Proto-type

MANCHESTER

1824

- Strip detector with back side contact
- 3D metal only pattern
- 3D metal + graphitic columns
- Cubic cell base size 150µm
- 99 cells
- Measure response with 120 GeV protons.
- Paper published NIMA "A 3D diamond detector for particle tracking", NIM A, 786 (2015)

F. Bachmair,^{a)} L. Baeni,^{a)} P. Bergonzo,^{b)} B. Caylar,^{b)} G. Forcolin,^{c)} I. Haughton,^{c)} D. Hits,^{a)} H. Kagan,^{d)} R. Kass,^{d)} L. Li,^{c)} A. Oh,^{c)} M. Pomorski,^{b)} V. Tyzhnevyi,^{c)} R. Wallny,^{a)} D. Whitehead,^{c)} and N. N^{d)}

Alexander Oh, UNIGE Seminar

<u>3U.5.2018</u>

Analysis steps

U_b(3D)=40V •

The University of Manchester

- U_b(strip)=500V •
- Identify **continuous region** of intact cells for analysis. •
- Exclude contribution of • negative signals.
- Average charge Strip: 16.8ke 3D: 15.9ke •
- MP: ۲ Strip: 14.7ke 3D: 15ke

3D and Strip show comparable response. Conclusion -> 3D works!

Alexander Oh, UNIGE Seminar

)18

The University of Manchester

Test of first 3D pCVD diamond detectors

Red line estimate the Mean for Full Charge Collection (100%)

Alexander Oh, UNIGE Seminar

Large area 3D, pCVD, 100x100

58

In May/Sept 2016 tested the first full 3D device fabricated in pcCVD with three dramatic improvements:

- 1. An order of magnitude more cells (1188 vs 99).
- 2. Smaller cell size (100um vs 150um).
- 3. Higher column production efficiency (>99% vs ~90%).

HV side

Readout side

The University of Manchester

Alexander Oh, UNIGE Seminar

30.5.2018

The University of Manchester

Large area 3D, pCVD, 100x100

59

In May/Sept 2016 tested the first full 3D device fabricated in pcCVD with three dramatic improvements:

- 1. An order of magnitude more cells (1188 vs 99).
- 2. Smaller cell size (100um vs 150um).

3. Higher column production efficiency (>99% vs ~90%).

Some issues with handling procedures led to:

- Surface contamination.
- Some breaks in surface metallisation.

 \rightarrow All fixable!

Readout side

30.5.2018

The University of Manchester

- Largest charge collection to date in pcCVD diamond!
 - >85 % of charge collected in continuous region.
- Analysis in progress on full detector.

Pixel 3D, pCVD, 100x100

MANCHESTER 1824

- First assembly with ROC chip produced.
 - Bump bonded in Princeton.
 - Cr-Au on bias side.
 - Ti-W under-bump metal.
 - Indium bumps on sensor.

Alexander Oh, UNIGE Seminar

The University of Manchester

Pixel 3D, pCVD, 100x100

solder

bump

bias

column

• Production of first pixel device using CMS readout electronics.

• Active region 3x3 mm with cell size ~100x100 um.

The University of Manchester

Pixel 3D, pCVD, 100x100

- Tested at PSI testbeam.
 - 3D diamond device and Silicon reference planar device.
 - Pixel threshold 1500e.
 - Check hit efficiency over time.
 - Device works!

Next generation 3D Diamond

- Produced 3500 Cell pixel protoype, 50x50um cell size.
- Sample production:
 - Oxford (2x cubic cells)
 - Manchester set-up in progress (expected production date end of month.)
 - Bump bonding
 - For ROC (CMS) Princeton.
 - For FE-I4 (ATLAS) IFAE.
- Data taking in August 2017 at PSI.
- This week in testbeam at CERN

30.5.2018

50x50 µm cell 3D Diamond Preliminary

Preliminary Results (50µmx50µm pixels)

- Readout with CMS pixel readout.
- Bump bonding issue in upper right edge (Indium bump deposition machine not working properly)
- 6 columns (3x2) ganged together.
- Preliminary hit efficiency 99.2%
- Preliminary: Collect >90% of charge!
- Rate dependence tested with 10 kHz/cm⁻² and 10 MHz/cm⁻² -> no dependence observed.

Alexander Oh, UNIGE Seminar

Summary

- Diamond systems are used as beam and luminosity monitors in current HEP experiments.
- Radiation hardness and rate dependence has been studied.
- 3D diamond has been demonstrated to work.
- The understanding of diamond as a detector material is advancing.

The University of Manchester

BACKUP

The University of Manchester

3D Diamond detector for medical dosimetry

Dosimetry application

- Planning of dose distribution delivered dose distribution challenging with narrow field beams.
- Need high spatial resolution of tissue equivalent dose deposited.
- Target numbers:
 - Dose uncertainty <1%</p>
 - Spatial resolution ~0.1mm

MANCHESTER 1824

Dosimetry application

- Diamond key properties for dosimetry
 - Tissue equivalence
 - Radiation hardness
 - Room temperature operation
 - bio-compatibility

Fig. 14. Comparison of the corrected ratio of stopping powers for protons of diamond and silicon with water.

3D Advantage

- Flexible active volume
- Radiation hardness
- Potential for 3D position information

The University of Manchester The Christie Manchester Florence Perugia

71

Dosimetry application

- The Christie Hospital, Manchester
 - medical linear accelerator (Elekta Synergy Sband)
 - 6MV and 10MV accelaration.
 - 10x10cm radiation field.
 - Dose rate dependence.
 - Photon beam profile.

Alexander Oh, UNIGE Seminar

30.5.2018

The Christie Manchester Florence Perugia

72

Dosimetry application

Test set-up:

Asymmetric leakage current. $I_{leak} < 1nA$ for -100V to +60V

Alexander Oh, UNIGE Seminar

Dosimetry application.

First 3D diamond results:

- Pre-irradiated with 5 Gy.
- Clear response to presence to 6MV photons.
- Return to baseline <1s,</p> no significant baseline shift.
- Plateau stability needs further studies.

×10⁻⁴ Current(A) 10 0 VBias=-40V -5 VBias=-60V VBias=-80V -10 VBias=-100V VBias=60V 200 50 100 150 n Time(s)

On-off response to 6MV photon beam with 4Gy/min. Variation of bias voltage.

-1.5

0

0.5

1

1.5

2

Dose rate linearity for 6MV photons at -80V

3.5

Dose Rate(Gy/min)

3

2.5

The Christie Manchester Florence Perugia

75

Dosimetry application

First 3D diamond results:

- Good linearity of ~1% over dose rate range of 2-4 Gy/min.
- Good linearity of ~2% over dose range of 0.5 to 7 Gy.

Dose linearity for 6MV photons at -80V

Dosimetry application

First 3D diamond results:

- Good linearity of ~1% over dose rate range of 2-4 Gy/min.
- Good linearity of ~2% over dose range of 0.5 to 7 Gy.
- Beam width well reproduced to 1% when compared to GafChromic film measurement.

The Christie Manchester

Florence Peruaia

10cm beam profile measured with 3D diamond at -80V, 4Gy/min and film.

Next generation:

Next generation tests with variable array sizes.

The Christie Manchester Florence Perugia

