YOOURE TRYING TO PREDICT THE BEHAVIOR
OF ? JUST MODEL

ITAS A - AND THEN ADD
SOME. SECONDARY TERMS To ACCOUNT ROR

\
EASY, R\)GHT?
S0, WHY DOES NEED
A WHOLE JOURNAL, ANYWAY?

(

LIBERAL-ARTS MATORS MAY BE ANNOYING SOMETIMES,
BUT THERES NOTAHING MORE QOBNOXIOUS THAN
A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.

Disclaimer

The views here are only of the author
and neither represent MICE nor Oxford.
There are many ways to run a project.
Please interrupt since so this is a
discussion rather than preaching.

<talk>

Software Engineering
in Particle Physics

Christopher Tunnell

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff then
describe the state of things in our field.

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects before trying to
explain useful lessons from industry.

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff then
describe the state of things in our field. Then next
compare us to opensource projects before trying to
explain useful lessons from industry. Finally, | want to
compare what we've learned to a HEP case study.

Ul WDN —

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff
describe the state of things in our field.

compare us to opensource projects

explain useful lessons from industry.

compare what we've learned to a HEP case study.

Ui A WDN —

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff
describe the state of things in our field.

compare us to opensource projects

explain useful lessons from industry.

compare what we've learned to a HEP case study.

<|>

Software Engineering

IS a profession dedicated to
designing, implementing, and
modifying software so that it is of
higher quality, more affordable,
maintainable, and faster to build.

10.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c mu- 100.0 mm steps

1— —— icool v3.10 (fail)
- —— icool v3.13 (fail)
. —— icool v3.17 (fail) J
0.8 — —— icool v3.20 (pass) :
= - icool v3.23 (pass)
— —— icool v3.26 (pass)
0.6—
: |
0.4—
0.2—
u_l 1 L. 1 .|_ L. |--|.--|.-J.J-| IR P TR "|.| 1 1
219 220 221 222 223 224 225

energy [MeV]
Work by Chris Rogers (STFC)

With respect to the recognition of the need for greater reliability of
software, I expect mo disagreement anymore. Dnly a few years ago this was
different: to talk about a software crisis was blasphemy. The turning point
was the Lonference on Software Engimeering in Garmisch, Octocber 1968, =
conference that created a sensation as there occurred the first open admission
of the software crisis. And by mow it is generally recognized that the design
of any large sophisticated system is going to be a very difficult job, and
whenever one megets people respensible for such undertakings, one finds them
very much concerned about the reliability issue, and rightly so. In shert, our

first condition seems to be satisfied.

-Dijkstra

Software Engineering

Software Engineering

Particle Physics

Software [ngineering

and Development
'EnnqueA Belini

Editor

LESZEK A. MACIASZEK» BRUC LEE LIONG

With contributions from STEPHEN BILLS

PRACTICAL
SOFTWARE
ENGINEERING

A Case Study Approach

SOFTWARE
ENGINEERING

Effective Teaching and
Learning Approaches

and Practices

Renormalization
Offshell
Weak currents
Data quality

Luminosity
QED

Refactoring
Sprints
Agile
Regression tests

Continuos Integration
RTFM

</|>

<>

State of our field:
Three Points

. Physicists write software and

. initially, there is a training problem for basic
software skills but also

. our software culture makes on the job
training impossible

State of our field:
Three Points

|. Physicists write software

Survey

® All computational sciences

® Published in English so mainly USA,
Canada, UK, and Northern Europe

® ~50% researchers, ~25% grad. students,
~25% technicians/managers

® ~|0% physicists of some sort and |
"theological engineer” (who was removed)

Jo Erskine Hannay, Hans Petter Langtangen, Carolyn MacLeod, Dietmar Pfahl, Janice Singer, and Greg Wilson: “How Do Scientists Develop and Use Scientific Software?” Proc. Second
International Workshop on Software Engineering for Computational Science and Engineering (SECSE’09), May 2009.

http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf
http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf

Survey Results

® ~48 hour work week
® 30% of time developing software
® 40% of time using software

® /5.2% never use a supercomputer

Jo Erskine Hannay, Hans Petter Langtangen, Carolyn MacLeod, Dietmar Pfahl, Janice Singer, and Greg Wilson: “How Do Scientists Develop and Use Scientific Software?” Proc. Second
International Workshop on Software Engineering for Computational Science and Engineering (SECSE’09), May 2009.

http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf
http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf

Opinion #1

® Physicists start with plots, then
reductionism starts and they dig into code

® Physics models require physicists

® Junior people told to write code for their
institution's 'collaboration committment’

® Physicists write code because funding
agencies do not hire programmers;
somebody must fill the gaps

HEP Code Size

geant4: |.3M lines C++; |/3 comments
root: 3.2M lines C++; |/5 comments

CMSSWV: 8.5M, 30 languages; |/8
comments

Linux Kernel: 5SM C++
CPython: IM C++; PyPy IM Python

Language

comment

Python

C/C++ Header
Fortran 77
Javascript
Bourne Shell
Perl

C

Java

HTML

SQL

C Shell

CSS

Visual Basic
m4

JSP

make

PHP

Bourne Again Shell
XSLT

XSD

ASP.Net

VHDL

Lisp

sed

awk
Teamcenter def
DTD

Expect

DOS Batch

674643

21050

177730
257820

10477
47279
19554
16353
11950
9409
4030
3634
3897
2321
1013
835
1190
1319
748
482
269
191
148
117
90

0

13

486282
18010
148786
230921
29707
120895
18159
12860
12908
7695
1591
2702
2611
1779

0

242
631
679
238
427

36

154

0

214

81

3227042
2274171
1137938
900909
205099
192594
115838
73280
55933
44732
37189
21497
14098
11154
11140
8195
5831
3998
3849
2255
1500
1361
1170
1121
549
160
118

97

59

25

22

1266580

1097626

8352924

Today's Three Points

|. Physicists write software and

2. initially, there is a training problem for basic
software skills but also

Survey Results (again)

® Nearly all self-learned. Followed by peer
mentored. Lastly: courses.

® Self-assessment of knowledge gaps
® Software construction
® Verification and testing

® Respondents think testing is important

Jo Erskine Hannay, Hans Petter Langtangen, Carolyn MacLeod, Dietmar Pfahl, Janice Singer, and Greg Wilson: “How Do Scientists Develop and Use Scientific Software?” Proc

International Workshop on Software Engineering for Computational Science and Engineering (SECSE’09), May 2009.

.Secon

d

http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf
http://www.third-bit.com/articles/how-scientists-use-computers-2009.pdf

Opinion #2

o C++ FQA: "picking up a new language is
easier for a C++ programmer than working
in C++"

® Teach initial course (software-
carpentry.org). Then wait 6 months. Then
code review with students.

® Code review their first commits

State of our field:
Three Points

. Physicists write software and

. initially, there is a training problem for basic
software skills but also

. our software culture makes on the job
training impossible

Opinion #3

® Poor documentation and testing
® |arge ramp-up time

® Rarely automated tests of physics or
functionality (think of plane analogy)

® | ong code retention: MINUIT from 70s

® Well-defined specifications impossible

Opinion #3 (cont.)

one "software guy" effect
few year contracts of serial development

hiring decisions are physics-based; nobody
reviews your code (even to publish)

learn to code like preexisting code

<[2>

<3>

Open source projects

® |inux, Python, etc..

® More than the source code being available
® Community driven and managed work

® People develop for 'fun' and 'love’

® Collaboration puts out work to the world
for others to improve upon

Comparison:
Open Source v. Physics

® Can't fire people; required to collaborate
® Global development through email

® Documentation is not fun and requires
flogging developers

® Have open code (ideally): open source to
security arguments are like open source to
physics arguments

Lessons from open
source projects

(This will be a list of unrelated 'lessons’ that help
demonstrate the things that programmers think about)

Lessons from open
source projects

"bikeshedding”

Lessons from open
source projects

"bus factor"

Lessons from open
source projects

"Mission statements and
specifications prevent feature
bloat”

Lessons from open
source projects

"Mission statements and
specifications prevent feature
bloat”

Think ROOT: plotting program, file structure,
fitting program, distributed computing, C++

interpreter (eek!), QT and GUI creator, STLplus,
GSL wrappers, etc.

Zawinski's Law

"Every program attempts to expand until
it can read mail. Those programs which
cannot so expand are replaced by ones

which can.”

Lessons from open
source projects

Code is read more
than written

But which of these
adages can be proven
with data?

</3>

<4>

Software Engineering
Concepts

Code Review

Tests (unit, functional, integration)
Software effort analysis

Distributed Version Control (git, bzr, etc.)

Refactoring

What makes better
programmers’

® Of interest to employers...

® Personality not a good indicator based on
'personality models' [Saleh et. al 2010]:
extraversion, agreeableness,
conscientiousness, heuroticism, openness to
experience

® Collaboration abilities: too many
collaboration models, people recorded, bad
predictor [Hannay et al. 2007]

What makes better
programmers’

Intelligence?
|1Q ~ learning ability
Qs != planing or prioritisation abilities

Intelligence models: creative, practical,
analytical

Consistent and inconsistent types of work;
skill + intelligence matter [Schmidt/Hunter

1998]

What makes better
programmers’

® This is a new maturing field
® Progress being made measuring abilities

® Software abilities != effort estimation

x 10 Productivity

® Original study by Sackman et.al in 1960s:
® 20 to | coding time
® 25 to | debugging time
® 5 to | program size
® |0 to | execution speed

® Experience uncorrelated to productivity

x 10 Productivity

® |66 programmers, |8 organizations
[Demarco and Lister 1999]

® Good programmers vary within groups

® Groups vary between one another (3.4 to
| [Boehm et. al 1984]

x 10 Productivity

® |otus |123:260 staff years for 400k LOC
® Excel: 50 staff years for 649k LOC

® |otus famously late, Excel Microsofts 'best
product’

People's First Job

® Peer mentoring helps
® Classes of people: movers and stoppers

® Biggest difference is management structure
since 'small picture of whole' damaging
[Microsoft self-measurements]

Conway's Law

"...organizations which design systems ...
are constrained to produce designs which
are copies of the communication
structures of these organizations."

<[/4>

<5>

Case Study: MICE

® As many detectors as ATLAS but as many
people as a liquid sphere neutrino detector

® Accelerator and particle physics code

® | ong code life and large bus factors

Case Study: MICE

G4MICE since 2002
C++
Major project managers left

Much of the code 'legacy’ due to age/
experience loss

G4MICE

Applicatior]s G4lli\g| CE
RealData External
/4 v\ lib
Unpacking Persist Visualization Unused
Auxiliar
P, 4 iliary
ZLib Analysis Simulation files
: 1‘
Optics EngModel Recon
setup A
BeamTools DetResp DetModel
test f
Calib Config RecPack
Kalman T
Interface
doc *
GEANT4 CLHEP GSL
FILES

Refactoring is a "disciplined way to
restructure code”. Legacy code is code you
can't change and verify it still works.
Similarly code nobody understands.

REracTorING
IMPROVING THE DESIGN

. : Y “' . J‘
OF EXISTING CODE I : ,;g.q g,

l’b l’f.'wt

obert L.

01 —|‘J
}'t ”!‘....n'.L

WORKING

EFFECTIVELY
WITH

MARTIN FOWLER

With Cantribations by Kent Beck, John Brant,
William Opdyke, wsnd Don Roberts

Foceword by Erich Gamma
Object Technology International Inc.

Michael C. Feathers

LEGACY CODE

1l

Case Study: MICE

MAUS in 2010

C++ and Python (using SWIG) since
Python fills gaps

Triage code (dead? expired!? fix! keep?)

Introduce testing requirements, code
branches, style guides, documentation
requirements, automated testing

Well received: people want to do things
correctly

/

MAUS
TOF
Digitization

SciFi
Digitization
Unpacking /

Data Structure

{
"mc_particle™: [
e No ROOT C
(TBaskets) e 1" 13
"position": {
® |SON format "x": 0.0,
y':-0.0,
"z":-5000
® Extendable 3
"random_seed": 10,
11T . ' "unit_momentum": {
® spill['mc_particle’] 0,
[0]['energy'] = 210 LA
}
}
]

}

Jenkins

Jenkins

. People

 Build History

Build Queue

No builds in the queue.

Build Executor Status

Master
1 Idle
fedorali4 32
1 Idle
fedoral4 64
1 Idle
heplnm071 (offline)

heplnx101
Idle

Idle

heplnx102
Idle
2 Idle
opensusell3 32
1 Idle
opensusell3 64
1 Idle

pplxint5 (offline)

pplxint6 (offline)
sl48 32

1| Idle
sl48 64
1| Idle
si55 32
Idle
sI55 64 (offline)

N =

=

>

Py
\

.
y

[
=

00~

8

—

Job !

MAUS

aslaninejad

MAUS

carlisle

MAUS fayer

MAUS

nonVMs nightly

MAUS

per commit gcc

MAUS

robinson

MAUS

rogers

trunk

MAUS

MAUS

tunnell

MAUS

verguilov

MAUS

VMs nightly

Last Success

11 days (#1)

11 days (#29)

11 days (#7)

1 mo 0 days (#10)

10 hr (#£176)

11 days (#1)

13 days (#47)

1 day 18 hr (#35)

10 hr (#39)

17 hr (#£1)

N/A

search

Last Failure

N/A

13 days (#25)

13 days (#3)

13 days (#38)

N/A

N/A

6 days 9 hr (#50)

N/A

N/A

N/A

3 days 9 hr (#23)

=
|\f)/|

ENABLE AUTO REFRESH

Last Duration

2 hr 38 min

1 hr 24 min

1 hr 46 min

4 hr 6 min

8 min 21 sec

3 hr 7 min

1 hr 24 min

1 hr 25 min

1 hr 24 min

1 hr 22 min

1day 1 hr

Legend f;! for all V;! for failures V;! for just latest builds

Case Study: MICE

® Trying to use these lessons from industry
® [rying to answer questions:

® 'how do we know some functionality
works?'

® 'how do we know the physics is correct?’

® [ong way to go, but we'll get there

Coverity

Static code analyzer

Used by industry (defense, telecom,
finance, etc.)

Finds bugs, memory leaks, seg. faults, etc.

Used for ROOT
Generously provided by Coverity for MICE

/% a8

) ﬁ?ﬁ;ﬁ?f%/// 4.

cts > unpacking

Admin User

Sign out |

Dashboard lprojects Configuration

Preferences |

Help | About [HEESPIE

Administr:

\ Defects | ‘ Source ‘ | Metrics | | Reports | | Dashbo

5 | Defect

restoring ostream format

Devent::Dump(...): Not restoring the
m format state of an ostream.

ct Impact: The next output operation
not expect the stream format state being
2d, resulting in incorrectly formatted

it. More information...

» unpacking

ts contributing to defect:

at_changed (MDevent.cpp:79)
of_path (MDevent.cpp:126)

NV E WN -

W W NN NN INVNIEN NN ENENNPRE R PRERPRERERRRE R
H O OWONOUVEWNRFEFODOLVODNOOWVE WNREOW

32
33
34
35
36

v

10 ==
20 -
-

L%] /home/tunnell/mice/unpacking/2.0/src/MDevent.cpp

/..---...---...---...---...---...---...---...---...---.O'

fLog: MDevent.cpp,v $

Revision 1.2 2008/04/29 ©87:36:39 daq

Add {} for switch cases for better portability.

Revision 1.1 2008/04/14 11:40:45 daq

Initial revision

Revision 1.5 2008/01/29 16:38:35 daq

Introduce private vectors preserving the references ¢

Originally created by J.5. Graulich june 2867

#1

nclude "MDevent.h"

MDevent: :MDevent(void *d):MDdataContainer(d),nFragments(

};

Vo

MDevent::SetDataPtr(d);

id MDevent::Init() {
fragment.clear();
nFragments = Nequipment();

subEvent.clear();
nSubEvents = NsubEvent();

if (PayLoadSize()) {
unsigned char* ptr(PayLoadPtr());

if (nSubEvents»d) { // init the vector of subEvent

MDevent subEvt;

while (ptr < _data + *EventSizePtr()) {

subEvt.SetDataPtr(ptr);

~—
A
v

<l

(]

Defects | Filters |
10199: STREAM_FORMAT_STATE

Status: New

Classification: Unclassified

Severity: Unspecified
Action: |Undecided

|
Owner: [Unassigned
|

Ext. Reference

Comment: 2048 charac

@ Defect history Advanced Edit
-

10204: USE_AFTER_FREE
New, Unclassified, Unspecified, Undecided

10203: UNINIT_CTOR
New, Unclassified, Unspecified, Undecided

10202: UNINIT_CTOR
New, Unclassified, Unspecified, Undecided

10201: UNINIT_CTOR
New, Unclassified, Unspecified, Undecided

10200: STREAM_FORMAT_STATE
New, Unclassified, Unspecified, Undecided

10199: STREAM_FORMAT_STATE

</5>

Ul WDN —

Software Engineering
in Particle Physics

Christopher Tunnell

Introduce some software engineering stuff
describe the state of things in our field.

compare us to opensource projects

explain useful lessons from industry.

compare what we've learned to a HEP case study.

</tallk>

Recommended
Reading

To learn:
software-

WA e
Y | Ay AN
=S =7 ; // | \\\\Q&\\R
e "7__,./" \ ‘--._._\
/_/,/"'/) \I \'\.\\
carpentry.org SN
=R !

Making Software

What Really Works, and Why We Believe It

To study:

Funding issues
(maybe grids ate it)

Edited by
O REILLY" Andy Oram & Greg Wilson

