Dark Matter and the XENON100 Experiment

Marc Schumann
Physik Institut, Universität Zürich

DPNC University of Geneva, April 14th, 2010

www.physik.uzh.ch/groups/groupbaudis/xenon/
95% of the Universe is DARK
2 colliding galaxy clusters
separation of Dark and Light (baryonic) matter
→ Dark Matter and not modified gravity
Galactic Rotation Curves

Expect: Kepler Rotation (as in the solar system)

\[v^2 = \frac{G M(r)}{r} \]
Galactic Rotation Curves

Measurement: **Flat Rotation Profile**

„ball of ideal gas at uniform temperature“

V. Rubin, K. Ford (1970)
Cosmic Microwave Background

generated when radiation and matter decouple and photons can propagate freely

get information about structures in early universe

→ Cold
 Invisible
 Cold (\(v < 10^{-8} \, c\))

Dark
 Collisionless
 Stable
 from „new physics“

\(\Omega = \rho / \rho_{\text{crit}} = 1.02(2)\)

\(\Lambda\)-CDM model fits data remarkably well

\(H = 71(4) \, \text{km/s/Mpc}\)

\(t_0 = 13.7(2) \, \text{Gyr}\)

\(\Omega = 0.73(4)\)

\(\Omega_{\Lambda} = 0.044(4)\)

\(\Omega_m = 0.27(4)\)
SUSY and the WIMP

SUSY was introduced to solve Standard Model problems (i.e. hierarchy problem, Higgs mass)

New fundamental space-time symmetry between fermions and bosons

R-parity avoids B/L number violation:

$$R = (-1)^{(3B+L+2S)}$$

→ lightest supersymmetric particle (LSP) is stable → cold DM candidate:

WIMP = weakly interacting massive particle

Neutralino:

$$\tilde{\chi}^0_1 = N_{11} \tilde{B}^0 + N_{12} \tilde{W}_3^0 + N_{13} \tilde{H}_d^0 + N_{14} \tilde{H}_u^0$$
SUSY WIMP production

In early Universe:
WIMPs in thermal equilibrium
creation ↔ annihilation

expanding Universe: „freeze out“
WIMPs fall out of equilibrium, cannot annihilate anymore

→ non relativistic when decoupling from thermal plasma
→ constant DM relic density
→ relic density depends on σ_A

WIMP relic density:

\[\Omega_\chi h^2 \approx \text{const.} \frac{T_0^3}{M_{Pl}^3 \langle \sigma_A v \rangle} \approx \frac{0.1 \text{pb}}{\langle \sigma_A v/c \rangle} \]

$O(1)$ when $\sigma_A \sim 10^{-9}$ GeV → weak scale
Outline

Motivation: Dark Matter ✓

Direct Dark Matter Detection

Xenon as a Detector Medium

XENON100

The Future
Dark Matter Search

- Direct Detection
- Indirect Detection
- Production @Collider
Direct WIMP Detection

- Tracking: Drift, DM-TPC
- COUPP PICASSO
- Phonons
- CDMS EDELWEISS
- Charge
- CRESST ROSEBUD
- Light
- XENON LUX, ZEPLIN WARP, ArDM
- GERDA MAJORANA ConGeNT
- DEAP/CLEAN DAMA, KIMS XMASS
Direct WIMP Search

Elastic Scattering of WIMPs off target nuclei
→ nuclear recoil

Recoil Energy:
\[E_r = \frac{|q|^2}{2m_N} = \frac{\mu^2v^2}{m_N}(1 - \cos \theta) \sim \mathcal{O}(10 \text{ keV}) \]

Event Rate:
\[R \propto N \frac{\rho_\chi}{m_\chi} \langle \sigma v \rangle \]

→ need information on halo and interaction to get rate

M. Schumann (U Zürich) – Dark Matter & XENON100
WIMP Interactions
Detector Requirements

Result: Tiny Rates
\[R < 0.01 \text{ evt/kg/day} \]
\[E_r < 100 \text{ keV} \]

What do we look for?
- nuclear recoils, single scatters
- recoil spectrum falls with \(E \)
- dependence on \(A \), spin?
- annual flux modulation?
- other possibilities? iDM, ...?

How to build a WIMP detector?
- large total mass, high \(A \)
- low energy threshold
- ultra low background
- good background discrimination
Background Sources:

- Environment: U, Th chains, K

- Gamma and Beta Decays (electron recoil)
 - Careful material selection, discrimination, shielding (Pb, Cu, Xe, Ar, water)

- Neutrons from (α,n) in rocks
 - Neutron moderators (paraffin, poly)

- Neutrons from cosmic ray muons
go deep underground

Experimental Sensitivity:

- Without background: $\propto (mt)^{-1}$
- With background: $\propto (mt)^{-1/2}$

Neutrons are most dangerous background since they interact like WIMPS! (nuclear recoil)
CDMS: Cryogenic Detectors

Located underground in Soudan Lab, Minnesota (USA)

Principle: measure charge and heat (phonons)

A deposited energy E produces temperature rise ΔT

Crystals: Ge, Si cooled to few mK

→ low heat capacity

→ measurable μK temperature!

similar: CRESST, EDELWEISS, Rosebud

good discrimination

→ „background-free experiment“

→ BUT: reject surface events via PSA
The latest CDMS Result

Science 327, 1619 (2010)

- 2 events remain after all cuts after un-blinding
- Background expectation: 0.9 ± 0.2 events
- Probability for 2 or more events: 23%
Why Xenon?

- efficient, fast scintillator (178nm)
- high mass number $A \sim 131$:
 SI: high WIMP rate @ low threshold
- high atomic number $Z=54$, high density (~3kg/l):
 self shielding, compact detector
- SD: 50% odd isotopes
 allows further characterization after detection by testing only SI or SD
- no long lived Xe isotopes, Kr-85 can be removed to ppt
- "easy" cryogenics @ -100°C
- scalability to larger detectors
- in 2-phase TPC:
 good background discrimination
Xenon: Light and Charge

- energy deposited in LXe produces *electron-ion pairs* and *excited atom states*; both processes can lead to scintillation
- anti-correlation between charge and light → improvement of energy resolution possible
- E-field dependence (field quenching)
- response also depends on particle energy

![Diagrams showing energy deposition and scintillation processes in xenon.](image)

(from: Aprile et al., PRL 97, 081302 (2006)
from: Aprile et al., PRB 76, 014115 (2007))

\[
\text{Excitation + Ionization} \\
\text{atom motion} \\
\begin{align*}
&\xrightarrow{\text{excitation + ionization}} \\
&\text{Xe}^* \\
&+\text{Xe} \\
&\text{Xe}^+ + e^- \\
&\text{Xe}^+ + \text{e}^- \\
&2\text{Xe} + h\nu \\
&\text{scintillation light} \\
&\text{ionization electrons}
\end{align*}
\]
Why Xenon?

- efficient, fast scintillator (178nm)
- high mass number $A \approx 131$: SI: high WIMP rate @ low threshold
- high atomic number $Z = 54$, high density (~3kg/l): self shielding, compact detector

- SD: 50% odd isotopes allows further characterization after detection by testing only SI or SD
- no long lived Xe isotopes, Kr-85 can be removed to ppt
- "easy" cryogenics @ -100°C
- scalability to larger detectors
- in 2-phase TPC: good background discrimination
Dual Phase TPC

- ionization/scintillation ratio \(\frac{S_2}{S_1} \) allows electron recoil rejection to >99.5%
- 3d position reconstruction in TPC
Localization / Discrimination

Localization / Discrimination

Discrimination:

99.5% bg rejection (99.9% at low E), 50% acceptance (Xe10 performance) definition of WIMP search region

M. Schumann (U Zürich) – Dark Matter & XENON100
Outline

Motivation: Dark Matter ✓

Direct Dark Matter Detection ✓

Xenon as a Detector Medium ✓

XENON100

The Future
The XENON program

XENON: A phased WIMP search program

2010-2015: XENON1T

2007-2010: XENON100

2005-2007: XENON10

XENON R&D
XENON100 Collaboration

www.physik.uzh.ch/groups/groupbaudis/xenon

Columbia Rice UCLA U Zürich Coimbra LNGS

~45 people

+ new groups: Münster Bologna NIKHEF Subatech (F) Shanghai MPIK Heidelberg

M. Schummann (U Zürich) – Dark Matter & XENON100
Goal:
• increase target $\times 10$
• reduce gamma background $100 \times$
→ material selection & screening
→ detector design

Quick Facts:
• 165 kg LXe TPC (mass: $10 \times \text{Xe10}$)
• ~ 50 kg in fiducial volume
• active LXe veto (≥ 4 cm)
• 242 PMTs
• improved Xe10 shield
 (Pb, Poly, Cu, H_2O, N_2 purge)
Goal:
- increase target $\times 10$
- reduce gamma background $100 \times$

→ material selection & screening
→ detector design

Quick Facts:
- 165 kg LXe TPC (mass: $10 \times \text{Xe10}$)
- ~ 50 kg in fiducial volume
- active LXe veto (≥ 4 cm)
- 242 PMTs
- improved Xe10 shield
 (Pb, Poly, Cu, H$_2$O, N$_2$ purge)
Goal:
- increase target × 10
- reduce gamma background 100 ×
 → material selection & screening
 → detector design

Quick Facts:
- 165 kg LXe TPC (mass: 10 × Xe10)
- ~50 kg in fiducial volume
- active LXe veto (≥4 cm)
- 242 PMTs
- improved Xe10 shield
 (Pb, Poly, Cu, H₂O, N₂ purge)
underground since end of February 08
first filled with Xe in mid May 08
detector fully operational, taking science data

M. Schumann (U Zürich) – Dark Matter & XENON100
Photosensors

242 Hamamatsu R8520 PMTs
1"x1", optimized for response @ Xe scintillation wavelength
low radioactivity (>10 mBq/PMT)
80 with high QE ~35%

- 98 in top array: arranged for good fiducial cut efficiency
- 80 in bottom array: optimized for S1 collection → low threshold
- 64 in active veto: gain factor 3-4 compared to passive shield
TPC is transparent...

we can see events from all parts of the TPC...

\[\Delta t = 159.3 \text{ us} \]
3D-Vertex Reconstruction

$\Delta t \rightarrow z$

Positions of real S2s
uniform Cs137 illumination
Least Squares Analysis

S2 xy-Position Reconstruction:
- Least Squares Minimization
- Neural Network
- Support Vector Machine

Resolution $O(\text{mm})$
(measured and from MC)

M. Schumann (U Zürich) – Dark Matter & XENON100
Calibration

Gain calibration:
blue LED (+optical fibers)

\(\gamma\)-sources (ER band):
Co-57, Co-60, Cs-137, Th-228, Xe*, Kr-83m

Neutrons (NR band):
AmBe
Calibration at low Energy

expect signal <40 keV (calibration from outside not possible)

⇒ n-activated Xe131, Xe129m
 was used for Xe10, τ~O(10d)

⇒ Kr83m

R&D in Zürich:

Manalaysay et al., arXiv:0908.0616
Calibration at low Energy

expect signal <40 keV (calibration from outside not possible)

⇒ n-activated Xe131, Xe129m was used for Xe10, \(\tau \sim O(10\text{d}) \)

⇒ Kr83m

\[
\begin{align*}
\text{Kr83m} & \quad 75\% \\
1/2^- & \quad 32.1 \text{ keV, } T_{1/2}=1.83\text{h} \\
7/2^+ & \quad 9.4 \text{ keV, } T_{1/2}=154\text{ns} \\
9/2^+ & \quad \text{Kr83}
\end{align*}
\]

R&D in Zürich:

Manalaysay et al., arXiv:0908.0616
Calibration of the NR Band

Elastic Recoils

- ^{129}Xe, 40 keV
- ^{131}Xe, 80 keV
- ^{131m}Xe, 164 keV
- ^{129}Xe, 236 keV
- ^{19}F, 110 keV
- ^{19}F, 197 keV

$S_2 = 8\, e$
ER/NR Discrimination via S2/S1 ratio

- Discrimination efficiency similar to XENON10 (>99%)
Material Screening

GATOR: 2.2kg high purity Ge detector operated by UZH in low bg environment @ LNGS

<table>
<thead>
<tr>
<th>TPC Material</th>
<th>Unit</th>
<th>Quantity used</th>
<th>^{238}U [mBq/unit]</th>
<th>^{232}Th [mBq/unit]</th>
<th>^{40}K [mBq/unit]</th>
<th>^{60}Co [mBq/unit]</th>
<th>^{210}Pb [Bq/unit]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8520 PMTs</td>
<td>PMT</td>
<td>242</td>
<td>0.15±0.02</td>
<td>0.17±0.04</td>
<td>9.15±1.18</td>
<td>1.00±0.08</td>
<td></td>
</tr>
<tr>
<td>PMT bases</td>
<td>base</td>
<td>242</td>
<td>0.16±0.02</td>
<td>0.07±0.02</td>
<td>< 0.16</td>
<td>< 0.01</td>
<td></td>
</tr>
<tr>
<td>Stainless steel</td>
<td>kg</td>
<td>70</td>
<td>< 1.7</td>
<td>< 1.9</td>
<td>< 9.0</td>
<td>5.5±0.6</td>
<td></td>
</tr>
<tr>
<td>PTFE</td>
<td>kg</td>
<td>10</td>
<td>< 0.31</td>
<td>< 0.16</td>
<td>< 2.2</td>
<td>< 0.11</td>
<td></td>
</tr>
<tr>
<td>QUPID</td>
<td>QUPID</td>
<td>-</td>
<td>< 0.49</td>
<td>< 0.40</td>
<td>< 2.4</td>
<td>< 0.21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shield Material</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>kg</td>
<td>1600</td>
<td>< 0.07</td>
<td>< 0.03</td>
<td><0.06</td>
<td><0.0045</td>
<td></td>
</tr>
<tr>
<td>Polyethylene</td>
<td>kg</td>
<td>1600</td>
<td>< 3.54</td>
<td>< 2.69</td>
<td>< 5.9</td>
<td>< 0.9</td>
<td></td>
</tr>
<tr>
<td>Inner Pb (5 cm)</td>
<td>kg</td>
<td>6300</td>
<td>< 6.8</td>
<td>< 3.9</td>
<td>< 28</td>
<td>< 0.19</td>
<td>17±5</td>
</tr>
<tr>
<td>Outer Pb (15 cm)</td>
<td>kg</td>
<td>27200</td>
<td>< 5.7</td>
<td>< 1.6</td>
<td>14±6</td>
<td>< 1.1</td>
<td>516±90</td>
</tr>
</tbody>
</table>

use results for Monte Carlo Simulations
Monte Carlo Simulations

GEANT4 simulations of full experiment (detector+shield+surrounding)

Gamma Background:

in DM search region, after cuts
50 kg: $< 9.8 \times 10^{-3}$ events/kg/keV/day
30 kg: $< 3.2 \times 10^{-3}$ events/kg/keV/day

before S1/S2 discrimination cut!

M. Schumann (U Zürich) – Dark Matter & XENON100
• Xe has no long lived radioactive isotope
• BUT: Xe contains Kr-85

in air: \(\text{Kr/Xe} \approx 10 \)
in Xe gas (commercial): \(\text{Kr/Xe} \approx \text{ppm-ppb} \)
necessary (Xe100): \(\text{Kr/Xe} \approx 100 \text{ ppt} \)
(<1 evt in 0.5 yr)

\(\Rightarrow \) dedicated Kr-85 removal to ppt level
XENON100 Background

- 30 kg fiducial mass
- active LXe veto not used

Measured Background in good agreement with Monte Carlo prediction.
This is the lowest Background ever achieved in a Dark Matter Experiment!
A first glimpse at XENON100 data...

- Background data taken in stable conditions October-November 2009
- 11.2 life days
- Data analyzed non-blinded
- Cuts developed and optimized on calibration data, mostly AmBe and Co60

Let's have a look...
Basic Event Selection

- select events with acceptable signal/noise ratio (very sensitive detector: SPE & single electron S2 sensitivity)
- select single S1 peak (remove accidentals)
- select single scatters (single S2 peak)
- remove gas events
- apply active veto cut
Energy Cut

- select events with an S1 energy of < 28 keVnr
- this is the upper border of the XENON10 WIMP search region
- most remaining events are located at the edges
40kg Fiducial Mass

- make use of excellent self-shielding capability of liquid xenon
- cylindrical fiducial volume with 40 kg mass
- shape of volume will be further optimized
A Look at the Bands

- "Background free" in 11.2 days after S2/S1 discrimination
- Both plots show similar exposure

NR acceptance ~ 50%
cut efficiency ~ 85%
(conservative)
A first Limit from XENON100

XENON100 is working extremely well and is back at the sensitivity frontier.
This is just a first glimpse! We have much more (blinded) data waiting to be analyzed.

Results to be published soon

Xe100: based on the non-blind analysis of 11.2 days background
Ongoing Data Taking

XENON100 is taking science data since mid Jan 2010
XENON100: Sensitivity

- **50 kg Target: 40 days**
 \[\sigma = 6 \times 10^{-45} \text{ cm}^2 \text{ (@ 100 GeV)} \]

- **30 kg Target: 200 days**
 \[\sigma = 2 \times 10^{-45} \text{ cm}^2 \text{ (@ 100 GeV)} \]

Spin-independent WIMP-nucleon interaction
The next step: XENON1T

- 2.2t LXe ("1m³ detector")
 1t fiducial mass
- 100x lower background
 (10 cm self shielding, QUPID)
- MC studies, design studies already started 2009
- bigger collaboration
- currently: working on the details; secure funding
- Timeline: 2010 – 2015 ???

A possible design:

- Ti Cryostat
- Radiation- free Photon Detector
 (3” QUPID, Total 242)
The QUPID

- invented and developed by UCLA group (Arisaka/Wang)
- very low radioactive photosensor to replace PMTs
 APD, quartz, only a few pins, no voltage divider
- QUPIDs are „invisible“ in GATOR screening facility
- first units were build by HAMAMATSU,
ongoing tests and R&D at UCLA (later also UZH)

QUPID
Quartz
Photon
Intensifying
Detector

arXiv:0808.3968
It is actually working...

Work done at UCLA (Arisaka/Wang):

QUPID Test in Liquid Xenon
XENON1T: Location?

XENON1T @ LNGS (Hall B)
- 4 m water shield

XENON1T @ LSM
- solid shield (55cm poly, 20cm Pb, 15cm poly, 2cm ancient Pb, >99% muon veto)
Projected Sensitivities

![Graph showing projected sensitivities for different experiments like XENON10, XENON100, XENON1T, CDMS, SuperCDMS, and LUX 300kg.](image)

- XENON10
- XENON100
- XENON1T
- CDMS
- CMSSM
- SuperCDMS
- LUX 300kg

Source: http://dmtools.brown.edu/Gaitskell,Mandic,Filippini
the future of liquid noble gas Dark Matter detectors (Xe/Ar) in Europe

DARWIN = design study towards the realisation of future astroparticle infrastructure in Europe as identified in the ASPERA Roadmap

the DARWIN consortium was founded in 2009; approved by ASPERA

DARWIN brings together several European and American groups working in the existing XENON, WARP and ArDM collaborations. It unites expertise on liquid noble gas detectors, low-background techniques, cryogenic infrastructure, shielding and astroparticle physics phenomenology.

http://darwin.physik.uzh.ch
Summary

- Dark Matter: One of the big unsolved puzzles
- **XENON100**
 - 65 kg dual-phase TPC
 - underground @ LNGS
 - extremely low background
 - first results from 11.2d data
- in science data mode now: stay tuned...

www.physik.uzh.ch/groups/groupbaudis/xenon/
Backup
Determination of \(L_{\text{eff}} \)

- WIMPs interact with Xe nucleus → nuclear recoil (\(nr \)) scintillation
- absolute measurement of \(nr \) scintillation yield is difficult → measure relative to Co57 (122keV)
- relative scintillation efficiency \(L_{\text{eff}} \):
 \[
 L_{\text{eff}} = \frac{E_{\text{ee}}}{E_{nr}}
 \]

measurement principle:

most recent measurements:
- Aprile et al., PRC 79, 045807 (2009)
Scaling I

Arisaka et al., arXiv:0808.2968

90% CF limits for one year of data taking
Arisaka et al., arXiv:0808.2968

Expected energy spectrum of WIMP interactions, solar neutrinos, double beta decays, and gamma ray backgrounds (from QUPIDs) as a function of self shielding cuts.

Expected number of bg events in WIMP signal region (3-15 keVee) as function of active shielding cut for 10 ton-years of data taking.
Cryogenics & Recirculation

200 W PTR cryocooler
- gas gets liquefied outside the shield

double wall SS cryostat
- (low radioactivity steel, GERDA type)

continuous Xe purification
- (high T Getter)
Detector Stability

PID controller: T stable <0.1°C

PTR cooling provides excellent stability

Slow Control System records:
- Temperatures
- Pressures
- Flow rates
- Xe Level
- TPC HV
- PMT HV
- DAQ rate
- Vacuum
- Rn level
- status of all important systems
- ...

preliminary
Ongoing LXe Purification

- Light yield is related to H$_2$O content in LXe
- Continuous improvement to lower levels (baking, GXe circulation, H$_2$O measurements)
- Charge yield related to O$_2$ content → continuous purification
TPC: Electric Fields

- cathode: -30kV → drift field 1kV/cm
- anode: extraction field ~5kV
- field inside TPC was optimized in simulations for field homogeneity → 40 double field shaping rings
- anode stack optimized for
 - optical transparancy
 - S2 energy resolution (+4%)
- hexagonal mesh structures, pitch cathode 5mm, anode 2.5mm
Data Acquisition

Requirements:
- digitize full waveform (320µs) of 242 PMTs
- no deadtime
- higher rate capability for calibration

CAEN V1724 Flash ADC: 14bit, 100MHz
- circular buffer → no deadtime
- on board FPGA: Zero Length Encoding

⇒ calibration rates ~20 Hz possible
Low Trigger Threshold (S2)

XENON10
- S2 trigger efficiency 100% above 100 PE
- threshold of 300 PE used in WIMP analysis
Averaged Light Yield

- Light collection is position dependent
- measured with Cs137, 40 keV, and 164 keV from AmBe data
- vertex reconstruction allows to obtain volume average
- maximal light yield reached corresponds to
 4.5 PE/keV (zero field) @ 122 keV
 → 80% of XENON10 (as expected from design)
Active Veto

TPC is surrounded by 100 kg LXe layer (>4 cm)
- passive shield
- +64 PMTs: active veto

Cs137
- backscatter band
- 662 keV full absorption

Cs137, veto cut

Monte Carlo

preliminary
Reminder: XENON10 Results

- successful operation at LNGS 2006/07
- 15 kg dual phase detector, 5.4 kg in fiducial volume
- Results:
 - Spin Independent:
 - *PRL 100, 021303 (2008)*
 - Spin Dependent:
 - *PRL 101, 091301 (2008)*

New best limits for pure neutron couplings ($a_p = 0$)