

Disclaimer

The views here are only of the author
and neither represent MICE nor Oxford.
There are many ways to run a project.
Please interrupt since so this is a
discussion rather than preaching.

<talk>

Software Engineering
in Particle Physics

Christopher Tunnell

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects before trying to
explain useful lessons from industry. Finally, I want to
compare what we've learned to HEP case studies.

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects before trying to
explain useful lessons from industry. Finally, I want to
compare what we've learned to HEP case studies.

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects before trying to
explain useful lessons from industry. Finally, I want to
compare what we've learned to HEP case studies.

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects before trying to
explain useful lessons from industry. Finally, I want to
compare what we've learned to HEP case studies.

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects before trying to
explain useful lessons from industry. Finally, I want to
compare what we've learned to a HEP case study.

Software Engineering
in Particle Physics

Christopher Tunnell

1.
2.
3.
4.
5.

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects before trying to
explain useful lessons from industry. Finally, I want to
compare what we've learned to a HEP case study.

Software Engineering
in Particle Physics

Christopher Tunnell

1.
2.
3.
4.
5.

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects before trying to
explain useful lessons from industry. Finally, I want to
compare what we've learned to a HEP case study.

<1>

Software Engineering
in Particle Physicsis a profession dedicated to

designing, implementing, and
modifying software so that it is of
higher quality, more affordable,
maintainable, and faster to build.

wikipedia

Muons in LiH (mu- vs mu+)

Work by Chris Rogers (STFC)

-Dijkstra

Software Engineering
in Particle Physics

Software Engineering
in Particle Physics

Particle Physics

Lingo
Particle Physics Software Engineering

Renormalization
Offshell

Weak currents
Data quality
Luminosity

QED

Refactoring
Sprints
Agile

Regression tests
Continuos Integration

RTFM

</1>

<2>

State of our field:
Three Points

1. Physicists write software and

2. initially, there is a training problem for basic
software skills but also

3. our software culture makes on the job
training impossible

1. Physicists write software and

2. initially, there is a training problem for basic
software skills but also

3. our software culture makes on the job
training impossible

State of our field:
Three Points

Survey

• All computational sciences

• Published in English so mainly USA,
Canada, UK, and Northern Europe

• ~50% researchers, ~25% grad. students,
~25% technicians/managers

• ~10% physicists of some sort and 1
"theological engineer" (who was removed)

Jo Erskine Hannay, Hans Petter Langtangen, Carolyn MacLeod, Dietmar Pfahl, Janice Singer, and Greg Wilson: “How Do Scientists Develop and Use Scientific Software?” Proc. Second
International Workshop on Software Engineering for Computational Science and Engineering (SECSE’09), May 2009.

http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf
http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf

Survey Results

• ~48 hour work week

• 30% of time developing software

• 40% of time using software

• 75.2% never use a supercomputer

Jo Erskine Hannay, Hans Petter Langtangen, Carolyn MacLeod, Dietmar Pfahl, Janice Singer, and Greg Wilson: “How Do Scientists Develop and Use Scientific Software?” Proc. Second
International Workshop on Software Engineering for Computational Science and Engineering (SECSE’09), May 2009.

http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf
http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf

Opinion #1

• Physicists start with plots, then
reductionism starts and they dig into code

• Physics models require physicists

• Junior people told to write code for their
institution's 'collaboration committment'

• Physicists write code because funding
agencies do not hire programmers;
somebody must fill the gaps

HEP Code Size

• geant4: 1.3M lines C++; 1/3 comments

• root: 3.2M lines C++; 1/5 comments

• CMSSW: 8.5M, 30 languages; 1/8
comments

• Linux Kernel: 5M C++

• CPython: 1M C++; PyPy 1M Python

Language files blank comment code
--
C++ 17455 674643 486282 3227042
XML 3360 21050 18010 2274171
Python 14709 177730 148786 1137938
C/C++ Header 15175 257820 230921 900909
Fortran 77 137 10477 29707 205099
Javascript 277 47279 120895 192594
Bourne Shell 854 19554 18159 115838
Perl 406 16353 12860 73280
C 123 11950 12908 55933
Java 288 9409 7695 44732
HTML 279 4030 1591 37189
SQL 255 3634 2702 21497
C Shell 324 3897 2611 14098
CSS 149 2321 1779 11154
Visual Basic 9 1013 0 11140
m4 13 835 242 8195
JSP 27 1190 631 5831
make 80 1319 679 3998
PHP 42 748 238 3849
Bourne Again Shell 56 482 427 2255
XSLT 20 269 36 1500
XSD 3 191 154 1361
ASP.Net 28 148 0 1170
VHDL 9 117 214 1121
Lisp 2 90 81 549
sed 2 0 0 160
awk 2 13 4 118
Teamcenter def 4 4 0 97
DTD 3 0 2 59
Expect 2 1 2 25
DOS Batch 2 13 10 22
--
SUM: 54095 1266580 1097626 8352924
--

Today's Three Points

1. Physicists write software and

2. initially, there is a training problem for basic
software skills but also

3. our software culture makes on the job
training impossible

Survey Results (again)

• Nearly all self-learned. Followed by peer
mentored. Lastly: courses.

• Self-assessment of knowledge gaps

• Software construction

• Verification and testing

• Respondents think testing is important

Jo Erskine Hannay, Hans Petter Langtangen, Carolyn MacLeod, Dietmar Pfahl, Janice Singer, and Greg Wilson: “How Do Scientists Develop and Use Scientific Software?” Proc. Second
International Workshop on Software Engineering for Computational Science and Engineering (SECSE’09), May 2009.

http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf
http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf

Opinion #2

• C++ FQA: "picking up a new language is
easier for a C++ programmer than working
in C++"

• Teach initial course (software-
carpentry.org). Then wait 6 months. Then
code review with students.

• Code review their first commits

State of our field:
Three Points

1. Physicists write software and

2. initially, there is a training problem for basic
software skills but also

3. our software culture makes on the job
training impossible

Opinion #3

• Poor documentation and testing

• Large ramp-up time

• Rarely automated tests of physics or
functionality (think of plane analogy)

• Long code retention: MINUIT from 70s

• Well-defined specifications impossible

Opinion #3 (cont.)

• one "software guy" effect

• few year contracts of serial development

• hiring decisions are physics-based; nobody
reviews your code (even to publish)

• learn to code like preexisting code

</2>

<3>

Open source projects

• Linux, Python, etc..

• More than the source code being available

• Community driven and managed work

• People develop for 'fun' and 'love'

• Collaboration puts out work to the world
for others to improve upon

Comparison:
Open Source v. Physics
• Can't fire people; required to collaborate

• Global development through email

• Documentation is not fun and requires
flogging developers

• Have open code (ideally): open source to
security arguments are like open source to
physics arguments

Lessons from open
source projects

(This will be a list of unrelated 'lessons' that help
demonstrate the things that programmers think about)

Lessons from open
source projects

"bikeshedding"

Lessons from open
source projects

"bus factor"

Lessons from open
source projects

"Mission statements and
specifications prevent feature

bloat"

Lessons from open
source projects

"Mission statements and
specifications prevent feature

bloat"

Think ROOT: plotting program, file structure,
fitting program, distributed computing, C++
interpreter (eek!), QT and GUI creator, STLplus,
GSL wrappers, etc.

Zawinski's Law

"Every program attempts to expand until
it can read mail. Those programs which
cannot so expand are replaced by ones

which can."

Code is read more
than written

Lessons from open
source projects

But which of these
adages can be proven

with data?

</3>

<4>

Software Engineering
Concepts

• Code Review

• Tests (unit, functional, integration)

• Software effort analysis

• Distributed Version Control (git, bzr, etc.)

• Refactoring

• Of interest to employers...

• Personality not a good indicator based on
'personality models' [Saleh et. al 2010]:
extraversion, agreeableness,
conscientiousness, neuroticism, openness to
experience

• Collaboration abilities: too many
collaboration models, people recorded, bad
predictor [Hannay et al. 2007]

What makes better
programmers?

• Intelligence?

• IQ ~ learning ability

• IQs != planing or prioritisation abilities

• Intelligence models: creative, practical,
analytical

• Consistent and inconsistent types of work;
skill + intelligence matter [Schmidt/Hunter
1998]

What makes better
programmers?

• This is a new maturing field

• Progress being made measuring abilities

• Software abilities != effort estimation

What makes better
programmers?

• Original study by Sackman et. al in 1960s:

• 20 to 1 coding time

• 25 to 1 debugging time

• 5 to 1 program size

• 10 to 1 execution speed

• Experience uncorrelated to productivity

x10 Productivity

• 166 programmers, 18 organizations
[Demarco and Lister 1999]

• Good programmers vary within groups

• Groups vary between one another (3.4 to
1 [Boehm et. al 1984]

x10 Productivity

• Lotus 123: 260 staff years for 400k LOC

• Excel: 50 staff years for 649k LOC

• Lotus famously late, Excel Microsofts 'best
product'

x10 Productivity

People's First Job

• Peer mentoring helps

• Classes of people: movers and stoppers

• Biggest difference is management structure
since 'small picture of whole' damaging
[Microsoft self-measurements]

Conway's Law

"...organizations which design systems ...
are constrained to produce designs which

are copies of the communication
structures of these organizations."

</4>

<5>

Case Study: MICE

• As many detectors as ATLAS but as many
people as a liquid sphere neutrino detector

• Accelerator and particle physics code

• Long code life and large bus factors

Case Study: MICE

• G4MICE since 2002

• C++

• Major project managers left

• Much of the code 'legacy' due to age/
experience loss

G4MICE

Refactoring is a "disciplined way to
restructure code". Legacy code is code you
can't change and verify it still works.
Similarly code nobody understands.

Case Study: MICE
• MAUS in 2010

• C++ and Python (using SWIG) since
Python fills gaps

• Triage code (dead? expired? fix? keep?)

• Introduce testing requirements, code
branches, style guides, documentation
requirements, automated testing

• Well received: people want to do things
correctly

G4MICE

TOF
Digitization

Simulation

SciFi
Digitization

Unpacking

Test,
Polish,

Comment,
Document,
Kill Make

MAUS

Data Structure

• No ROOT
(TBaskets)

• JSON format

• Extendable

• spill['mc_particle']
[0]['energy'] = 210

{
 "mc_particle": [
 {
 "energy": 210,
 "particle_id": 13,
 "position": {
 "x": 0.0,
 "y": -0.0,
 "z": -5000
 },
 "random_seed": 10,
 "unit_momentum": {
 "x": 0,
 "y": 0,
 "z": 1
 }
 }
]
}

 log in

Jenkins ENABLE AUTO REFRESH

 People

 Build History

Build Queue

No builds in the queue.

Build Executor Status

Master

1 Idle

fedora14_32

1 Idle

fedora14_64

1 Idle

heplnm071 (offline)

heplnx101

1 Idle

2 Idle

heplnx102

1 Idle

2 Idle

opensuse113_32

1 Idle

opensuse113_64

1 Idle

pplxint5 (offline)

pplxint6 (offline)

sl48_32

1 Idle

sl48_64

1 Idle

sl55_32

1 Idle

sl55_64 (offline)

ubuntu1010_32

All

 S W Job ! Last Success Last Failure Last Duration

MAUS_aslaninejad 11 days (#1) N/A 2 hr 38 min

MAUS_carlisle 11 days (#29) 13 days (#25) 1 hr 24 min

MAUS_fayer 11 days (#7) 13 days (#3) 1 hr 46 min

MAUS_nonVMs_nightly 1 mo 0 days (#10) 13 days (#38) 4 hr 6 min

MAUS_per_commit_gcc 10 hr (#176) N/A 8 min 21 sec

MAUS_robinson 11 days (#1) N/A 3 hr 7 min

MAUS_rogers 13 days (#47) 6 days 9 hr (#50) 1 hr 24 min

MAUS_trunk 1 day 18 hr (#35) N/A 1 hr 25 min

MAUS_tunnell 10 hr (#39) N/A 1 hr 24 min

MAUS_verguilov 17 hr (#1) N/A 1 hr 22 min

MAUS_VMs_nightly N/A 3 days 9 hr (#23) 1 day 1 hr

Icon: S M L
Legend for all for failures for just latest builds

search

Case Study: MICE

• Trying to use these lessons from industry

• Trying to answer questions:

• 'how do we know some functionality
works?'

• 'how do we know the physics is correct?'

• Long way to go, but we'll get there

Coverity

• Static code analyzer

• Used by industry (defense, telecom,
finance, etc.)

• Finds bugs, memory leaks, seg. faults, etc.

• Used for ROOT

• Generously provided by Coverity for MICE

</5>

Software Engineering
in Particle Physics

Christopher Tunnell

1.
2.
3.
4.
5.

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects before trying to
explain useful lessons from industry. Finally, I want to
compare what we've learned to a HEP case study.

</talk>

Recommended
Reading

To learn:
software-

carpentry.org

To study:

Funding issues
(maybe grids ate it)

