Status and physics potential of the JUNO experiment

G. Salamanna Roma Tre University and INFN Roma Tre

JUNO

- The Jiangmen Underground Neutrino Observatory in China
- Anti-neutrino reactor experiment
 - at a distance (~50 km) from 2 power plants
 - Facility and detector construction: 2015-20
 - expected starting date for data taking: end 2020

	Yangjiang	Taishan
Exp. Power _{Th}	17.4 GW	18.4 GW
Exp. N of cores	6	4

 total thermal power available by 2020: 26.6 GW

What drives the detector design?

Neutrino flavour oscillations

- We know since ~20 years that neutrinos oscillate
- This can only happen if at least 2 of the 3 flavours of neutrinos <u>have a mass</u>

$$\begin{aligned} t=0 \qquad |\nu(t=0)\rangle = |\nu_{\mu}\rangle = U_{\mu1} |\nu_{1}\rangle + U_{\mu2} |\nu_{2}\rangle + U_{\mu3} |\nu_{3}\rangle \\ t>0 \qquad |\nu(t>0)\rangle = U_{\mu1} e^{-iE_{1}t} |\nu_{1}\rangle + U_{\mu2} e^{-iE_{2}t} |\nu_{2}\rangle + U_{\mu3} e^{-iE_{3}t} |\nu_{3}\rangle \neq |\nu_{\mu}\rangle \\ E_{k}^{2} = p^{2} + m_{k}^{2} \\ P_{\nu_{\mu} \to \nu_{e}}(t>0) = |\langle \nu_{e} |\nu(t>0)\rangle|^{2} \sim \sum_{k>j} \operatorname{Re} \left[U_{ek} U_{\mu k}^{*} U_{ej}^{*} U_{\mu j}\right] \sin^{2} \left(\frac{\Delta m_{kj}^{2} L}{4E}\right) \\ \text{transition probabilities depend on } U \text{ and } \Delta m_{kj}^{2} \equiv m_{k}^{2} - m_{j}^{2} \\ \frac{\nu_{e} \to \nu_{\mu}}{\bar{\nu}_{e} \to \bar{\nu}_{\mu}} \quad \frac{\nu_{e} \to \nu_{\tau}}{\bar{\nu}_{e} \to \bar{\nu}_{\tau}} \quad \nu_{\mu} \to \nu_{e} \quad \nu_{\mu} \to \nu_{\tau} \\ \bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \quad \bar{\nu}_{e} \to \bar{\nu}_{\tau} \quad \bar{\nu}_{\mu} \to \bar{\nu}_{e} \quad \bar{\nu}_{\mu} \to \bar{\nu}_{\tau} \end{aligned}$$

Tiny neutrino masses lead to observable macroscopic oscillation distances!

 $\frac{L}{E} \lesssim \begin{cases} 10 \frac{m}{\text{MeV}} \left(\frac{\text{km}}{\text{GeV}}\right) & \text{short-baseline experiments} \\ 10^3 \frac{m}{\text{MeV}} \left(\frac{\text{km}}{\text{GeV}}\right) & \text{long-baseline experiments} \\ 10^4 \frac{\text{km}}{\text{GeV}} & \text{atmospheric neutrino experiments} \\ 10^{11} \frac{\text{m}}{\text{MeV}} & \text{solar neutrino experiments} \\ \end{cases} \frac{\Delta m^2 \gtrsim 10^{-1} \text{ eV}^2}{\Delta m^2 \gtrsim 10^{-4} \text{ eV}^2}$

Neutrino oscillations are the optimal tool to reveal tiny neutrino masses!

Three-Neutrino Mixing Paradigm

Standard Parameterization of Mixing Matrix $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$ $= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$ $c_{ab} \equiv \cos \vartheta_{ab}$ $s_{ab} \equiv \sin \vartheta_{ab}$ $0 \le \vartheta_{ab} \le \frac{\pi}{2}$ $0 \le \delta_{13}, \lambda_{21}, \lambda_{31} < 2\pi$ 3 Mixing Angles: ϑ_{12} , ϑ_{23} , ϑ_{13} OSCILLATION $\begin{cases} 1 \text{ CPV Dirac Phase: } \delta_{13} \\ 2 \text{ independent } \Delta m_{kj}^2 \equiv m_k^2 - m_j^2 \text{: } \Delta m_{21}^2, \ \Delta m_{31}^2 \end{cases}$ PARAMETERS

2 CPV Majorana Phases: λ_{21} , $\lambda_{31} \iff |\Delta L| = 2$ processes

Current experimental knowledge

NuFIT (3.0 (2	2016)
---------	--------	-------

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 0.83)$		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 heta_{12}$	$0.306^{+0.012}_{-0.012}$	$0.271 \rightarrow 0.345$	$0.306^{+0.012}_{-0.012}$	$0.271 \rightarrow 0.345$	$0.271 \rightarrow 0.345$
$ heta_{12}/^{\circ}$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$31.38 \rightarrow 35.99$
$\sin^2 heta_{23}$	$0.441^{+0.027}_{-0.021}$	$0.385 \rightarrow 0.635$	$0.587\substack{+0.020 \\ -0.024}$	$0.393 \rightarrow 0.640$	0.385 ightarrow 0.638
$ heta_{23}/^{\circ}$	$41.6^{+1.5}_{-1.2}$	$38.4 \rightarrow 52.8$	$50.0^{+1.1}_{-1.4}$	$38.8 \rightarrow 53.1$	$38.4 \rightarrow 53.0$
$\sin^2 heta_{13}$	$0.02166\substack{+0.00075\\-0.00075}$	$0.01934 \to 0.02392$	$0.02179^{+0.00076}_{-0.00076}$	$0.01953 \to 0.02408$	0.01934 o 0.02397
$ heta_{13}/^\circ$	$8.46^{+0.15}_{-0.15}$	$7.99 \rightarrow 8.90$	$8.49_{-0.15}^{+0.15}$	$8.03 \rightarrow 8.93$	$7.99 \rightarrow 8.91$
$\delta_{ m CP}/^{\circ}$	261^{+51}_{-59}	$0 \rightarrow 360$	277^{+40}_{-46}	$145 \rightarrow 391$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	7.03 ightarrow 8.09
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.524^{+0.039}_{-0.040}$	$+2.407 \rightarrow +2.643$	$-2.514_{-0.041}^{+0.038}$	$-2.635 \rightarrow -2.399$	$ \begin{bmatrix} +2.407 \to +2.643 \\ -2.629 \to -2.405 \end{bmatrix} $

Three-flavor oscillation parameters from our fit to global data as of August 2016. The normalization of reactor fluxes is left free and data from short-baseline reactor experiments are included. The numbers in the 1st (2nd) column are obtained assuming NO (IO), *i.e.*, relative to the respective local minimum, whereas in the 3rd column we minimize also with respect to the ordering. Note that $\Delta m_{3l}^2 = \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3l}^2 = \Delta m_{32}^2 < 0$ for IO.

Open Problems

- $\triangleright \vartheta_{23} \leq 45^{\circ}$?
 - ► T2K (Japan), NO*v*A (USA), ...
- CP violation ? $\delta_{13} \approx 3\pi/2$?
 - ► T2K (Japan), NOνA (USA), DUNE (USA), HyperK (Japan), ...

Mass Ordering ?

 JUNO (China), RENO-50 (Korea), PINGU (Antarctica), ORCA (EU), INO (India), ...

Let's focus on the mass ordering

$\overline{\nu}_{e}$ production at reactors

typically about 10²⁰/s ν_e emitted

Flux

 BUT: more than 800 nuclides from the fission of ²³⁵U and others: ²³⁸U, ²³⁹Pu, ²⁴¹Pu, ...
 → many instable fission products
 → reactor is during steady operation in a flow equilibrium

Uncertainties on the overall flux

Event Signature and Backgrounds

Signature:
$$\overline{v}_e + p \rightarrow e^+ + n$$

- \Rightarrow **Prompt:** e⁺, 1-10 MeV,
- ⇒ Delayed: n, 2.2 MeV@H, 8 MeV @ Gd

Backgrounds

- Uncorrelated: random coincidence of γγ, γn or nn
 - γ from U/Th/K/Rn/Co... in LS, SS,
 PMT, Rock, ...
 - n from α-n, μ-capture, μ-spallation in LS, water & rock

⇒ Correlated:

- ✓ Fast neutrons: n scattering n capture
- ⁸He/⁹Li: β decay -n capture
- Am-C source: γ rays n capture
- ✓ α-n: ${}^{13}C(\alpha,n){}^{16}O$

Example from Daya Bay

MH from reactors

• JUNO will determine MH by reconstructing the E(ν) spectrum and fitting it with the two signs in the survival probability at fixed L

• baseline statistical method: $\Delta \chi^2_{min}$ of the two fits to disentangle the two mutually exclusive MH hypothesis (arXiv1210.8141)

Main challenge: Energy resolution

Because fitting involves separating the red vs blue curves with data, the single most important performance aspect will be the resolution on the energy measurement

JUNO's MH reach

- "Success" depends on keeping linearity and uniformity of E response under control
- Not only stochastic term: it can be shown that constant term *b* has more impact on MH sensitivity than *a*
 - ➡ non-uniformity of response in 20 KTon : challenge!

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2} \ ,$$

MH: facilities and prospects

FIG. 12: The left (right) panel shows the median sensitivity in number of sigmas for rejecting the IO (NO) if the NO (IO) is true for different facilities as a function of the date. The width of the bands correspond to different true values of the CP phase δ for NO ν A and LBNE, different true values of θ_{23} between 40° and 50° for INO and PINGU, and energy resolution between $3\%\sqrt{1 \text{ MeV}/E}$ and $3.5\%\sqrt{1 \text{ MeV}/E}$ for JUNO. For the long baseline experiments, the bands with solid (dashed) contours correspond to a true value for θ_{23} of 40° (50°). In all cases, octant degeneracies are fully searched for.

"A new way to determine the neutrino mass hierarchy at reactors"

- $\Delta \chi^2$ not *a priori* best estimator; allows extracting from data also Δm_{atm}^2 but fit could partially cancel discrimination power of data set
- A new estimator is proposed, with a well defined pdf, which counts and compares yields (no fit) extracted from same energy spectrum
 - "success" **still** depends on well known <u>E response</u>

"Proof of principle" of method with some

$$\begin{split} F_{IH} &= \int_{1.8}^{8.0} \left(N_{obs} - N_{IH} \right) dE_{\nu} &\text{ in } I^+ \text{ when } N_{obs} > N_{IH}(10) \\ &+ \int_{1.8}^{8.0} \left(N_{IH} - N_{obs} \right) dE_{\nu} &\text{ in } I^- \text{ when } N_{obs} < N_{IH} \\ F_{NH} &= \int_{1.8}^{8.0} \left(N_{obs} - N_{NH} \right) dE_{\nu} &\text{ in } I^+ \text{ when } N_{obs} > N_{NH}(11) \\ &+ \int_{1.8}^{8.0} \left(N_{NH} - N_{obs} \right) dE_{\nu} &\text{ in } I^- \text{ when } N_{obs} < N_{NH} \end{split}$$

- New linear estimator promising in *decoupling* two MH at >5 σ with 6y and E_{res}=3%
- but as-is identification depends on external input of Δm_{atm}^2 : will need further developments

Oscillation parameters: projections

J. Phys. G 43 (2016) 030401

		~reactor ~	radio and cosm	no E scale	E non uniformity
	Nominal	+ B2B (1%)	+ BG	+ EL (1%)	+ NL (1%)
$\sin^2 heta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
Δm_{21}^2	0.24%	0.27%	0.29%	0.44%	0.59%
$ \Delta m_{ee}^2 $	0.27%	0.31%	0.31%	0.35%	0.44%
	•				·

- <0.7% uncertainty on oscillation parameters
- dependence of precision on energy resolution studied
- bkgs sub-dominant in oscill. measurements (double coincidence)

From such goals descend some constraints...

Experiment	Daya Bay	BOREXINO	KamLAND	JUNO
Target mass	20 ton	~300 ton	~I kton	~20 kton
Optical coverage	~12%	~34%	~34%	~75%
E resolution	~7.5%/√E	~5%/√E	~6%/√E	~3%/√E
Light yield	~160 p.e/MeV	~500 p.e./MeV	~250 p.e./MeV	~1200 p.e./MeV

• Mature design

- 2016-2017 Detector component production
- 2016-2019 PMT production
- 2018-2019 Detector assembly and installation
- 2020 Filling

➡front-end electronics under water with challenging design and testing currently under-way for resilience

Central detector

- Acrylic Sphere and stainless steel truss immersed in water
- 265 acrylic panels of 3x8 m, with a 12 cm thickness
- Total weight: ~600 t of acrylic and ~600 t of steel
- Design and bidding completed, acrylic being produced, construction will start in 2019

20 kt liquid scintillator

- High light yield to reduce $\sigma(E)$ from statistical fluctuations: ~10⁴ scintillation photons/MeV
 - ➡ pure organic solvent (LAB)
 - ✓ safer and cheaper than Pseudo-cumene previously largely used, but worse particle discrimination
 - → high fluor (PPO) concentration

High transparency: > 20m
 ⇒ add wavelength shifter (bisMSB)

Liquid scintillator: purification

- Two main constraints drive need for <u>thorough</u> LS purification:
 - attenuation length: > 20 m at λ =430 nm (for 3g/L PPO in LAB)
 - radio-purity: 10^{-15} g/g (²³⁸U, ²³²Th) and 10^{-17} g/g (⁴⁰K)

4 different purification strategies developed and will be put in place:			
attenuation length	radio-purity		
Al ₂ O ₃ column plant based on the ''absorption'' technique to remove optical impurities in LAB			
Distillation plant is to remove heavy metal, improve transparency	 Water extraction is to remove ²³⁸U, ²³²Th, ⁴⁰K Gas Stripping plant remove the impurities : Ar, Kr and Rn 		

4 different purification strategies developed and will be put in place:

Scintillator purification: tests

- Pilot plant established in the Daya Bay LS hall and has been running in Feb-Mar
 - filled Daya Bay detector with sample LAB and purified with alumina
 - Optimization of fluorescent material to get the final recipe

20" PMT: the "eyes"

- To maximize photo-coverage use large (20'') PMT
- Ordered I5k "NNVT" MCP-PMT
- + 5K Hamamatsu R12860 "conventional dynode"

RI2860

NNVT

Quantity	Unit	NNVT	R12860	Important for
collection mode		Reflection+Transmission	Transmission	
Quantum efficiency (400 nm)	%	30	30	E resolution
Relative detection efficiency	%	110	100	E resolution
TTS	ns	12	3	Vertex position (against bkgs)
Anode dark current	KHz	20-30	10-50	Need for a trigger
After pulse fraction	%	3	10	
Glass radioactivity	ppb	²³⁸ U: 50 ²³² Th: 50 ⁴⁰ K: 20	²³⁸ U: 400 ²³² Th: 400 ⁴⁰ K: 40	Background

20" PMT: features and QA

- About 2600 MCP and 1700 dynode produced and delivered to JUNO
- 4500 m² station operating near to JUNO site until 2020 for potting to Front-End electronics and Quality Assessment

20" PMT: resilience/reliability

System is under-water: needs to be reliable and resilient

• Waterproof potting: multiple waterproof layers, aim at failure rate < 0.5% in first 6 years

• Shock protection: avoid propagation of waves from implosion of one PMT (from under water pressure) to neighbouring PMTs

- studied behaviour of various materials in 50 prototypes by performing several induced shock tests
- settled for acrylic + stainless steel protection covers, with 9 mm thickness optimized to balance hardness vs transparency to optical photons

Implosion test

Not only statistics...

 \checkmark 75% photo-coverage and collects \sim 1200 p.e./ MeV

- → but depending on event E and position, PMT could be "flooded" by p.e. and waveform saturate
- → loss of linearity
- → and large cathode → high dark rate

- ➡ 2.5% photo-coverage and collects ~50 p.e./ MeV
- ✓ but operating in photon counting

mode allows for **COmplementary**, unbiased event E determination ✓ and lower dark rate

- * <u>Multi-calorimetric approach</u> reduces non-stochastic terms ("systematics") in the energy resolution dependence (\leq 3% @ IMeV in total)
- * allows to extend the dynamical range in N(p.e.)
- * and improve time and vertex resolution for muon reconstruction (showers saturate 20' PMT)

3" PMT: the other pair of eyes

Parameters	HZC's response
QE×CE @ 420 nm	24% (>22%)
TTS(FWHM) of SPE	<5ns
P/V ratio of SPE	3 (>2)
SPE signal width (sigma)	35% (<45%)
Dark rate @ ¼ PE	1kHz (<1.8kHz)
QE uniformity	<30% in Φ60mm
Pre/after pulse ratio	<5%, < 15%
Nonlinearity	<10%@1-100PE
Radioactivity	238U: <400ppb, 232Th: <400ppb, 40K: <200ppb

- 26k PMT ordered from HZC-Photonics
 - custom-made: new development with improved TTS (based on KM3Net design)
- I 6 PMTs read-out by a multi-channel connector on a single "underwater box" (cabling configuration matters and is being optimized)
- Bidding completed before summer, start production at beginning of 2018

3" PMT: preliminary measurements

- Test results of XP72B22 samples
 - QE: 23.5% 26%; P/V: 3;
 - SPE resolution: <30%; TTS: 2-5ns

No.	Resolution	P-V Ratio	Gain@1350V	TTS(ns)
70195	0.231	4.889	2.5e+07	2.2
70197	0.276	6.818	2.3e+07	2.3
70215	0.245	2.832	0.4e+07	2.0
70218	0.251	5.239	1.0e+07	2.7
70219	0.279	4.592	0.6e+07	3.2
70222	0.269	6.657	1.5e+07	2.6
70226	0.239	7.800	2.3e+07	5.0
70236	0.249	6.440	2.2e+07	4.4

JUNO PMT system, overall

• optical coverage = $\sim 78\%$: 18,000 20'' PMTs (75%) + 25,000 3'' PMTs (2.5%)

• Several geometrical arrangements probed and relative position of optical surfaces of 20'' and 3'' PMT optimized to <u>maximize overall light collection, yet</u> <u>minimize complexity of installation</u>

Read-out, HV, DAQ

PMT readout electronics will installed underwater, very close to PMT :

- PMT Voltage Divider and High Voltage
- Front-End electronics: analog and digital electronics

GCU board: PMT interface to the DAQ and DCS performs the first online digital analysis of the signal

Design advanced, prototype performances being measured
particular focus on reliability of

- particular focus on reliability of UW parts
- 2 alternative HV prototypes also being tested

$\sigma(E)$: calibremus, calibremus, calibremus, calibremus...

- Uncertainty <u>on energy scale</u> < 1% crucial for total σ (E)/E~3% at 1 MeV
 - NB: <u>uniformly</u> in the detector
- JUNO envisaged complementary methods for E response determination across detector and for various energy loss processes

ID: Automatic Calibration Unit (ACU) along z axis: could reach sub-cm positioning
2D: Cable Loop System (CLS) over vertical planes: test reaches 10 cm precision
2D: Guide Tube Calibration System (GTCS) to probe outer CD surface: full-size tested
3D: Remotely Operated under-LS Vehicle (ROV), whole detector volume scanned: first version designed and tested

Using known radio-active sources:

- Y ⁴⁰K, ⁵⁴Mn, ⁶⁰Co, ¹³⁷Cs
- e^{+ 22}Na, ⁶⁸Ge
- n²⁴|Am-Be, ²⁴|Pu-¹³C, ²⁴|Am-¹³C

Some other <u>selected</u> topics with JUNO (full suite at: J. Phys. G 43 (2016) 030401)

Other signals, other measurements...

- JUNO's features make it an excellent detector for other physics
 - E.g. detector mass makes it a good target for <u>a lot of physics</u>
 - but need to control the backgrounds

Muon veto

- \bullet Unscreened muons can interact with $^{12}{\rm C}$ in LS and produce lighter isotopes (esp. $^9{\rm Li}$ and $^8{\rm He}$), that mimic IBD
- TT geometrical coverage ~50%
 - veto + provide "calibration" sample to study performance of tracking algorithms (reject un-vetoed muons passing through central detector off-line)
- TT has been shipped to near-JUNO site for aging tests

Water pool

- Even if LS is purified, surrounding environment intrinsically radioactive
- Identify "Outside-in" e and *n* from Cherenkov radiation in 35 kton of ultra-pure water around central sphere
- Light collected by 2k 20'' PMTs
 - veto system efficiency expected to be > 95%
 - fast neutron background ~0.1/day, Rn activity < 0.2 Bq/m³

Background processes

	Selection	IBD efficiency	IBD	Geo- <i>v</i> s	Accidental	⁹ Li/ ⁸ He	Fast n	(α, n)
	-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Geo:1.8%	Fiducial volume	91.8%	76	1.4		77	0.1	0.05
	Energy cut	97.8%			410			
Acc: 1.5%	Time cut	99.1%	73	1.3		71		
⁹ Li/ ⁸ He: 2.7%	Vertex cut	98.7%]		1.1			
LH IIC. 2.770	Muon veto	83%	60	1.1	0.9	1.6		
	Combined	73%	60	3.8				

Expected upper limit for each material (Preliminary)

N/day

V[storia]					Singles(Hz)				
Material	Mass	^{238}U	232 Th	⁴⁰ K	222 Rn	60 Co	All volume	Fiducial volume	
LS *	20kt	10^{-6} ppb	10^{-6} ppb	10^{-7} ppb	$1.4 \times 10^{-13} \text{ppb}$		2.39	2.2	
Acrylic 苯	561t	1ppt	1ppt	1ppt			6.92	0.36	
Oxygen-free copper	10t	0.099ppb	0.1ppb	0.14ppt		$1.8 \mathrm{mBq/kg}$	2.44	0.2	
Dust							1	0.1	
Pulley and Ultrasonic receiver Array							1	0.1	
SS tank	350t	0.097ppb	1.97ppb	0.05ppb		$2.0\mathrm{mBq/kg}$	0.89	0.087	
PMT glass ★	156t	400ppb	400ppb	40ppb	Hamamastu PM	T 17.93		2.42	
r Mi glass		50ppb	50ppb	20ppb	NNVT PMT		17.95	2.42	
PMT potting sealant	6.6t	12ppb	26ppb	25ppb			1	0.1	
PMT protection cover	177.5t	10ppt	10ppt	10ppt				0.01	
PMT potting shell	177.5t	10ppt	10ppt	10ppt				0.01	
Cable								0.01	
CUU								0.01	
Radon in water \star	35kt					$0.2 \mathrm{Bq/m^3}$	16	1.3	
Rock		10ppm	30ppm	5ppm			7.4	0.984	
						Sum	57.0	7.9	

> The most critical materials are shown with "stars" in the material column.

L.Ludhova, ECAP Seminar

Other signals, other measurements...

- JUNO's features make it an excellent detector for other physics
 - E.g. detector mass makes it a good target for <u>a lot of physics</u>
 - •but also to much intrinsic bkg activity + it's shallow \rightarrow muons \rightarrow C, Li, etc

Supernova neutrinos

- Galactic SN at a distance of 10 kpc
- ~5000 V events in the IBD channel, 2000 events for elastic neutrino-proton scattering, and 300 events for elastic neutrino-electron scattering in the JUNO detector
- Specialized trigger under study, to cope with concentrated spray of events with characteristic time profile
 - e.g. for Betelgeuse (d ~0.2 kpc): ~10 MHz trigger rate

Solar neutrinos: possible?

- Refined measurements of ⁷Be and ⁸B fluxes would constrain metallicity in Sun-like stars better
- JUNO with large exposure ideal to enhance statistics and measure ⁷Be "shoulder" thx to unprecedented E_{res}
- <u>Radio-purity (for ⁷Be) and event-by-event</u>
 <u>cosmogenic veto (⁸B) capabilities</u> main challenges that remain open
 - ${\mbox{\circ}}$ also, dedicated triggers and study of ${\rm ^{14}C}{\mbox{-}^{14}C}$ overlap might be needed for low E

Geo-neutrinos

- Geo-neutrino ''observational network'' now developed across world
 - current (KamLAND + Borexino) precision on geoneutrino (U+Th) flux is ~17-25%, SNO+ will join in
- at JUNO same challenges as for solar measurements
 - + here reactor ν large <u>background</u>
- signal can be extracted by template fit
- thanks to its mass, JUNO can reach 17% precision on the (U+Th) flux within the first year and 6% after 10 years
- U vs Th separation achievable with 11%-19% after 10 years

Table 8-4: Signal and backgrounds considered in the geoneutrino sensitivity study: the number of expected events for all components contributing to the IBD spectrum in the 0.7 - 12 MeV energy region of the prompt signal. We have assumed 80% antineutrino detection efficiency and 17.2 m radial cut (18.35 kton of liquid scintillator, 12.85×10^{32} target protons).

Source	Events/year
Geoneutrinos	408 ± 60
U chain	311 ± 55
Th chain	92 ± 37
Reactors	16100 ± 900
Fast neutrons	36.5 ± 36.5
⁹ Li - ⁸ He	657 ± 130
${}^{13}C(\alpha, n){}^{16}O$	18.2 ± 9.1
Accidental coincidences	401 ± 4

Proton decay

• JUNO complementary to large Cherenkov detectors (e.g. SK, HK) in search for proton decays

• from H, $p \rightarrow v + K^+ (\rightarrow \mu^+ v_{\mu})$ decay subthreshold for Cherenkov light in water but $E_{kin}(K^+) \sim 105 \text{ MeV}$ well visible as scintillation light

• Main bkg: muons from atmospheric neutrinos (but different time pattern)

 $BR(K^+ \rightarrow \mu^+ v_\mu) = 63.43\%$

ΔT(15-85) > 7 ns keeps ~65% signal, rejects >99% bkg

- expected background is 0.5 events in 10 years
- expected $\tau > 1.9 \ 10^{34} \, \text{yrs}$ (Feldman-Cousins)
- example "observed" would be $\tau > 6.8 \ 10^{33} \, \text{yrs}$ if 2 events of bkg fluctuation
- •With current projections, JUNO will be competitive (and complementary) soon after switch-on

Schedule

Conclusions

 With its <u>size</u> and unprecedented energy <u>resolution</u>, JUNO will have an impact on <u>many areas</u> of neutrino physics

- Demanding specs to meet challenging and multi-faceted physics programme (MH and beyond)
- Hope I gave you an idea of the many technical aspects considered and tests put in place to achieve best possible performance and reliability in detector and electronics design
 - Now it's the time to produce and build...

Additional material

JUNO civil construction

- 1020m slope tunnel excavated out of 1340m (few months ago)
 - initial delays on account of underground water leaks now under control
- ~580 m deep vertical shaft excavated
- Overburden to JUNO: ~700m (~1900 MWE)

Interference term

Survival probability

2

6

4

8

10

E_{vis} (MeV)

$$P_{b_{6} \rightarrow b_{6}} = 1 - \frac{\sin^{2} 2\theta_{13} \left(\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32}\right)}{-\cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}} \text{ slow solar oscillations} \qquad \Delta_{ij} \equiv \Delta m_{ij}^{2} L/4E,$$

$$= 1 - \frac{1}{2} \sin^{2} 2\theta_{13} \left[1 - \sqrt{1 - \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}} \cos\left(2 \right] \Delta_{ee} \right] + MH: + \frac{1}{H:} - \frac{1}{12} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21},$$

$$\Delta m_{\phi}^{2} = 4E\phi/L,$$
Can be seen as an extra effective mass-squared difference $\Delta m_{\phi}^{2} = f(E,L)$

$$\int_{0}^{10} \frac{100}{10} \int_{0}^{100} \frac{100}{10} \int_{0}^{1$$

Baseline optimization

Optimal baseline is at L = 50-60 km, at the oscillation maximum of Δm_{12}^2

Choice of the experimental site

In case of multiple reactors, minimize the spread of L							
Cores	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6	
Power (GW) Baseline (km)	2.9 52.75	2.9 52.84	2.9 52.42	2.9 52.51	2.9 52.12	2.9 52.21	
Cores	TS-C1	TS-C2	TS-C3	TS-C4	DYB	HZ	
Power (GW) Baseline (km)	4.6 52.76	4.6 52.63	4.6 52.32	4.6 52.20	17.4 215	17.4 265	

Baseline trigger

- all the PMT send out a trigger signal, synchronous with the reference clock
 - if a decision by the Global Trigger Electronics (dry), data request sent to the single PMTs. PMT reply by sending the requested waveform data, in a specific time window, through async lines
 - each 20" PMT read out one-by-one : I 6 Mbit/s (with I kHz physics rate)
 - ~2GB/s (CDR)

LIGGEL

OAC

• 3'' PMT read out in blocks of 128 channels: \leq 1 Mbit/s

Isotopes	$Q \;({ m MeV})$	$T_{1/2}$	Rate (per day)
$^{3}\mathrm{H}$	$0.0186 \ (\beta^{-})$	12.31 year	1.14×10^{4}
⁶ He	$3.508~(\beta^{-})$	$0.807~{\rm s}$	544
⁷ Be	$Q_{EC}=0.862~(10.4\%~\gamma,~E_{\gamma}=0.478)$	53.22 day	5438
⁸ He	10.66 ($\beta^-\gamma: 84\%$), 8.63 ($\beta^-n: 16\%$)	$0.119~{\rm s}$	11
⁸ Li	$16.0 \ (\beta^{-})$	$0.839~{\rm s}$	938
⁸ B	$16.6 \ (\beta^+)$	$0.770~{\rm s}$	225
⁹ Li	13.6 $(\beta^-: 49\%), 11.94 \ (\beta^-n: 51\%)$	$0.178~{\rm s}$	94
⁹ C	15.47 ($\beta^+ p: 61.6\%, \beta^+ \alpha: 38.4\%$)	$0.126~{\rm s}$	31
$^{10}\mathrm{Be}$	$0.556~(\beta^{-})$	1.51e6 year	1419
^{10}C	2.626 $(\beta^+ \gamma)$	$19.29~\mathrm{s}$	482
11 Li	20.55 ($\beta^- n: 83\%$, $\beta^- 2n: 4.1\%$)	$0.00875~{\rm s}$	0.06
$^{11}\mathrm{Be}$	11.51 ($\beta^-\gamma$: 96.9%), 2.85 ($\beta^-\alpha$: 3.1%)	$13.76~\mathrm{s}$	24
¹¹ C	$0.960~(\beta^+)$	$20.36~\mathrm{min}$	$1.62{ imes}10^4$
^{12}Be	11.708 $(\beta^-\gamma, \beta^-n: 0.5\%)$	$0.0215 \ s$	0.45
^{12}B	13.37 $(\beta^-\gamma)$	$0.0202~{\rm s}$	966
^{12}N	16.316 $(\beta^+ \gamma)$	$0.0110~{\rm s}$	17
^{13}B	13.437 $(\beta^{-}\gamma)$	$0.0174~{\rm s}$	12
^{13}N	$1.198 \ (\beta^+)$	$9.965 \min$	19
^{14}B	20.644 $(\beta^-\gamma, \beta^-n: 6.1\%)$	$0.0126~{\rm s}$	0.021
$^{14}\mathrm{C}$	$0.156~(\beta^{-})$	5730 year	132
$^{15}\mathrm{C}$	9.772 (β^{-})	$2.449~\mathrm{s}$	0.6
^{16}C	8.010 $(\beta^- n: 99\%)$	$0.747~{\rm s}$	0.012
^{16}N	10.42 $(\beta^{-}\gamma)$	$7.130~{\rm s}$	13
^{17}N	8.680 $(\beta^-\gamma: 5\%), 4.536 (\beta^-n: 95\%)$	$4.173~\mathrm{s}$	0.42
^{18}N	13.896 ($\beta^-\gamma: 93\%$), 5.851 ($\beta^-n: 7\%$)	$0.620~{\rm s}$	0.009
neutron			$155 \ 000$

Table 13-9: The estimated rates for cosmogenic isotopes in JUNO LS by FLUKA simulation, in which the oxygen isotopes are neglected. The decay modes and Q values are from TUNL Nuclear Data Group [479].

JUNO can be a telescope

Indirect DM search

→ discover DM or extend excluded parameter space

Supernova neutrinos

 v burst established
 → extract information on core-collapse and neutron star formation

Observation Range <1 to 50 MeV

Diffuse SN neutrinos still unobserved

→ discovery, z-dep. SN rate and average spectrum

L.Ludhova, ECAP Seminar

Solar neutrinos

pp-chain measured
 → CNO neutrino flux
 → study solar interior

Geoneutrinos

now: 4σ observation
 → geology: radiogenic heat, U/Th conc.