Testing Bell Inequalities at the LHC

Alan Barr
University of Oxford

High Energy Particle Physics Seminar,
University of Geneva
$4^{\text {th }}$ October 2023

AJB, Phys.Lett.B 825 (2022) 136866 - 2106.01377 [hep-ph]
AJB, P. Caban, J.Rembieliński - 2204.11063 [quant-ph]
R.Ashby-Pickering, AJB, A.Wierzchucka - 2209.13990 [quant-ph]
C.Altomonte, AJB, ORA-2022

Outline

- Motivation
- Bell inequalities
- $H \rightarrow W^{+} W^{-}$as a Bell experiment [interlude]
- Some tools from quantum information theory
- Bell inequalities \& particle decays
- The LHC as a laboratory for testing quantum foundations
[conclusion]

Motivation

Interesting physics \neq 'new' physics \neq beyond-SM physics

ONTEE COVER

Heating of Magnetically Dominated Plasma by Alfven-Wave Turbulence
February 14. 2022
Three-dimensional kinetic simulation of the onset of relativistic wave turbulence in the collision of two magnetic shear waves. Selected for a Vieupoint in Physics.

Joonas Nattisis and Andrei M. Beloborodov
Phys. Rev. Lett. 128. 075101 (2022)

Issue 7 Table of Contents More Covers

PhySics news ano Commentary
A Quantized Surprise from Fermi Surface Topology
ebruary 16, 2022
The quantized conductance of a two-dimensional electron gas can eflect its Fermi surface topology

Synopsis on:

C. L. Kane

Phys. Rev Lett. 128. 07 es01 (2022)

props succestion

Chaotic Diffusion In Delay Systems: Glant Enhancement by Time Lag Modulation Laminar chaotic diffusion is found in systems with delayed noninearity, accompanied by a reduction of the effective dimensionality.

Tony Albers, David Müller-Bender, Lukas Hille, and Günter Radons Phys. Rev. Lett. 128, 074101 (2022)

sdTORS Sugcestion

Collective Radiative Dynamics of an Ensemble of Cold Atoms Coupled to an Optical Waveguide
An ensemble of oold atoms is coherently coupled in a controlled way to a tapered optical fiber, demonstrating collective effects in this system.

Riocardo Pennetts et al
Phys. Rev. Lett. 128, 073801 (2022)

Physics news and Commentary
Extending and Contracting Cells February 15, 2022
Cel-substrate interactions explain a difference in behavior between individual oells and tissues on a surface

Synopsis on:
Andrew Killeen, Thibault Bertrand, and Chiu Fan Lee Phys. Rev, Lett. 128, 078001 (2022)

EDITORS SUGGESTION

Outbreak Size Distribution in Stochastic Epidemic Models
An analytical approach to stochastic epidemio models shows that the statistics of extreme outbreaks depend on an infinite number of minimum-action paths, and that extreme outbreaks define a new class of rare processes for disorete-state stochastio systems.

Jason Hindes, Michael Assaf, and Ira B. Schwartz
Phyㅌ. Rev. Lett. 128, 078301 (2022)

PhySTCS NEWS AND COMMENTARY

Illuminating Black Holes through Turbulent Heating
February 14, 2022
Predictions indicate that it should be possible to directly identify how urbulence heats a given black hole's plasma from the spectrum of that plasma's radiation.

Viewpoint on:
Joonas Nâttila and Andrei M. Beloborodov
Phys, Rev. Lett. 128, 075101 (2022)

Physics news and commentary

Waves In a Solid Imitate Twisted Light February 11,2022

Waves of vibration moving through the walls of a pipe can carry orbital angular momentum that could be used for several purposes according to new theoretical work.

Focus story on:
G. J. Chaplain, J. M. De Ponti, and R. V. Craster

Phys. Rev. Lett. 128, 084301 (2022)

Some of the old problems are amongst the deepest. . .

> EINSTEIN ATTACKS QUANTUM THEORY

> Scientist and Two Colleagues Find It Is Not 'Complete'
> Even Though 'Correct.'

> SEE FULLER ONE POSSIBLE

> Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

New York Times, May 4 1935, reporting on Einstein-Podolsky-Rosen paper, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete"
... and they are experimentally accessible

(C)CERN
J.S. Bell 'On the Einstein Podolsky Rosen paradox' (1964)

Bell inequalities

J.S. Bell showed that if we assume:

- locality: that there are no physical influences traveling faster than the speed of light and
- realism: objects have physical properties independent of measurement
then correlations in measurement outcomes from two distant observers must necessarily obey an inequality

Rephrasing of Giustina et al 2015

The textbook case - apparatus

(Ensemble of similarly-prepared systems)

Quantum systems - initial thoughts

Take a perfectly entangled Bell state of two spin-half particles:

$$
\left|\Psi_{+}\right\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{A}|\downarrow\rangle_{B}+|\downarrow\rangle_{A}|\uparrow\rangle_{B}\right)
$$

The measurements of spin for each system separately are uncertain, nevertheless:

- After measuring S_{z} system A we can tell with certainty about outcome of measuring S_{z} on system B
- even though A and B may be widely separated

Q: Is this property 'spooky action at a distance'?

Setting: S_{a}
Settrise: S_{b}

We can also change our measurement settings: S_{A} and S_{B}

We might expect the probabilities of outcomes at A to depend on:

- the measurement settings S_{A} at A
- some properties $\vec{\lambda}$ of the $A B$ system

The CHSH Bell inequality

Clauser, Horne, Shimony \& Holt (1969)

- The two experiments, A and B, each have two possible outcomes:

$$
\{+1 \text { or }-1\}
$$

$E(a, b)$ is the expectation value of the product

- Each experiment has two possible settings :
\{ primed or unprimed \}
- Calculate the following function of the correlated expectations:

$$
\mathcal{I}_{2}=E(a, b)-E\left(a, b^{\prime}\right)+E\left(a^{\prime}, b\right)+E\left(a^{\prime}, b^{\prime}\right)
$$

The local realism formalism

Assume that there is a well-defined correlation function for the pair of measurement outcomes:

$$
P\left(S_{A}, S_{B}\right) \equiv \int \mathrm{d} \vec{\lambda} a\left(S_{A}, \vec{\lambda}\right) \quad b\left(S_{B}, \vec{\lambda}\right) P(\vec{\lambda})
$$

May depend on 'hidden' variables $\vec{\lambda}$ which have a PDF $P(\vec{\lambda})$

Assumptions

- $a\left(S_{A}, \vec{\lambda}\right)$ does not depend on S_{B}
- $b\left(S_{B}, \vec{\lambda}\right)$ does not depend on S_{A}
- $P(\vec{\lambda})$ does not depend on S_{A} nor on S_{B}

Demand that marginal probabilities for measurements of A and B are non-negative

The CHSH Bell inequality

$$
\begin{gathered}
\mathcal{I}_{2}=E(a, b)-E\left(a, b^{\prime}\right)+E\left(a^{\prime}, b\right)+E\left(a^{\prime}, b^{\prime}\right) \\
\text { Local realism } \Longrightarrow\left|\mathcal{I}_{2}\right| \leq 2
\end{gathered}
$$

Quantum Mechanics violates the CHSH inequality

Find CHSH expectation values for the Bell state

$$
\left|\Psi_{+}\right\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{A}|\downarrow\rangle_{B}+|\downarrow\rangle_{A}|\uparrow\rangle_{B}\right)
$$

Quantum mechanics:

- allows values of \mathcal{I}_{2} larger than two
- up to the Cirel'son bound of $2 \sqrt{2}$
- in conflict with local realism

Maximum violation for e.g. $a=0^{\circ}, a^{\prime}=45^{\circ}, b=22.5^{\circ}$ and $b^{\prime}=67.5^{\circ}$

Empirical tests of Bell Inequalities

Physical systems

- photons
- ions
- superconducting systems
- nitrogen vacancy centres

Also in pairs of three-outcome measurements using photons

Classic experiments

- Freedman and Clauser (1972)
- Aspect et al.'s experiments (1981 \& 1982)
- Zeilinger et al. (1998)
- Three 'loophole-free' tests of 2015: Hensen et al., Shalm et al., Giustina (et Zeilinger) et al.

${ }^{2}$ The Nobel Prize in Physics 2022

III. Niklas Elmehed © Nobel Prize Outreach
Alain Aspect
Prize share: 1/3

III. Niklas Elmehed © Nobel Prize Outreach
John F. Clauser
Prize share: $1 / 3$

III. Niklas Elmehed © Nobel Prize Outreach
Anton Zeilinger
Prize share: $1 / 3$

Results?

Violation of Bell inequalities in each case

In the tested systems and at the tested energies

$H \rightarrow W^{+} W^{-}$as a Bell experiment

Spin in the $H \rightarrow W^{+} W^{-}$decay

The Higgs boson is a scalar, while $W^{ \pm}$bosons are vector bosons.

- $H \rightarrow W^{+} W^{-}$decays produce pairs of W bosons in a singlet spin state
- In the narrow-width and non-relativistic approximations:

$$
\left|\psi_{s}\right\rangle=\frac{1}{\sqrt{3}}(|+\rangle|-\rangle-|0\rangle|0\rangle+|-\rangle|+\rangle)
$$

This is also a Bell state

- Bell inequality tests deep in the realm of QFT
- Many orders of magnitude different in energy, length, timescale from existing measurements

W bosons are their own polarimeters

$V-A$ decays
$\mathrm{SU}(2)$ weak force is chiral

$$
\begin{aligned}
& W^{+} \rightarrow \ell_{R}^{+}+\nu_{L} \\
& W^{-} \rightarrow \ell_{L}^{-}+\bar{\nu}_{R}
\end{aligned}
$$

Decay of a $W^{ \pm}$boson is equivalent to a measurement of its spin along the axis of the emitted lepton

Getting the directions right

- ℓ^{+}is emitted preferentially along spin direction (of W^{+}) ℓ^{-}is emitted preferentially against spin direction (of W^{-})
- The $W^{ \pm}$spins are in different directions
- So the two leptons prefer to go in the same direction as each other

$\ell^{+} \ell^{-}$azimuthal correlations in $H \rightarrow W^{+} W^{-}$

- Higgs signal concentrated at small $\Delta \phi_{\ell \ell}$
- Used e.g. in discovery searches

Q: Can we measure Bell inequality in this system?

\backslash begin\{interlude $\}$

discovernorthernireland.com

Belfast City Council had declined to name a street after one of Northern Ireland's most eminent scientists.

Belfast-born, John Stewart Bell who died in 1990, is regarded as one of the 20th Century's greatest physicists.

The council received an application to name a street in Titanic Quarter after Mr Bell.

However, the council rejected the proposal as it has "traditionally avoided using the names of people" when deciding on street names.

Only two streets in the city have been named after individuals since the 1960s: Prince Edward Park in 1962 and Prince Andrew Park in 1987.

Titanic Quarter Ltd had applied to name a currently unnamed street beside Belfast Metropolitan College as John Bell Crescent.

Bell was born in Belfast in 1928 to a family from a poor background.
He was the only one of his siblings to stay at school over the age of 14, and his family could not afford to send him to one of the city's grammar schools.

Instead he attended Belfast Technical High School, now Belfast Metropolitan College, and then entered Queen's University.

BBC news 19 February 2015
\end\{interlude\} }

Some tools from quantum information theory

The density matrix ρ

- A fully-characterised quantum system is described by a ket $|\psi\rangle$
- Expectation values of measurement operator \mathcal{A} are given by

$$
\langle\psi| \mathcal{A}|\psi\rangle
$$

- A more general, not-fully-characterised, quantum system is described by a density matrix ρ

$$
\rho=\sum_{i} p_{i}|\psi\rangle_{i}\left\langle\left.\psi\right|_{i}\right.
$$

p_{i} is classical probability
ρ is a non-negative hermitian operator with unit trace

- Expectation values for operator \mathcal{A} for ρ are given by:

$$
\langle\mathcal{A}\rangle=\operatorname{tr}(\rho \mathcal{A})
$$

Also true for e.g. $W^{ \pm}, Z^{0}, t, \tau$

Transforming between the spaces

The Wigner-Weyl formalism for spin

Operator \rightarrow function

$$
\Phi_{A}^{Q}(\hat{\mathbf{n}})=\langle\hat{\mathbf{n}}| A|\hat{\mathbf{n}}\rangle
$$

Wigner Q symbols

Function \rightarrow operator

$$
A=\frac{2 j+1}{4 \pi} \int \mathrm{~d} \Omega_{\hat{\mathbf{n}}}|\hat{\mathbf{n}}\rangle \Phi_{A}^{P}(\hat{\mathbf{n}})\langle\hat{\mathbf{n}}|,
$$

Wigner P symbols

Parameterise ρ

Symmetrically for qutrits in terms of the Gell-Mann matrices λ_{i}

Single vector boson

$$
\rho=\frac{1}{3} l_{3}+\sum_{i=1}^{8} a_{i} \lambda_{i}
$$

$a_{i}: 8$ real parameters $\left(3^{2}-1\right)$

- Generalised Gell-Mann matrices $\lambda_{i}^{(d)}$ exist for any spin
- For spin-half $(d=2)$ they are the Pauli matrices and we get the Bloch sphere
- For $d=3$ they are the eight generators of $\operatorname{SU}(3)$

Other parameterisations, e.g. Cartesian Tensors are good alternatives

Parameterise ρ - bipartite system

Symmetrically for qutrits in terms of the Gell-Mann matrices λ_{i}

Single vector boson

$$
\rho=\frac{1}{3} l_{3}+\sum_{i=1}^{8} a_{i} \lambda_{i}
$$

$a_{i}: 8$ real parameters $\left(3^{2}-1\right)$

Two vector bosons

$$
\rho=\frac{1}{9} I_{3} \otimes I_{3}+\sum_{i=1}^{8} a_{i} \lambda_{i} \otimes \frac{1}{3} I_{3}+\sum_{j=1}^{8} b_{j} \frac{1}{3} I_{3} \otimes \lambda_{j}+\sum_{i, j=1}^{8} c_{i j} \lambda_{i} \otimes \lambda_{j},
$$

$8+8+64=80$ real parameters $\left(9^{2}-1\right)$

Angular distributions for each parameter

Wigner Q functions for the eight Gell-Mann matrices

Extracting the parameters experimentally

Parameters of ρ are the experimentally-measurable classical averages of the Wigner P functions

$$
\begin{gathered}
\hat{a}_{i}=\frac{1}{2}\left\langle\Phi_{i}^{P}\left(\hat{\mathbf{n}}_{1}\right)\right\rangle_{\mathrm{av}} \\
\hat{b}_{i}=\frac{1}{2}\left\langle\Phi_{i}^{P}\left(\hat{\mathbf{n}}_{2}\right)\right\rangle_{\mathrm{av}} \\
\hat{c}_{i j}=\frac{1}{4}\left\langle\Phi_{i}^{P}\left(\hat{\mathbf{n}}_{1}\right) \Phi_{j}^{P}\left(\hat{\mathbf{n}}_{2}\right)\right\rangle_{\mathrm{av}}
\end{gathered}
$$

Quantum State Tomography example

Higgs boson decays

Density matrix parameters from simulated Higgs boson decays to vector bosons (Madgraph, no background)

Testing a Bell Inequality

The CGLMP Qutrit inequality

Collins Gisin Linden Massar Popescu (2002)

The optimal Bell inequality for pairs of qutrits
CGLMP function

$$
\begin{aligned}
\mathcal{I}_{3}=P\left(A_{1}=B_{1}\right)+ & P\left(B_{1}=A_{2}+1\right) \\
& +P\left(A_{2}=B_{2}\right)+P\left(B_{2}=A_{1}\right) \\
- & P\left(A_{1}=B_{1}-1\right)-P\left(B_{1}=A_{2}\right) \\
& -P\left(A_{2}=B_{2}-1\right)-P\left(B_{2}=A_{1}-1\right) .
\end{aligned}
$$

$P\left(A_{i}=B_{j}+k\right)$ is the probability that A_{i} and B_{j} differ by $k \bmod 3$

CGLMP limits?

In a local realist theory

$$
\mathcal{I}_{3} \leq 2
$$

In QM

$$
\mathcal{I}_{3}^{\mathrm{QM}} \leq 1+\sqrt{11 / 3} \approx 2.9149
$$

In QM for a maximally entangled state

$$
\mathcal{I}_{3}^{\mathrm{QM}, \text { singlet }} \leq 4 /(6 \sqrt{3}-9) \approx 2.8729
$$

Testing the CGLMP inequality

Knowing elements of ρ calculate

$$
\mathcal{I}_{3}=\operatorname{tr}\left(\rho \mathcal{B}_{\mathrm{CGLMP}}^{x y}\right)
$$

where the CGLMP operator is

$$
\mathcal{B}_{\mathrm{CGLMP}}^{x y}=-\frac{2}{\sqrt{3}}\left(S_{x} \otimes S_{x}+S_{y} \otimes S_{y}\right)+\lambda_{4} \otimes \lambda_{4}+\lambda_{5} \otimes \lambda_{5}
$$

where

$$
S_{x}=\frac{1}{\sqrt{2}}\left(\lambda_{1}+\lambda_{6}\right) \quad \text { and } \quad S_{y}=\frac{1}{\sqrt{2}}\left(\lambda_{2}+\lambda_{7}\right)
$$

$H \rightarrow W^{+} W^{-}$simulated results

In idealised, numerical simulation of $H \rightarrow W^{+} W^{-}$, with finite width effects and relativistic effects:

$$
\mathcal{I}_{3} \approx 2.6
$$

Doing for real \& doing better?

Bell operator optimisation

- Optimal Bell operator not known in the general case.
- Use freedom in measurement observables to perform independent unitary transformations on each side of the experiment

$$
\mathcal{B} \longrightarrow(U \otimes V)^{\dagger} \cdot \mathcal{B} \cdot(U \otimes V)
$$

- U, V independent 3×3 unitary matrices, optimised for each kinematic process

Fabbrichesi et al. 2302.00683

$\mathrm{H} \longrightarrow W W^{*}$

Optimised Bell Operator

$$
>2 ?
$$

Bound on the concurrence >0 ?

Fabbrichesi et al. 2302.00683
$\mathrm{pp} \longrightarrow Z Z$

Optimised Bell Operator >2 ?

Bound on the concurrence

$$
>0 \text { ? }
$$

Fabbrichesi et al. 2302.00683

Searching Beyond the Standard Model?

- Production of $W \pm / Z$ pairs at $p p, e^{+} e^{-}$
- Quantum spin observables complementary probes of Wilson coefficients/EFT
- Offer increased sensitivity to certain operators

Aoude, Madge, Maltoni, Mantani Probing new physics through entanglement in diboson production 2307.09675

Semi-leptonic $h \rightarrow W W^{*} \rightarrow \ell^{-} \bar{\nu} c \bar{s}$

Semi-leptonic channel allows neutrino weighting reconstruction Charm tagging allows identification of spin from angular distribution of hadronic W

Lumi $\left[\mathrm{fb}^{-1}\right]$	$\left\langle\mathcal{B}_{\text {CGLMP }}^{\text {zx }}\right\rangle$		(idealised)	Signif. (idealised)
139	2.45	\pm	$0.25(0.18)$	$1.8(2.5)$
300	2.45	\pm	$0.17(0.12)$	$2.65(3.75)$
3000	2.45	\pm	$0.05(0.04)$	$9.0(11.25)$

Fabbri, Howarth, Maurin Isolating semi-leptonic $H \rightarrow W W^{*}$ decays for Bell inequality tests 2307.13783

Hot off the press!

Physics

Large Hadron Collider turned into world's biggest quantum experiment

Physicists have used the famous particle smasher to investigate the strange phenomena of quantum entanglement at far higher energies than ever before

By Alex Wikins
断 3 October 2023
$f y$ in $\dot{\square}$

Observation of entanglement in $t \bar{t}$

Entangled?

Addresses the question can we write:

$$
\rho \stackrel{?}{=} \sum_{i} p_{i} \rho_{A} \otimes \rho_{B} \quad p_{i} \geq 0, \sum p_{i}=1
$$

as a convex sum of product states?

- Yes \Longrightarrow separable
- No \Longrightarrow entangled

Entangled states are a superset of Bell-violating states
Physics Briefing / ATLAS-CONF-2023-069 / TOP2023 presentation

Highest-energy detection of quantum entanglement

- $t \bar{t}$ spin-qubit pair
- Decay before hadronisation
- Leptons measure top spin
- Entanglement witness D
- \exists no separable states with D $<-\frac{1}{3}$

New result

$$
D_{\text {obs }}=-0.547 \pm 0.002 \text { [stat.] } \pm 0.021 \text { [syst.] } \quad(>5 \sigma)
$$

Physics Briefing / ATLAS-CONF-2023-069 / TOP2023 presentation

The LHC: a laboratory for probing quantum foundations

Weak bosons are wonderful quantum probes

- Quantum spin self measurement via chiral weak decays
- Expect entanglement and even Bell inequality violation
- Spin density matrix can be reconstructed from angular distributions ('tomography')

A wide-ranging quantum programme is possible @ LHC

- Local realism tests at $\sim 10^{12}$ higher energy
- Probes of quantum measurement
- Exchange symmetry and distinguishablity
- All in an unexplored region

EXTRAS

Image from ATLAS physics briefing

So what?

If we observe Bell Inequality violation:

A very different sort of Bell test:

- 12 orders of magnitude higher energy that existing tests (shorter time scale, shorter length scale. . .)
- In 'self-measuring' quantum system
- Deep in the realm of quantum field theory (virtual particles)
- in qutrit rather than qubit systems

If we don't observe Bell Inequality violation (when we expect to):
We have an even more surprising and consequential result ...
(and yes, it's also a good way to find new fields)

Lots of other interesting work in this area, including:

- Aguilar-Saavedra, Bernal, Casas, Moreno Testing entanglement and Bell inequalities in H \rightarrow ZZ 2209.13441
- Aguilar-Saavedra, Laboratory-frame tests of quantum entanglement in $H \rightarrow W W, 2209.14033$
- Fabbrichesi, Floreanini, Gabrielli, Marzola Stringent bounds on HWW and HZZ anomalous couplings with quantum tomography at the LHC 2304.02403
- Morales Exploring Bell inequalities and quantum entanglement in vector boson scattering 2306.17247
- Bi, Cao, Cheng, Zhang New observables for testing Bell inequalities in W boson pair production 2307.14895
- Aguilar-Saavedra, Post-decay quantum entanglement in top pair production 2307.06991

Optimising CHSH inequality over directions

- Find d and its transpose d^{T}
- Find real symmetric positive matrix $M=d^{\mathrm{T}} d$
- Find e-vals $\mu_{1} \geq \mu_{2} \geq \mu_{3}$ of M
- Find sum $\Sigma_{\text {CHSH }}=\mu_{1}+\mu_{2}$ of two largest
- Finally the CHSH Bell inequality is violated iff

$$
\Sigma_{\mathrm{CHSH}}>1
$$

Maximally entangled qubit pair states

The states for which the Bell inequality violation is maximal are

$$
\begin{aligned}
\left|\Phi^{+}\right\rangle & =\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}\right) \\
\left|\Phi^{-}\right\rangle & =\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}-|1\rangle_{A}|1\rangle_{B}\right) \\
\left|\Psi^{+}\right\rangle & =\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|1\rangle_{B}+|1\rangle_{A}|0\rangle_{B}\right) \\
\left|\Psi^{-}\right\rangle & =\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|1\rangle_{B}-|1\rangle_{A}|0\rangle_{B}\right)
\end{aligned}
$$

These are the Bell states: the maximally entangled states of two qubits

- $|\psi\rangle_{A B} \in\left(\mathbb{C}^{2}\right)^{2}$
- Basis for each qubit $\{0,1\}$

QFT calculations

FIG. 3: Comparison of the violation of the CGLMP inequality in the state $\left|\xi\left(k, k^{\pi}\right)\right\rangle$ (blue, dashed line) and in the state $\left|\psi\left(k, k^{\pi}\right)\right\rangle$ (green, dotted line). The configuration of particles momenta and measurements directions is the following: $\mathbf{n}=(0,0,1)$,
$\mathbf{w}=\left(\cos \phi_{w} \sin \theta_{w}, \sin \phi_{w} \sin \theta_{w}, \cos \theta_{w}\right), \mathbf{w} \in\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$ and $\theta_{a}=2.667, \phi_{a}=4.109, \theta_{b}=0.924, \phi_{b}=0.974$, $\theta_{c}=2.699, \phi_{c}=1.005, \theta_{d}=0, \phi_{d}=0$.

AJB, P. Caban, J. Rembieliński - 2204.11063 [quant-ph]

Loopholes

Rachel Ashby-Pickering (MMathPhys project)

- Freedom of Choice: potential that the violation came from a sort of 'conspiracy' of a locally causal system.
- Memory: potential to 'remember' earlier settings of the measurement and so predict the next one, or if the experimental runs aren't independent
- Efficiency: potential that the measurements are not representative of the underlying reality.
- Communication/Locality: potential that the measurement settings of one of the systems, or the measurement itself could influence the measurement settings or outcome of the other system.
(+other more extreme ways to avoid non-locality: retrocausality, superdeterminism, denial of realism)

Three 'loophole-free' measurements (2015)

LETTER

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen ${ }^{1,2}$, H. Bernien ${ }^{1,2}+$ A. E. Dréau ${ }^{1,2}$, A. Reiserer ${ }^{1,2}$, N. Kalb 1,2, M. S. Blok ${ }^{1,2}$, J. Ruitenberg ${ }^{1,2}$, R. F. L. Vermeulen ${ }^{1,2}$, R. N. Schouten ${ }^{1,2}$, C. Abellán ${ }^{3}$, W. Amaya ${ }^{3}$, V. Pruneri ${ }^{3,4}$, M. W. Mitchell ${ }^{3,4}$, M. Markham ${ }^{5}$, D. J. Twitchen ${ }^{5}$, D. Elkouss ${ }^{1}$, S. Wehner ${ }^{1}$, T. H. Taminiau ${ }^{1,2}$ \& R. Hanson ${ }^{1,2}$

Lynden K. Shalm, ${ }^{1, \dagger}$ Evan Meyer-Scott, ${ }^{2}$ Bradley G. Christensen, ${ }^{3}$ Peter Bierhorst, ${ }^{1}$ Michael A. Wayne, ${ }^{3,4}$ Martin J. Stevens, ${ }^{1}$ Thomas Gerrits, ${ }^{1}$ Scott Glancy, ${ }^{1}$ Deny R. Hamel, ${ }^{5}$ Michael S. Allman, ${ }^{1}$ Kevin J. Coakley, ${ }^{1}$ Shellee D. Dyer, ${ }^{1}$ Carson Hodge, ${ }^{1}$ Adriana E. Lita, ${ }^{1}$ Varun B. Verma, ${ }^{1}$ Camilla Lambrocco, ${ }^{1}$ Edward Tortorici, ${ }^{1}$ Alan L. Migdall, ${ }^{4,6}$
Yanbao Zhang, ${ }^{2}$ Daniel R. Kumor, ${ }^{3}$ William H. Farr, ${ }^{7}$ Francesco Marsili, ${ }^{7}$ Mathew D. Shaw, ${ }^{7}$ Jeffrey A. Stern, ${ }^{7}$
Carlos Abellán, ${ }^{8}$ Waldimar Amaya, ${ }^{8}$ Valerio Pruneri, ${ }^{8,9}$ Thomas Jennewein, ${ }^{2,10}$ Morgan W. Mitchell, ${ }^{8,9}$ Paul G. Kwiat, ${ }^{3}$ Joshua C. Bienfang, ${ }^{4,6}$ Richard P. Mirin, ${ }^{1}$ Emanuel Knill, ${ }^{1}$ and Sae Woo Nam ${ }^{1,7}$
${ }^{1}$ National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA ${ }^{2}$ Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1
in Oniversity Avenue West, Waterloo, Ontario, Canada, N2L 3G1 ,man, rma

Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons
Marissa Giustina, ${ }^{1,2 *^{*}}$ Marijn A. M. Versteegh, ${ }^{1.2}$ Sören Wengerowsky, ${ }^{1,2}$ Johannes Handsteinere, ${ }^{1,2}$ Armin Hochrainer, ${ }^{1,2}$ Kevin Phelan, ${ }^{1}$ Fabian Steinlechner, ${ }^{1}$ Johannes Kofler, ${ }^{3}$ Jan-Åke Larsson, ${ }^{4}$ Carlos Abellán, ${ }^{5}$ Waldimar Amaya, ${ }^{5}$ Valerio Pruneri, ${ }^{5,6}$ Morgan W. Mitchell, ${ }^{5,6}{ }^{6}$ Jörn Beyer, ${ }^{7}$ Thomas Gerrits, ${ }^{8}$ Adriana E. Lita, ${ }^{8}$ Lynden K. Shalm,

Sae Woo Nam, ${ }^{8}$ Thomas Scheidl, ${ }^{1,2}$ Rupert Ursin, ${ }^{1}$ Bernhard Wittmann, ${ }^{1,2}$ and Anton Zeilinger ${ }^{1,2,}$
${ }^{1}$ Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences,

'Loophole free' measurements

Went to particular trouble to ensure e.g.:

- measurements are space-like separated
- rapid switching of measurements
- basis choice space-like separated from measurement of other system
- measurement settings are 'random'

Communication loophole

- Photon experiments aim for large distances
- Wish to have space-like separation of measurements (\& decisions)
- $H \rightarrow W^{+} W^{-}$based on QFT calculation
- Mixture of space-like and time-like contributions to
 amplitude

The Communication Loophole

H_{0} : a fraction 0.49 of events have a value of $I_{3}=2$, and the remaining events (fraction 0.51) maximally violate the Bell inequality ($I_{3}=2.8729$)

$\mathrm{I}_{3}=2.445 \quad$| I_{3} measured $=2.62$ |
| ---: |
| $(\mathrm{~s} . \mathrm{d}$ of 0.05299$)$ |

$\rightarrow \mathrm{Z} \approx-3.3$
Fraction 0.51 cannot have $\mathrm{I}_{3}>2.8729$, so
smaller fraction than 0.49 must have a value
$\mathrm{I}_{3}<2$.

$I_{3}=2.38$
I_{3} measured $=2.62$
$\underline{H_{0}}$: a fraction 0.57 of events have a value of $I_{3}=2$, and the remaining events (fraction 0.43) maximally violate the Bell inequality ($I_{3}=2.8729$)
\rightarrow Very likely some of the spacelike separated events had a value $I_{3}>2$, and so contributed to the violation of the Bell inequality.
\rightarrow Some violation of the Bell inequality with the loophole eliminated

Results: Can assert space-like separation at least on a statistical basis
Rachel Ashby-Pickering

Freedom of choice loophole

Alice and Bob each have three different sources of random bits that undergo an XOR operation together to produce their random measurement decisions (for more information see Supplemental Material [28]). The first source is based on measuring optical phase diffusion in a gain-switched laser that is driven above and below the lasing threshold. A new bit is produced every 5 ns by comparing adjacent laser pulses [17]. Each bit is then processed through an XOR gate with all past bits that have been produced (for more details see Supplemental Material [28]). The second source is based on sampling the amplitude of an optical pulse at the single-photon level in a short temporal interval. This source produces a bit on demand and is triggered by the synchronization signal. Finally, Alice and Bob each have a different predetermined pseudorandom source that is composed of various popular culture movies and TV shows, as well as the digits of π, processed together through an XOR gate. Suppose that a local-realistic system, with the goal of producing violation of the Bell inequality, was able to manipulate the properties of the photons emitted by the entanglement source before each trial. Provided that the randomness sources correctly extract their bits from the underlying processes of phase diffusion, optical amplitude sampling, and the production of cultural artifacts (such as the movie Back to the Future), this powerful local realistic system would be required to predict the outcomes of all of these processes well in advance of the beginning of each trial to achieve its goal. Such a model would have elements of superdeterminismthe fundamentally untestable idea that all events in the Universe are preordained.

- Many 'Loophole free' Bell tests use quantum randomness for $\hat{\mathbf{n}}$ choice
(amongst other more curious choices)
- So does $H \rightarrow W^{+} W^{-}$

Experimental dependence @ LHC?

- Simulate LHC: $140 / \mathrm{fb}$ pp @ 13 TeV with Madgraph Monte Carlo simulation
- No backgrounds, some basic selection cuts, Gaussian smearing of each of the W boson momentum components

Expt. Assumptions	Truth	'A'	'B'	' C^{\prime}
Min $p_{T}(\ell)[\mathrm{GeV}]$	0	5	20	20
$\operatorname{Max}\|\eta(\ell)\|$	-	2.5	2.5	2.5
$\sigma_{\text {smear }}[\mathrm{GeV}]$	0	5	5	10
$\mathcal{I}_{3}^{\text {xyz }}$	2.62	2.40	2.75	2.16
Signif. $\left(\mathcal{I}_{3}^{\mathrm{xyz}}-2\right)$	11.7σ	5.2σ	5.3σ	1.0σ

CAVEAT: Indicative only - more realistic version being investigated

In case you're curious

The CGLMP operator is ${ }^{1}$

$$
\mathcal{B}_{\text {CGLMP }}^{x y}=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 2 & 0 & 0 \\
0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 \\
0 & 0 & 2 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

CGLMP limits?

In a local realist theory

$$
\mathcal{I}_{3} \leq 2
$$

In QM

$$
\mathcal{I}_{3}^{\mathrm{QM}} \leq 1+\sqrt{11 / 3} \approx 2.9149
$$

In QM for a maximally entangled state

$$
\mathcal{I}_{3}^{\mathrm{QM}, \text { singlet }} \leq 4 /(6 \sqrt{3}-9) \approx 2.8729
$$

This is the tightest Bell inequality for pairs of three-outcome experiments

Finding a form for ρ

Parameterise ρ

Spin matrices and their pairwise symmetric products

$$
\rho_{W}=\frac{1}{3} l_{3}+\sum_{i=1}^{3} a_{i} S_{i}+\sum_{i, j=1}^{3} c_{i j} S_{\{i j\}},
$$

where

$$
S_{\{i j\}} \equiv S_{i} S_{j}+S_{j} S_{i}
$$

- a_{i} form a real vector
- $c_{i j}$ form a real symmetric traceless matrix
- $3+5=8$ real parameters

Finding ρ - 'quantum state tomography'

$$
\rho_{W}=\frac{1}{3} I_{3}+\sum_{i=1}^{3} a_{i} S_{i}+\sum_{i, j=1}^{3} c_{i j} S_{\{i j\}}
$$

Use the trace orthogonality relations

$$
\operatorname{tr}\left(S_{i}, S_{j}\right)=2 \delta_{i j} \quad \text { and } \quad \operatorname{tr}\left(S_{i}, S_{\{j k\}}\right)=0
$$

For an ensemble of $W^{ \pm}$decays we can get the a_{i} parameter of ρ_{W} from data

Lepton directions $\rightarrow \rho_{W}$

$$
\left\langle\xi_{i}^{ \pm}\right\rangle_{\mathrm{av}} \equiv\left\langle\hat{\mathbf{n}}_{\ell^{ \pm}} \cdot \hat{\mathbf{e}}_{i}\right\rangle_{\mathrm{av}}=\operatorname{tr}\left(\rho_{W} S_{i}\right)=2 a_{i}
$$

