Scientific discovery in the era of Al - a celebration of *RODEM* -

Tobias Golling, University of Geneva Sinergia

rodem

RODEM kick-off workshop in Kandersteg 2021

Robust Deep Density Models for High-Energy Physics and Solar Physics

A Sinergia research project funded by the Swiss National Science Foundation SNSF 2021-2024

Prof. FLEURET

UniGE Département d'Informatique Project coordinator francois.fleuret(at)unige.ch @francois.fleuret

Prof. VOLOSHYNOVSKIY

Département de Physique Nucléaire et Corpusculaire tobias.golling(at)unige.ch @TGolling

UniGE

Computer Vision and Multimedia Laboratory slava.voloshynovskiy(at)unige.ch @voloshynovskiy

FHNW

School of Engineering Institute for Data Science andre.csillaghy(at)fhnw.ch @FHNW_astro

U Fachho Nordw

Fachhochschule Nordwestschweiz

syn-er-gy | 'sinərjē

FACULTY OF SCIENCE

Tomke Schröer

ΤG

Malte Algren

Jona Ackerschott

Matthew Leigh

Debajyoti Sengupta

Sam Klein Stephen Mulligan

Kinga Wozniak

Johnny Raine This could be you ! replacement starting soon

François Fleuret

ONDATION

ERNEST BONINCHI

Slava Voloshynovskiy Guillaume Quétant

Ivan Oleksiyuk

Bálint Máté

Atul Kumar Sinha

Daniele Paliotta

Manuel Guth

Matthias Schlaffer Sebastian Pina-Otey

Alexander von Humboldt Stiftung/Foundation

European

Commission

Master

Alumni

Swiss National

Science Foundation

Lukas Ehrke

Sinergia

3

1.1 SS

spectrum: physics

Full

Publications (with code)

2022

- FETA 🛸 🗙 🔿
- Dequantisation 🔀 🖸
- Flows for Flows X
- v-Flows 🛸 🔀 🗭 🗎
- Flowification X
- CURTAINS 🛸 🔀
- SUPA 🔀 👩

2021

- Funnels 🔀 🕥
- Turbo-Sim 🔀

2023

• Drapes 🥌 🔀

- TURBO 🥌 🔀
- EPiC-ly fast 🔀
- Flows for flows 🛸 🔀 🕥
- Interplay of ML based resonant anomalies
- PC-Droid 🛸 🗙 🕥
- OT Decorrelation X
- ν²-Flows
- CURTAINs Flows for Flows
- Flow away your differences
- Topographs 💌 🗙 🖸 🗈
- PC-JeDi 🥌 🔀 🕥

2024

- SkyCURTAINs
- Cluster Scanning 🔀 🖸
- Masked particle modelling K

Lots in the pipeline...

https://github.com/rodem-hep

@ Villa Boninchi,Sep 25 – Oct 6, 2023

5

@ CSF, Ascona, Oct 29 – Nov 3, 2023

Many more events planned in the coming years...

Machine learning

 Statistical algorithms to model data & perform tasks without explicit instructions

• Thrives on **big data**

• Generalizes to unseen examples

The rise of AI/ML in science

[[]Ben Blaiszik, "2021 AI/ML Publication Statistics and Charts". Zenodo, Sep. 07, 2022. doi: 10.5281/zenodo.7057437.]

Part I – AI today

Science as usual – with an AI afterburner

State-of-the-art in ML@HEP

40k ML papers in hep-ex:

Very active ML@HEP community

Diverse R&D concept papers

+deployment in experiment [90% of the work]

 \Rightarrow Time to get organized

AI / ML everywhere in our workflow

Optimal design

Classification

Search for unknown

Calibration

Reconstruction

Fast simulators

Classification without labels

In-situ background estimates

Decorrelate background

The frontier of classification

The ML toolbox: generative models

Fast surrogate model* which maps random numbers to structure

*Deep generative NN model:

- Variational Autoencoders (VAEs)
- Generative Adversarial Network (GANs)
- Normalizing Flows (NFs)
- Diffusion models

 \rightarrow See my course 14P053 "Physics applications of AI"

Evaluation of generative models

Comparing high-dim joint distributions is hard

- No best GoF test
 - Need to know relevant alternative hypothesis

- Pragmatic tests to establish trust
 - "Good enough for task at hand"

16

 $p_{\rm model} \approx p_{\rm data}$

Domain adaptation: calibrate synthetic to real data

1. Scale factors <u>Issues</u>: support & dimensionality

2. "Transport or flow your problems away"

[<u>2107.08648</u>, <u>2304.14963</u>]

Conditional neutrino regression with flows

Simulate faces or...

...detector images

[Karras et al., 2018]

EXPERIMENT

[2210.06204, SUPA]

Image \rightarrow Point cloud

Promotes portable solutions: decouples modeling from detector geometry

Point cloud diffusion

Transformer Encoder (TE) Block

Images \rightarrow Point cloud

[<u>2303.05376</u> & faster: <u>2307.06836</u> & <u>2310.00049</u>] 21

Issue: background sculpting for bump hunting

Signal

Background after cut on classifier

Goal: decorrelate background from mass

Decorrelation with normalizing flows

Flow = map between distributions

Invertible:

no change in separation power

Can be made conditional

Learning high-D background templates*

[*Fidelity of simulation alone insufficient]

comparison: 2307.11157

Classification without labeling (CWoLa)

Abandon notion of event label

Noisy labels to be S or B

Bump hunt [<u>1902.02634</u>] ATLAS analysis [<u>2005.02983</u>]

Beyond resonances e.g. symmetries [2203.07529]

Part II – AI tomorrow

Transformative science: automate & accelerate

Speculative, provocative, exploratory,...

Lots of open-ended questions

Humanity at the brink

Energy, climate, SDGs,...

Human history is a story of enabling technology

The AI box is opened

- obligation to see it through

Science = AI demonstrator

Physics we'd like to study

A lot of our work!

What we can make progress on

deally. Full overlat

The *adjacent* possible

·Oncor

Research is exploration

"New directions in science are launched by new tools much more often than by new concepts."

- Freeman Dyson

"If your life's work can be accomplished in your lifetime, you're not thinking big enough."

— Wes Jackson

"There is no power for change greater than a community discovering what it cares about."

Margaret Wheatley

Three visions

Vision Foundation models or Legacy of ChatGPT or Grand ideas too beautiful to be missed

The essence of science...

Prediction machine

Finding new regularities

Learning saves computational resources

Reduce dimensionality of problem

= the essence of ML

Scientists model the world

[Leo Breiman 2001 on statistical modeling: the two cultures]

Recap: what is a generative model?

An implicit model that describes how data was generated

[There is no model-less model]

[ChatGPT = implicit model of human language]

[DALL·E = implicit model of natural images]

Models with *meaningful* latent representations

Plato: myth of the cave

The quest of science:

Learn true underlying objects (latent variables)

from observed data (shadows)

The promise of foundation models

The idea of a foundation model

1. Pre-train on big unlabeled data

Carpenter

2. Fine-tune on labeled data + transfer learning

[Image credit: Kazuhiro Terao]

Characteristics of a foundation model

Pre-train using SSL* – no labels needed: can train on data

Learn meaningful data representation

Transfer & finetune: adopt to multiple downstream tasks

Multimodality: common embedding [e.g. text & images]

Pre-training

Augmentation [Re-sim]

Masking [next word prediction]

Novel physics-inspired training schemes?

Train using auxiliary tasks [e.g f-tag]

Encode physics to guide model

[<u>2002.05709</u>]

Example: masked particle modeling

<u>Pre-training task</u>: Mask & predict constituents of a jet

<u>Fine-tune for</u> <u>downstream tasks</u>:

Classification

• Weak supervision

We have our own embedding spaces

Reconstruction & theory spaces

What do foundation models add to this?

- End-to-end
- Differentiable
- Amortization & democratic reuse model
- Multimodal [importance of language?]
- Interpretability: symbolic regression,...

Vision Nº 2

Push the frontier of the unknown

or

How to optimize our search strategy

or

Automation

BSM stubbornly resists discovery

ATLAS + CMS = O(1000) search papers

O(8'000) person years

~2 years per analysis Average of ~4 people

Best use of resources ?

ã

S

What we want: maximize LHC discovery potential

Bottleneck: human & compute resources Automate & accelerate with

How much **signature** space have we explored?

		0	.,	π	ala	b	+	~	Z/W	н	$BSM \to SM_1 \times SM_1$			$BSM \to SM_1 \times SM_2$			$\mathrm{BSM} \to \mathrm{complex}$			
		C	μ	, 	4/9		<i>i</i>	7	2/11	11	q/g	γ/π^0 's	<i>b</i> ····	tZ/H	bH		$\tau q q'$	eqq'	$\mu q q'$	
e		[37, 38]	[39, 40]	[<mark>39</mark>]	ø	ø	ø	[41]	[42]	ø	ø	ø	ø	ø	ø	ø	ø	[43, 44]	ø	
μ			[37, 38]	[39]	ø	ø	ø	[41]	[42]	ø	ø	ø	ø	ø	ø	ø	ø	Ø	[43, 44]	
au				[45, 46]	ø	[47]	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø	[48, 49]	Ø	ø	
q/g					$\left[29, 30, 50, 51\right]$	[52]	ø	[53, 54]	[55]	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø	
b						[29, 52, 56]	[57]	[54]	[58]	[59]	ø	ø	ø	[<mark>60</mark>]	ø	Ø	ø	Ø	ø	
t							[<mark>61</mark>]	ø	[62]	[<mark>63</mark>]	ø	ø	ø	[<mark>64</mark>]	[<mark>60</mark>]	Ø	ø	Ø	ø	
γ								[65, 66]	[67-69]	[68, 70]	ø	ø	ø	ø	ø	Ø	ø	Ø	ø	
Z/W									[71]	[71]	ø	ø	ø	ø	ø	Ø	ø	Ø	ø	
H										[72, 73]	[74]	ø	ø	ø	ø	Ø	Ø	ø	ø	
\mathbf{I}_1	q/g										ø	ø	ø	ø	ø	Ø	ø	Ø	ø	
SN	γ/π^0 's											[75]	ø	ø	ø	ø	ø	Ø	Ø	
$\Lambda_1 \times$	b												[76, 77]	ø	Ø	Ø	ø	Ø	Ø	
∳ SI	:																			
¥																				
BSI																				
	:																			
			•				1													
				J a	st si	ans	116	Ire	SI	าลเ	<u> </u>)	ne	n		rea	r			
	540	~~ ~~~				9.10				JU				N						

How to quantify coverage?

What theory prior? [Frequentist vs. Bayesian]

How to interpret "model-agnostic" null results? Go beyond benchmarking (i.e. Frequentist) Recastability!

Follow-up strategy after an "anomalous" signal? Balance cost of follow-up against frequency alerts?

"What is the next best search given all existing search results?"

Our go-to method: 2-hypothesis test*

Works great if you know what you're looking for !

W boson

<u>*Neyman-Pearson Lemma</u>: Best test statistics is likelihood ratio = p_1/p_0

JORGE CHAM & DANIEL WHITESON

"No convincing theoretical guidance"

No *trust* in p₁ = playing the lottery!

 $p_0 = SM$ $p_1 = everything else$

How to design *complementary* search strategy?

Theory guided ↔ data-inspired

Foundation model: discrete BSM \rightarrow continuous embedding

Door to alternative metric: volume in *embedded space* [2208.05484]

 \rightarrow compare *reach* of colliders

MC, in-situ BG estimate,...

Becomes question of automation

Vision The future of particle physics

Νο

or

What if secrets of nature are NOT in our current data?

Posterior

Optimizing the science output

Optimal classification

Optimal calibration

Optimal reconstruction

Optimal simulation

Natural limit: true posterior p(theory | data)

Design new *optimal* experiment to optimize p(theory | data)

COMMUNITY EFFORTS

Get organized !

European Coalition for AI in Fundamental Physics

JENA Expressions of Interest

EuCAIF mission: community consensus, provide structure & support

Topics of interest: [feel free to sign up]

- Foundation models for fundamental physics
- Optimal design

Concluding remarks

AI = enabling technology \Rightarrow time to harness

Al for Science & Science for Al

RODEM = enabler of my research

syn-er-gy | 'sinərjē

FACULTY OF SCIENCE

Postdocs

Full

spectrum: physics

1.1 SS

62

ΤG

Tomke Schröer

Malte Algren

Jona Ackerschott

Matthew Leigh

Debajyoti Sengupta

Sam Klein

Kinga Wozniak

Sinergia

Johnny Raine This could be you ! replacement starting soon

Slava Voloshynovskiy Guillaume Quétant

Bálint Máté

Ivan Oleksiyuk

François Fleuret

(ດ)

Atul Kumar Sinha

Daniele Paliotta

Swiss National Science Foundation

Alumni

Lukas Ehrke

Manuel Guth

Matthias Schlaffer Sebastian Pina-Otey

ONDATION **ERNEST BONINCHI**

Alexander von Humboldt Stiftung/Foundation

European Commission

