Precision oscillation neutrino experiments, nuclear physics and the need for near detectors

Federico Sanchez
IFAE/BIST (Barcelona)
The neutrino oscillation models assume that:

- neutrinos have mass, albeit a very small one.
- neutrinos interact as ν_e or ν_μ (neutrino flavour).
- the eigenstates of flavour and mass (Lorentz) are not the same.
- They are related via a rotation between the two bases.

Flavour states: $|\nu_e>$ & $|\nu_\mu>$

|\nu_e > = \cos \theta |\nu_1 > + \sin \theta |\nu_2 >$

|\nu_\mu > = - \sin \theta |\nu_1 > + \cos \theta |\nu_2 >$
ν Oscillation

- Neutrinos are transported in vacuum following the Schrödinger equation in vacuum:

\[
i\hbar \frac{\partial \nu}{\partial t} = H \nu = E \nu = \sqrt{m^2_\nu + p^2} \nu
\]

- When we produce electron neutrino:

\[|\nu_e\rangle = \cos \theta |\nu_1\rangle + \sin \theta |\nu_2\rangle\]

- \(m_\nu << p\):

This condition prevents to get similar effects in quarks.

\[
i\hbar \frac{\partial \nu}{\partial t} = (p + \frac{m^2_\nu}{2p})\nu
\]

\[
\nu(t) = e^{i(p + \frac{m^2_\nu}{2p\hbar})t} \nu(0)
\]
• If we produce a ν_e, after some time the state is:

$$|\nu_e; t > = \cos \theta e^{i(p+\frac{m_2^2}{2p}) \frac{t}{\hbar}} |\nu_1; 0 > + \sin \theta e^{i(p+\frac{m_2^2}{2p}) \frac{t}{\hbar}} |\nu_2; 0 > = e^{i(p+\frac{m_1^2}{2p})} (\cos \theta |\nu_1; 0 > + \sin \theta e^{i\frac{m_2^2-m_1^2}{2p} \frac{t}{\hbar}} |\nu_2; 0 >)$$

• The probability of getting a ν_μ at the interaction is then:

$$|<\nu_\mu|\nu_e; t > |^2 = | - \cos \theta \sin \theta <\nu_1|\nu_1; 0 > + \sin \theta \cos \theta e^{i\frac{m_2^2-m_1^2}{2p} \frac{t}{\hbar}} <\nu_2|\nu_2; 0 > |^2$$

$$= \sin^2 \frac{\theta}{2} \sin^2 \frac{m_2^2-m_1^2}{4p} \frac{t}{\hbar} = \sin^2 \frac{\theta}{2} \sin^2 1.267 \frac{\Delta m^2 L}{E} \frac{GeV}{eV^2 km}$$

• Flavour-lepton number is not conserved!

• Opens the possibility for flavour violation in lepton decay & production.
\[|<\nu_\mu|\nu_e;t>|^2 = | - \cos \theta \sin \theta <\nu_1|\nu_1;0> + \sin \theta \cos \theta e^{i\frac{m_2^2-m_1^2}{2p} \frac{t}{\hbar}} <\nu_2|\nu_2;0> |^2 \]

\[= \sin^2 \frac{\theta}{2} \sin^2 \frac{m_2^2-m_1^2}{4p} \frac{t}{\hbar} = \sin^2 \frac{\theta}{2} \sin^2 1.267 \frac{\Delta m^2 L}{E} \frac{GeV}{eV^2 km} \]

Fixed \(\nu\) energy

\(\theta = 3.141592/2\).

\(\Delta m^2 = 2 \times 10^{-3} \text{ eV}^2\)

\(E_\nu = 1 \text{ GeV}\)
$|<\nu_\mu|\nu_e; t>|^2 = \left| -\cos \theta \sin \theta <\nu_1|\nu_1; 0 > + \sin \theta \cos \theta e^{i\frac{m_2^2-m_1^2}{2\rho} t} \frac{t}{\hbar} <\nu_2|\nu_2; 0 > \right|^2$

$= \frac{\sin^2 \theta}{2} \sin^2 \frac{m_2^2-m_1^2 t}{4\rho} = \frac{\sin^2 \theta}{2} \sin^2 1.267 \frac{\Delta m^2 L}{E} \frac{\text{GeV}}{eV^2 km}$

Fixed distance

$\theta = \frac{3.141592}{2}.$

$\Delta m^2 = 2 \times 10^{-3} \text{ eV}^2$

$d = 650 \text{ km}$
Neutrino oscillations are a quantum interference phenomena similar to the two slit experiment:

The path is defined by the neutrino mass over the transport time and the interference provides the pattern of electron and muon neutrinos.
With 3 neutrino families (one per massive lepton):

| Flavour states: | $|\nu_e>$ | $|\nu_\mu>$ | $|\nu_\tau>$ |
|----------------|---------|-----------|---------|
| Mass states: | $|\nu_1>$ | $|\nu_2>$ | $|\nu_3>$ |
V oscillation

Pontecorvo–Maki–Nakagawa–Sakata matrix

\[
\begin{pmatrix}
\nu_e & \nu_\mu & \nu_\tau
\end{pmatrix} = U_{PNMS} \begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

\[
U_{PNMS} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{pmatrix} \begin{pmatrix}
\cos \theta_{13} & 0 & e^{-\delta_{CP}} \sin \theta_{13} \\
0 & 1 & 0 \\
-e^{\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13}
\end{pmatrix} \begin{pmatrix}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

- With 3ν: there are 3 angles and 1 imaginary phase δ_{CP} (complex 3x3 matrix).
- The phase allows for CP violation similar to the quark sector (CKM)
- There are also 2 values of Δm^2, traditionally Δm^2_{12} & Δm^2_{31}.
\[U_{PNMS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & e^{-\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

- Many parameters measured the last 15 years!
- But not all!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>best-fit</th>
<th>3\sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm^2_{21} [10^{-5} eV2]</td>
<td>7.37</td>
<td>6.93 – 7.97</td>
</tr>
<tr>
<td>$</td>
<td>\Delta m^2</td>
<td>[10^{-3}$ eV2]</td>
</tr>
<tr>
<td>$\sin^2 \theta_{12}$</td>
<td>0.297</td>
<td>0.250 – 0.354</td>
</tr>
<tr>
<td>$\sin^2 \theta_{23}, \Delta m^2 > 0$</td>
<td>0.437</td>
<td>0.379 – 0.616</td>
</tr>
<tr>
<td>$\sin^2 \theta_{23}, \Delta m^2 < 0$</td>
<td>0.569</td>
<td>0.383 – 0.637</td>
</tr>
<tr>
<td>$\sin^2 \theta_{13}, \Delta m^2 > 0$</td>
<td>0.0214</td>
<td>0.0185 – 0.0246</td>
</tr>
<tr>
<td>$\sin^2 \theta_{13}, \Delta m^2 < 0$</td>
<td>0.0218</td>
<td>0.0186 – 0.0248</td>
</tr>
<tr>
<td>δ/π</td>
<td>1.35 (1.32)</td>
<td>(0.92 – 1.99)</td>
</tr>
</tbody>
</table>

Hierarchy

CP violation
Missing measurements

- Two remaining parameters to measure

Hierarchy : is \(m_3 > m_1 \) ?

Neutrinos interacting with matter alter the oscillation angles and \(\Delta m \! \! \! \! \!

It requires **long base line** experiments through earth (matter effects)

CP violation : Matter = Antimatter?

The probabilities:

\[P(\nu_\mu \rightarrow \nu_e) \neq P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \]

Measured with **long base line** oscillations of \(\nu_\mu \rightarrow \nu_e \) and \(\bar{\nu}_\mu \rightarrow \bar{\nu}_e \)
Oscillation experiments

Typical Long Base Line experiment layout

Neutrinos produced in a particle accelerators:
\[pA \rightarrow \pi^+ \pi^+ \pi^- \ldots \]
\[\pi^+ \rightarrow \mu^+ \nu \]
\[\pi^- \rightarrow \mu^- \bar{\nu} \]

Oscillations

Neutrino flux meas

Neutrino flux meas

F. Sánchez, Geneva University 14th December 2016
Other source of neutrinos is the low energy electron antineutrinos from nuclear reactors.

NA61/Shine measures the production of pions and kaons as function of the momentum and angle for protons interacting with carbon.

\[\pi^+ \to \mu^+ \nu_\mu \]
\[\pi^- \to \mu^- \bar{\nu}_\mu \]

NA61/Shine measures a thin target for absolute production and thick target that is a copy of the ν target and provides also the reinteractions of particles.
Flux prediction

pion and kaon production

“A priori” flux error: ~15% below @ 1 GeV.
ν Oscillation

For a fixed distance we need to measure the Energy

\[\theta = \frac{3.141592}{2} \]
\[\Delta m^2 = 2 \times 10^{-3} \text{ eV}^2 \]
\[d = 650 \text{ km} \]
Neutrino oscillations

- Neutrino oscillation experiments are carried out by comparing neutrino interactions at a near and far sites.

- The number of events depends on the cross-section & flux:
 \[N_{\text{events}}(E_\nu) = \sigma_\nu(E_\nu)\Phi(E_\nu) \]

- at the far detector
 \[N_{\text{events}}^{\text{far}}(E_\nu) = \sigma_\nu(E_\nu)\Phi(E_\nu)P_{\text{osc}}(E_\nu) \]

- The ratio cancels flux and cross-section:
 \[\frac{N_{\text{events}}^{\text{far}}(E_\nu)}{N_{\text{events}}(E_\nu)} = P_{\text{osc}}(E_\nu) \]
Neutrino oscillations

- Since the neutrino energy is not monochromatic:
 - we need to determine event by event the energy of the neutrino.
 - This estimation is not perfect and the cross-section does not cancel out in the ratio.

\[
\frac{N_{\text{events}}^{\text{far}}(E_{\nu})}{N_{\text{events}}(E_{\nu})} = \frac{\int \sigma(E'_{\nu}) \Phi(E'_{\nu}) P(E_{\nu} | E'_{\nu}) P_{\text{osc}}(E'_{\nu}) dE'_{\nu}}{\int \sigma(E'_{\nu}) \Phi(E'_{\nu}) P(E_{\nu} | E'_{\nu}) dE'_{\nu}}
\]

- The neutrino oscillations introduce differences in the flux spectrum and the ratio does not cancel the cross-sections.
Neutrino oscillations

\[
\frac{N_{\text{events}}^{\text{far}}(E_\nu)}{N_{\text{events}}(E_\nu)} = \frac{\int \sigma(E_\nu') \Phi(E_\nu') P(E_\nu|E_\nu') P_{\text{osc}}(E_\nu') dE_\nu'}{\int \sigma(E_\nu') \Phi(E_\nu') P(E_\nu|E_\nu') dE_\nu'}
\]

Oscillation experiments require to know:

- Neutrino flux: \(\Phi(E_\nu) \)
- Neutrino cross-section: \(\sigma(E_\nu) \)
- True neutrino energy: \(P(E_\nu|E'_\nu) \)

\(P(E_\nu|E'_\nu) \) is not only caused by detector smearing. Neutrino interaction channels are critical.
Neutrino Interactions @ the Nucleon Level!

<table>
<thead>
<tr>
<th>Neutrino Interaction</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCQE</td>
<td>$\nu_\mu n \rightarrow \mu^- p$</td>
</tr>
<tr>
<td>CC1π</td>
<td>$\nu_\mu p \rightarrow \mu^- \Delta^{++} \rightarrow \mu^- \pi^+ p$</td>
</tr>
<tr>
<td></td>
<td>$\nu_\mu n \rightarrow \mu^- \Delta^+ \rightarrow \mu^- \pi^+ n$</td>
</tr>
<tr>
<td></td>
<td>$\nu_\mu n \rightarrow \mu^- \Delta^+ \rightarrow \mu^- \pi^0 p$</td>
</tr>
<tr>
<td>CCNπ</td>
<td>$\nu_\mu N \rightarrow \mu^- \Delta^{'+,++} \rightarrow \mu^- N' \pi \pi \ldots$</td>
</tr>
<tr>
<td>CCDis</td>
<td>$\nu_\mu N \rightarrow \mu^- N' \pi, \pi, \ldots$</td>
</tr>
</tbody>
</table>

Complementary for antineutrinos.
Present and future oscillation experiments cover a complex region full of reaction thresholds and sparse data.
Neutrino interactions

- Long range correlations
- Short range correlations
- Fermi motion & Pauli blocking
- FSI
- Impulse approximation

Not well defined!
Modelling interactions

- Normally considered the “impulse approximation” or factorisation:
 - nucleon **assumed** free in nuclear media!
 - nucleon free in nuclear potential: no nucleon correlations!

- Nuclear effects added on the top:
 - Fermi momentum.
 - Pauli blocking.
 - Short and long range nuclear correlations.
Modelling interactions

- Charge current without pions are made of several interactions
- 2p2h is basically the exchange of a meson between two close by nucleons in the nucleons with the emission of 2 nucleons.

The pion can be produced in a contact point or virtual Δ^{++}.

CCQE

CC-2p2h
Modelling interactions

Long range correlations

- The typical wavelength of the particles in ν interactions are the size of the nucleus.

- Particles see the nucleus as whole.

- Long range correlations modify the W self-energy in the presence of high density nuclear media.

- Long Range Correlations alter the cross-section dependency on virtual energy of the W

De Broglie particle wavelength

$$\lambda = \frac{\hbar}{E} = \frac{197.3\,nm}{E(eV)}$$

$$\lambda_{100\,MeV} = 1.97\,fm$$

$$R_{\text{Carbon}} \approx 2.7\,fm$$
Modelling interactions

In the past we have observed that RPA can be modelled as a cross-section re-weight as function of Q^2.

RPA re-weight is independent of the neutrino energy! It depends only on Q^2.

$$(d\sigma/dQ^2)_{LRC}/(d\sigma/dQ^2)_{Q^2\to0} \approx 35\%$$

$$(Q^2 \to \infty) \to \text{reduction} \approx 0\%$$

This curve is only known precisely at $Q^2\approx0$ and $Q^2\to\infty$.

$Q^2\approx0 \to \text{reduction} \approx 35\%$
Modelling interactions

Single pion production

- CCπ Second most relevant cross-section in oscillation experiments.
- Cross-section unknown @ the nucleon level.
- Complex modelling with many intermediate resonances and non-resonant contributions.

- All set of long and short rage correlation effects in CCπ are ignored in actual pion production models.
Final state interactions

- Example: events with $\mu^- + \pi^+$ in the final state.
- Topology is altered by FSI.

1. CCQE
2. Proton in final state
3. $p + p \rightarrow p + \pi^+$

FSI alters the definition of the event
Limits of models

- The main problem with models is that they are valid only in certain regions of the available kinematic space. Nominally, the low q^2 region.

- Extrapolations to the high q^2 region are complex since it implies a different treatment of the nucleus (relativistic vs. non-relativistic, etc...).

- Agreement with experiments might vary with experiment energy range.

Proposed to use the momentum transfer to the nucleus as a reference cut and not neutrino energy.

Theorists are needed!
How bad is bad?

- In one bin we get different E_ν (flux) & Q^2 (x-section) contributions.
- The flux is constrained from the hadro-production.
- Adjusting the model to the flux will migrate problems from flux to cross-section and viceversa.

\[Q^2 = -q^2 = 2(E_\nu E_\mu - p_\nu p_\mu \cos \theta_{m\nu}) - m_\mu^2 \]

\(Q^2 \) = Low and High Q2 contains different level of uncertainties at the nucleon level (form factors) and nuclear level (short and long range correlations)

Nieves et al. and Martini et al. are the best two models in the market. Same physics but two implementations!
• Only a fraction of the energy is visible.

• Rely on channel interaction id.

• The visible energy is altered by the hadronic interactions and it depends on hadron nature.
From conservation of momentum and energy:

\[E_{\text{reco}} = \frac{m_p^2 - (m_n - E_b)^2 - m_\mu^2 + 2(m_n - E_b)E_\mu}{2(m_n - E_b - E_\mu + p_\mu \cos \theta_\mu)} \]

Assumptions:

- We know the reaction channel: CCQE, CCΔ, etc…
- Normally identified with presence of pions in the event.
- The target nucleon is at rest (no fermi momentum).
The kinematic approach relies on the knowledge of the reaction channel.

If two reactions are confused the energy is wrongly reconstructed.

Experimentally we can confuse the channel because:

- nuclear effects (absorption).
- detector effects (thresholds).

PHYSICAL REVIEW D 85, 113008 (2012)
The energy is reconstructed by summing all detected energy:

\[E_{\text{reco}} = E_\mu + \sum E_{\text{hadron}} \]

The deposited energy is only the kinetic energy. The total energy requires the identification of particles:

\[E = E_{\text{kin}} + \text{mass} \]

This approach requires:

- Fully sensitive detector.
- Understanding of the energy deposition by different particles.

The visible energy is altered by the hadronic interactions and it depends on hadron nature.
Calorimetric energy reconstruction requires x-section knowledge!

Calorimetric Approach

- Simple exercise (Simulations):
 - Plot the relative energy deviation \((E_\mu + E_{\text{had}} - E_\nu)/E_\nu\) for different channels.

- The response depends on the channel and the topology of events outside the nucleus.

- The energy to change nuclear state (bind energy) needs to be considered.

- Part of the pion and kaon mass can be recovered through its decay chain.

\[\text{CCQE} \quad \text{CC\pi}^{+-0} \quad \text{CCN\pi}^{+-0} \quad \text{CCDIS}\]

\[\begin{align*}
\text{Bind Energy} & \quad \text{π mass} \\
\text{π mass} & \quad \Lambda, K \text{ masses}
\end{align*}\]
Momentum and angle

- Neutrino beams are relative low energy (0.5 to 3 GeV)
- Particle produced are low energy and spreading over all angles.
- Main challenge is to detect very low pions and protons (~100 MeV/c)

Pions are also detected from pion decays to muons and then to electrons.

\[p_{\mu} (\text{GeV/c}) \]

\[\mu \]

\[\cos \theta_\mu \]

\[p \text{ (MeV/c)} \]
Near detector data improves the flux prediction at the cost of introducing undesired correlations with cross-section (theoretical) uncertainties.

Improvements in neutrino models and independent measurements are mandatory.
Near detectors

- Near detector is also used in reactor neutrino experiments **to normalise the neutrino flux**.

- Cross-section is very well known theoretically: **inverse beta decay**!\[\bar{\nu}_e p \rightarrow e^+ n \]

- Near and far detectors are almost identical in this case.
Neutrinos & Antineutrinos

- Neutrinos and antineutrinos are selected depending on the horn current polarity.

\[\pi^+ \rightarrow \mu^+ \]
\[\pi^- \rightarrow \mu^- \]

- Neutrino cross-section is \textbf{x3 larger} than antineutrinos one.

- Neutrino sample is \textbf{x2 more “pure”} than the antineutrino one.

Far detectors barely distinguish them so we need to control the sample contamination @ near detector.
- Electron neutrinos is a key background for the $\nu_\mu \rightarrow \nu_e$ search.
- The un-oscillated flux contains ~ 200 times less ν_e than ν_μ (T2K).
- The oscillated flux contains ~ 5 times less ν_e (background) than oscillated ν_e (signal).
- The near detector is the only place to control this background.
Beam stability monitor

- In an standard beam the neutrino energy depends on the angle.
- The ν energy depends on the angle.
- The angle, energy and intensity might vary over time due to accelerator alignment & calibration.
- The neutrino flux needs to be measured also!
- We do not rely on accelerator proton current fluctuations and its monitors but in true ν flux.
Near detector mandate

- Further constrain the **neutrino flux:**
 - reduce uncertainty from hadroproduction experiments.
 - account for horn and decay volume systematics.
- Improve the **cross-section** knowledge:
 - constrain theoretical models.
- Determine the fraction of **neutrinos in antineutrino** beam configuration (and viceversa)
- Measure the **intrinsic** ν_e contamination in the beam.
- Monitor **beam stability** along running period.

Most of the physics efforts in LBL experiments go to the near detectors. Near detectors are responsible of controlling the majority of systematic errors.
Mass

- With actual beam intensities (~2.0 10^{21} protons on target/year) and 1 Ton detector \Rightarrow 150000 events/year.

Mass for beam monitor

- 100 Ton detector provides \Rightarrow 1.7 events/10^{14} pot \Rightarrow 5000 events/hour in T2K.

Muon vs electron

- Excellent muon/electron separation to overcome the 1/200 ratio.

Neutrino vs Antineutrinos

- Better with magnetic field to measure wrong “polarity" neutrinos.

Cross-sections

- Excellent detector acceptance & sensitivity to high and low momentum particles.
- Same nucleus in near and far detector to reduce uncertainties.
Large mass and high precision ($\lesssim 1 \text{mm}^3$) are difficult to reconcile

- Tracks emerging from the interaction do not have a preferred direction \rightarrow almost same segmentation in all directions.

- Contrary to experiments like LHC experiments the interaction happens uniformly in detector volumes of $\sim \text{m}^3$.

- We cannot concentrate segmentation in narrow areas like LHC experiments!!!.

- High segmentation in large volumes:
 - 1 Ton of 1g/cm^3 material $= 1 \text{m}^3 \rightarrow 10^9 1 \text{mm}^3$ 3D cells
 - Projected in one plane $\rightarrow \sim 10^6 1 \text{mm}^2$ 2D cells

We can do better! Just an example.
T2K: INGRID

- **INGRID** counts ν CC events in a cross of 13 identical detectors (~100 Tons):
 - **Normalisation:** total rate monitors beam intensity stability with respect to proton on target counting.
 - **Spectrum:** relative event counts between modules monitor the beam direction stability.

![Diagram of INGRID setup with proton-modules highlighted for cross-sections](attachment:INGRID_setup.png)

Spectrum data

- **Side View**
 - $\chi^2/\text{ndf} = 7.1/4$
 - Center: 0.05 ± 2.89
 - Sigma: 433.2 ± 4.7

- **Top View**
 - $\chi^2/\text{ndf} = 4.0/4$
 - Center: -11.0 ± 3.2
 - Sigma: 464.1 ± 5.6

F. Sánchez, Geneva University 14th December 2016
T2K far detector is a 40 kTon water (mainly oxygen target) Cerenkov detector.

- Off-axis ND280 is a detector complex with tracking calorimeters, time projection chambers and Electromagnetic calorimeters in the **UA1 0.2T magnet**.

 - **ν interaction target polystyrene (CH) and water** (to measure with same far detector target).

 - 1x1cm² → proton track threshold around 500 MeV/c

 - **Particle ID by dE/dx and calorimetry for electrons.**

 - **Charge sign by curvature.**

 - **Kinetic reconstruction** approach.

Magnet was granted by CERN
• **Actual angular acceptance:**

![Graph showing efficiency vs. True cos θμ for different detector configurations.]

• **Proposed modification of the Near Detector.**

There are large theoretical uncertainties connecting forward (low Q^2) with backward (high Q^2) regions: nuclear form-factors, long and short range correlations,…

https://indico.cern.ch/event/568177/
- **Scaled copy of the far detector.**
- Liquid scintillator poured in extruded plastic bars.
- ~**200 Tons** of target mass.
- Monitor and normalisation functionality.
- **Coarse cell** (3.8x5.9cm²), proton track threshold around 1GeV/c.
- **No charge sign** determination.
- Calorimetric approach!.
Future: LiqAr TPC

- Magnetised (?) LiqAr detector.
- Potentially same technology as Far Detector.
- Large mass & slow detectors (~ms) → event pileup!.
- Balance pile-up vs. particle range.
- ECAL and muon range.
- Low proton threshold: ~150 Mev/c.
- Calorimetric approach.

DUNE far detector is made of 4 gigantic LiqArgon detectors 10 kTon fiducial each!
Future: DUNE I

- **Magnetised (0.4T)** high resolution straw tube design with planar geometry (like T2K but finer segmentation).

- **Mixed target (gas and container):** Target/Nucleus selection by track vertexing.

- **Low average density** for low E particle detection.

- **ECAL gamma catcher** and muon range detector.

- **Calorimetric/kinematic** approach.
Future: HPTPC

- **Magnetised gas detector** → excellent momentum reconstruction.

- **Same nuclear target as Far Detector,** different technology.

- **Low mass** (~100 kg), moderately fast detector (~100 μs)

 - **No pileup** but **large external background** (magnet,…)

- ECAL for π^0 detection and particle Id.

- **Calorimetric** approach.

- **Lowest proton threshold:** ~100 MeV/c.
New ideas: NuPrism

- Profit from the **dependency of** E_ν **with beam angle.**
- Take linear combination of events in angular slices to build a monochromatic beam.
- Technique **only valid with off-axis** beam like T2K. (True beam is one slice!).
- **Big detector** (10 m x 50 m deep!)

$$\Phi(E_\nu) = \sum_{i=0}^{\theta_{\text{max}}} C_i \phi_i(E_\nu)$$

Reduces the dependency on cross-section models.

$$P(E_\nu | p_\mu, \theta_\mu) = \sum_{i=0}^{\theta_{\text{max}}} C_i P(p_\mu, \theta_\mu | \theta_i)$$

For a Gaussian beam peaked at 700 MeV, use linear combination of 30 off-axis angles:
- 0° – 6° corresponds to 1.2 GeV
- -0.25 GeV
- C cancels HE tail
Final remarks

- Next generation of neutrino experiments faces many challenges:
 - Neutrino flux precision.
 - Neutrino nucleus interaction modelling ($P(E \nu | \text{Observables})$).
 - Electron neutrino cross-sections.
 - Determining fraction of neutrinos and antineutrinos.
- Near detectors are the place to address all these issues.
- But not the only one, theory development is also mandatory.
- Near detector design is as fundamental as the far detector is to achieve the level of precision required in present and future experiments.
ONLY THOSE WHO SEE THE INVISIBLE
CAN DO THE IMPOSSIBLE