KU LEUVEN

The Th-229 Nuclear Clock Isomer: VUV Spectroscopy Studies

Piet Van Duppen on behalf of the ISOLDE-IS658 and IS-715 collaboration

<u>Outline:</u>

- Thorium-229, its isomer and the nuclear clock
- Improve the nuclear-structure information of ^{229,m}Th
 - Vacuum-ultraviolet spectroscopy at ISOLDE
- Recent developments
- Conclusion and Outlook

Thorium-229, its isomer and the nuclear clock

The road towards a nuclear clock

Environmental limit: external pertubations

- e.g.
- Starkshift & Zeemanshift of external fields
- Blackbody : radiation

Clock stability:
$$\sigma_{\text{Allan}}^2(\tau) = \frac{1}{2\sum_i 1} \sum_i \left(\frac{\nu_{i+1}}{\nu_0} - \frac{\nu_i}{\nu_0}\right)^2$$

Sr lattice clock: reached in 92 h (Bothwell 2022) $\Delta v / v_0 = 7.6 \cdot 10^{-21}$

Sr lattice clock: (Zheng 2022) $\Delta \nu / \nu_0 = 9.7 \cdot 10^{-18} \tau^{-1/2}$

Al quantum-logic clock: (Brewer 2019) $\Delta \nu / \nu_0 = 9.4 \cdot 10^{-19}$

Modified from Riehle, 2016 *C.R.Physiques* **16** 506-515 Bothwell,- 2022, Nature 602 420-422 Zheng,- 2022, Nature 602 425-430 Brewer,- 2019, PRL 123 033201

Department of Physics and Astronomy Instituut voor Kern- en Stralingsfysica

The road towards a nuclear clock (Peik and Tamm Europhys. Lett. 61 (2003) 181)

Flambaum V., Phys. Rev. Lett. 97 (2006) 092502

➢ A nuclear clock based on ^{229m}Th

- Nuclear transition ٠
 - \Rightarrow less susceptible to perturbations
- Low-lying isomer •
 - \Rightarrow accessible with VUV lasers
- Suitable lifetime transition ٠ ΛF ²⁰) \Rightarrow

favorable
$$\frac{2E}{E}$$
 ($\approx 10^{-21}$

- Ion trap or solid-state* approach ٠ (*) Probe 10¹⁵ non-interacting oscillators
- Potential clock operation at 10⁻¹⁹ relative precision

Fundamental physics

Temporal variation of the fine-structure constant

Potential applications

- Satellite-based navigation
- Geodesy

Dessovic 2014 J. Phys. Condens. Matter 26 10 Campbell et.al. 2012 PRL 108 12

Peik et al., Quantum Sci. Technol. 6 (2021) 034002 Thirolf et al., Ann. der Physik 531 (2019) 1800381

Department of Physics and Astronomy Instituut voor Kern- en Stralingsfysica

5	Korger and Reich 1976 Nucl Phys A259 29	Seiferle et al., 2017 <i>PRL</i> 118 042501		
	von der Wense et al, 2016 Nature 533 47-51 Seiferle et al., 2019 <i>Nature</i> 573 243-246 Sikorsky et al., 2020 <i>PRL</i> 125 142503	Thielking et al., 2018 Nature 556 321-325	Department of Physics and Astronomy	
		Tkalya et al., 2015 <i>PRC</i> 92	Instituut voor Kern- en Stralingsfysica	KULEUVEN
		Minkov & Palffy 2021 PRC 103		

Improve the nuclear-structure information of ^{229,m}Th → Vacuum ultraviolet spectroscopy at ISOLDE

Population of ^{229m}Th

Efficient population in radioactive decay

	²³³ U	
Total feeding fraction	2 %	
Decay	α	
Recoil	84 keV	
production	stockpile	
technique	doping	

VUV spectroscopy at ISOLDE

- ISOLDE (CERN): 1.4 GeV protons on UCx surface ionization implantation at 30 keV
- Beam composition: ²²⁹Fr (T_{1/2} = 50.2 s, ~ 10⁵ pps), ²²⁹Ra (4.0 m, ~ 10⁶ pps), ²²⁹Ac (62.7 m, < 10⁵ pps)
- $^{229}Ac (T_{1/2} = 62.7 \text{ m}) \beta^{-}-decay \rightarrow ^{229m}Th / ^{229}Th$
- Implantation in large-bandgap crystals (CaF₂ and MgF₂)
- VUV spectroscopy
- A = 230 and 231 beams used as proxy

Department of Physics and Astronomy Instituut voor Kern- en Stralingsfysica

Radioactive beam purity

- Alpha spectra from CaF₂ irradiated sample (6 months after beam time)
- Contamination in the A=229 beam:
 - A=228 0,49(4)%
 - A=227 0,05(1)%

Black = ²²⁹Ac chain, Pink = ²²⁸Ac chain, Green = ²²⁷Ac chain

Department of Physics and Astronomy Instituut voor Kern- en Stralingsfysica

Solid state approach

Embedding in large-bandgap crystals (MgF₂, CaF₂,..) to achieve high charge state (Th³⁺, Th⁴⁺)

Emission Channeling at ISOLDE

²²⁹Ra (T_{1/2} = 4,9 m) \rightarrow ²²⁹Ac (T_{1/2} = 62,7 m) \rightarrow ²²⁹Th

²³¹Ra (T_{1/2} = 104 s) → ²³¹Ac (T_{1/2} = 7.5 m) → ²³¹Th (25.5 h) → ²³¹Pa

VUV spectroscopy at ISOLDE

Material	Manufacturer	Thickness
MgF ₂	Thorlabs Inc.	$5 \mathrm{mm}$
CaF_2	Thorlabs Inc.	$5 \mathrm{mm}$
CaF_2	MaTeck GmbH	0.7 mm
CaF_2	CRYSTAL GmbH	$0.5 \mathrm{mm}$
CaF_2	Imec	50 nm

 CaF_{2} (E_{gap} = 11.8 eV) and MgF₂ (10.8 eV)

Efficient monochromator: $NA \approx F/1.2$ $\epsilon_{grating} \approx 40 \%$

Single photon counting PMT $\epsilon_{detector} \approx 19~\%$

Total detection efficiency (3 mm slit) $\varepsilon_{total} \simeq 10^{-3} at 149 nm$

> Department of Physics and Astronomy Instituut voor Kern- en Stralingsfysica

Identification

CaF₂ defect radioluminescence

Department of Physics and Astronomy Instituut voor Kern- en Stralingsfysica

Time behaviour

A = 229 implantation for 3450 s in a MgF_2 crystal

(2 mm entrance slit (broad linewidth))

Department of Physics and Astronomy Instituut voor Kern- en Stralingsfysica

New energy value: $148.71 \pm 0.06 \text{ (stat.)} \pm 0.41 \text{ (syst.)} \text{ nm}$ $8.338 \pm 0.003 \text{ (stat.)} \pm 0.023 \text{ (syst.)} \text{ eV}$

 \rightarrow Uncertainty reduced from 41 THz to 5.8 THz

Article Observation of the radiative decay of the ²²⁹Th nuclear clock isomer

https://doi.org/10.1038/s41586-023-05894-z	Sandro Kraemer ^{1,252} , Janni Moens ³ , Michail Athanasakis-Kaklamanakis ^{1,4} , Silvia Bara ¹ ,		
Received: 20 September 2022	Kjeld Beeks ⁵ , Premaditya Chhetri ¹ , Katerina Chrysalidis ⁴ , Arno Claessens ¹ ,		
Accepted: 28 February 2023	Inomas E. Cocculos, Joao C. M. Correlar, Hilde De Willer, Kailaet Perfer, Saima Gedonor, Reinhard Henké, Nyusha Hosselin [®] , Mark Huyse, Ulli Köster [®] , Yuri Kudryavtsev [®] , Mustapha Laatiaou ^{8,50} , Razvan Lus ⁴⁰ , Goele Magchiels ³ , Vladimir Manea ¹ , Cleanest Heaktine ³¹ , Hon & O. Doersit ³ Schehrten Dendr ⁴³⁰ , Theathen Schwem ³		
Published online: 24 May 2023			
Check for updates	Clement werckung , Lino w. c. Pereira , Sebasuar Raeder – , Inorsten Schminnt, , Simon Sels ¹ , Peter G. Thirolf ² , Shandiral Malven Tunhuma ³ , Paul Van Den Bergh ¹ , Biot Van Durpon ¹ , André Vantomma ³ Matthiae Verlinde ³ , Pana Villerzoal ³ & Ilich Wahl ⁶		

Department of Physics and Astronomy Instituut voor Kern- en Stralingsfysica

Preliminary results from IS-715 (July 2023)

- Th-C production target at ISOLDE/CERN: ²²⁹Ra about 2 10⁸ pps
- Different crystals (bandgap energy)

Absolute efficiency (CaF₂ bulk) > 1.9 - 13.1 % (depending on γ intensity)

Preliminary results from IS-715 (July 2023)

- Th-C production target at ISOLDE/CERN: ²²⁹Ra about 2 10⁸ pps •
- Different crystals (bandgap energy)

Energy measurements: slit width 250 μ m / CaF₂(thin) •

Preliminary results from IS-715 (July 2023)

- Sites with different half-life?
- Defect annealing (τ_{annealing} ≈ hours)?
- Quenching of isomer due to radioactivity (cf. X-ray quenching: Hiraki et al. ArXiv 2204)?

Determining T_{1/2} in different crystals

cubscopy and realizing optical nuclear clocks.

- Wavelength confirmed R. Elwell,- arXiv 2024
- Uncertainty reduced from 41 THz to 5.8 THz to 0,007 THz

(Very) recent progress (II): radiative decay half life

Host	T _{1/2} (s)	n	Ref.	1750	
Th: MgF ₂	2.210(340)	1,488	Kraemer,- Nature (2023)	_ 1500	
Th: CaF ₂	1.740(50)	1,586	Tiedau,- PRL (2024)	s/[] 1250	
Th ⁺³	1.400 (+600/-300)	-	Yamaguchi,- Nature (2024)	UNOS 1000	0- 100 150 Temperature [K]
Th:LiSrAIF ₆	2.684 (43) _{stat} (66) _{sys}	1,485	Elwell,- arXiv (2024)	M 750	
Th:CaF ₂	1,790 (64) _{stat} (80) _{sys}	1,588	Hiraki,- arXiv (2024)	500	

Laser spectroscopy of triply charged ²²⁹Th isomer for a nuclear clock

Sympathetic cooling of trapped Th³⁺ alpha-recoil ions for laser spectroscopy

0

500

1000

Time [s]

1500

2000

G. Zitzer¹, J. Tiedau¹, M. V. Okhapkin¹, K. Zhang, C. Mokry, ^{2,3} J. Runke, ^{2,4} Ch. E. Düllmann¹, ², ^{2,3,4} and E. Peik¹, ¹Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
²Department of Chemistry – TRIGA site, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
³Helmholtz Institute Mainz, 55099 Mainz, Germany
⁴GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

PHYSICAL REVIEW A 109, 033116 (2024)

Department of Physics and Astronomy Instituut voor Kern- en Stralingsfysica

KU LEUVEN

Nature 629 (2024) 62-66

https://doi.org/10.1038/s41586-024-07296-1 Att Received: 24 September 2023 Ke

Atsushi Yamaguchi¹²³ Yudai Shigekawa⁴, Hiromitsu Haba⁴, Hidetoshi Kikunaga⁵, Kenji Shirasaki⁶, Michiharu Wada⁷ & Hidetoshi Katori^{12,8}

Conclusion and outlook

Conclusion and Outlook

- Observed the radiative decay of ^{229m}Th populated via the beta decay of ²²⁹Ac at ISOLDE
 - Isomer's energy = 8,388(24) eV T_{1/2} = 670(102) s (in MgF₂)
- Implantation technique: good performance for large band-gap and thin-film crystals
- Photon emission observed in MgF₂, CaF₂ and LiSrAlF₆ crystals (consequences for a solid-statebased ^{229m}Th clock)
- Time behaviour of VUV signal influenced by defect annealing, different implantation sites or radiation induced quenching?
 - → Developing models to describe the data extract the radiative-decay half life in different crystals
 - \rightarrow Annealing and implantation studies in different crystals (BaLiF₃, LiCaAlF₆, ...)

Gong et al., Phys. Rev. A109 (2024) 033109

Pimon et al., Adv. Theory Simul. 5 (2022) 2200185

 Laser excitation of the isomer in a CaF₂ crystal and symphetatic cooling of Th⁺³ ions has been reported (Tiedau,- PRL 2024 – Zitzer,- PRA 2024)

Outlook: Development towards a nuclear clock

ISOLDE: IS658 – IS715

M. Athanasakis, M. Au, S. Bara, K. Beeks, P. Chhetri, A. Claessens, T. Cocolios, Y. Elskens, J.G. Correia, S.Cottenier, H. De Witte, R. Ferrer, S. Geldhof, N. Hosseini, S. Kraemer, U Köster, M. Laatiaoui, R. Lica, G. Magchiels, V. Manea, J. Moens, I. Moore, L. M. Pereira, S. Pineda, S. Raeder, S. Rothe, T. Schumm, S.Sels, S. Stegeman, P.G. Thirolf, M. Tunhuma, P. Van Den Bergh, P. Van Duppen, A. Vantomme, R. Villareal, M. Verlinde, U. Wahl

