LUXE: a new experiment to study nonperturbative QED and search for new particles. in electron-laser and photon-laser collisions

Jenny List (DESY) Particle Physics seminar Université de Genève 20 September 2023

Many thanks to all LUXEies who contributed material, especially to Louis & Ruth!

What is LUXE?

And what are we going to discuss today?

- Laser Und XFEL Experiment
 - New experiment planned in Hamburg using
 - European XFEL electrons accelerator
 - High-intensity laser
 - Synergy between accelerator, particle physics and laser physics
- Documents:
 - LOI (2019): <u>arXiv:1909.00860</u>
 - CDR (2021): EPJST: <u>arXiv:2102.02032</u>
 - TDR (2023): <u>arXiv:2308.00515</u>
- Collaboration size:
 - ~150 authors 22 institutes
 - Theory and Experiment
- Menu for today:
 - What is strong-field QED and why is it interesting?
 - What does LUXE add compared to previous SF-QED experiments?
 - What are the key technologies to obtain LUXE's measurement goals?

Strong-field QED: Theory & Experiments

QED and Vacuum

No or weak fields

- QuantumElectroDynamics: One of the most well-tested physics theory
 - Calculation in QED based on perturbative theory of α_{EM} .
 - Anomalous moment of electron (g-2) as a precision better than 1 part in a trillion and data in agreement with theory.

• The vacuum:

- State with the lowest energy.
- Vacuum consists of virtual particles that can be charged and couple to fields.
- Quantum fields: average is zero (apart from the Higgs;)), but variance is not!
- Coupling to virtual particles affects physical particle processes

Julian Schwinger

Nobel prize 1965

Strong-Field QED

When things get special

• If one apply a strong electromagnetic field on a vacuum:

- Vacuum boils if field large enough to create rea
 - "critical field" \rightarrow Schwinger-Limit:
 - QED becomes non perturbative above Schwinger-limit \rightarrow Strong field QED (SFQED)!
- Experimental consequences:
 - Field-induced ("Breit-Wheeler") Pair Creation:
 - Modified Compton Spectrum:
 - Effect on Compton edge position.
 - Electrons obtains (significantly) larger effective rest mass.

• Non-perturbative and strong field QED can be probed in laboratory at LUXE!

DESY. LUXE J. List, U Geneva, Sep 20, 2023

W_{field}>2m_e

Euler and Heisenberg Z.Phys. 98 (1936) no.11-12, 714-732 (translation at arXiv:physics/0605038

664

al pairs:

$$\varepsilon_{crit} = \frac{m_e^2 c^3}{\hbar e} \simeq 1.3 \cdot 10^{18} \, \mathrm{V/m}$$

SFQED with relativistic probes **Advantage of a high-energy electron beam**

• In the lab: reach fields at Schwinger limit in the rest frame of highly relativistic probe particles \rightarrow LUXE: 16.5 GeV electrons + multi-TW optical LASER

J. D. Jackson, Classical Electrodynamics 3rd. Edition

 $\mathscr{E}_{rest\ fr.} = \gamma \mathscr{E}_{lab\ fr.}$

Important consequence of having a relativistic probe: \rightarrow any field background can be approximated as a plane wave

The LUXE operation modes

The LUXE operation modes

High-energy electrons (16.5 GeV XFEL beam)

The LUXE operation modes

High-energy electrons (16.5 GeV XFEL beam)

High-intensity LASER (Tera-Watt, 800nm) → large E-field

The LUXE operation modes

High-energy electrons (16.5 GeV XFEL beam)

High-intensity LASER (Tera-Watt, 800nm) → large E-field

note: in reality, LASER crossing angle θ =17.2°

The LUXE operation modes

High-energy electrons (16.5 GeV XFEL beam)

DESY. LUXE J. List, U Geneva, Sep 20, 2023

High-intensity LASER (Tera-Watt, 800nm) \rightarrow large E-field

note: in reality, LASER crossing angle θ =17.2°

The LUXE operation modes

High-energy electrons (16.5 GeV XFEL beam)

The LUXE operation modes

High-energy electrons (16.5 GeV XFEL beam)

Non-linear Compton Scattering: $e^- + n\gamma_L \rightarrow e^- + \gamma_C$

The LUXE operation modes

High-energy electrons (16.5 GeV XFEL beam)

Non-linear Compton Scattering: $e^- + n\gamma_L \rightarrow e^- + \gamma_C$

The LUXE operation modes

High-energy electrons (16.5 GeV XFEL beam)

Non-linear Compton Scattering: $e^- + n\gamma_L \rightarrow e^- + \gamma_C$

The LUXE operation modes

The LUXE operation modes

The LUXE operation modes

The LUXE operation modes

The LUXE operation modes

Non-linear Breit-Wheeler pair production : $\gamma_B + n\gamma_L \rightarrow e^+ + e^-$

LUXE: first SF-QED experiment to probe directly photon-photon interaction

Compton scattering in strong fields

Multi-photon interactions

Consider Compton scattering in plane-wave background field: $A(x) = A_0 \sin(k \bullet x)$ lacksquare

Strong field ($\xi \ge 1$): Need to take into account all order diagrams!

DESY. LUXE J. List, U Geneva, Sep 20, 2023

Link to QU lecture by Ben King Review paper: A. Fedotov et al, 2203.00019 [arXiv:hep-ph]

The Furry picture How to do calculations?

- Solve equations of motion (Dirac equation) in field background \bullet \rightarrow analytical solutions exist in plane wave background ("Volkov wave functions")
- derive Feynman rules for "dressed" states ("Furry expansion") \bullet

Link to QU lecture by Ben King Review paper: A. Fedotov et al, <u>2203.00019 [arXiv:hep-ph]</u>

- -

SFQED parameters

some definitions

Intensity parameter:

$$\xi = \sqrt{4\pi\alpha} \left(\frac{\mathcal{E}_L}{\omega_L m_e} \right) = \frac{m_e \mathcal{E}_L}{\omega_L \mathcal{E}_{cr}}$$

- measure of coupling between probe and background (laser) field (also: square root of laser intensity)
- $\xi \geq 1$: non-perturbative regime

Quantum parameters: $\chi_e = (1 + \cos \theta) \frac{E_e}{m_e} \frac{\mathcal{E}_L}{\mathcal{E}_{cr}}$ $\chi_{\gamma} = (1 + \cos \theta) \frac{E_{\gamma}}{m_e} \frac{\mathcal{E}_L}{\mathcal{E}_L}$

- ratio of background laser field and Schwinger critical field
- $\chi \geq 1$: non-linear quantum effects become probable (e.g. pair production)

Energy Parameter $\eta = \frac{\chi}{\varepsilon} = (1 + \cos\theta) \frac{\omega_L E_{e/\gamma}}{\omega_L E_{e/\gamma}}$ m_e^2

(dimensionless) energy of collision between probe particle and background

Different combinations of ξ and χ result in different types of non-linear behavior!

DESY. LUXE J. List, U Geneva, Sep 20, 2023

work done by background field over a Compton wavelength of the electron in units of the background field's photon energy

Note:

 \mathscr{E}_{L} : Laser field \mathscr{C}_{cr} : Schwinger critical field θ : Laser - probe crossing angle ω_L : Laser frequency $E_{e/\gamma}$: probe electron (photon)

energy

11

Non-linear Compton scattering Electrons gaining mass

- in strong fields, electron obtains larger effective mass $m_* = m_e \sqrt{}$
 - \rightarrow Compton edge shifts as function of ξ
 - \rightarrow higher harmonics appear (interaction with *n* laser photons)
- theoretical prediction for QED: $E_{edge}(\xi) = E_e \frac{-\pi \eta}{2n\eta + 1 + \xi^2}$

(with $\eta_{LUXE} = 0.192$)

DESY. LUXE J. List, U Geneva, Sep 20, 2023

16.5 GeV electron, 800 nm laser, 17.2° crossing angle

Note: Non-linear Compton scattering has a classical limit: •

$$E_{edge}(\xi) = E_e \frac{2n\eta}{1+\xi^2}$$

 \rightarrow QED deviation from classical determined by quantum parameter $\chi!$

Breit-Wheeler pair production Boiling the vacuum

- initial photon from Compton scattering or secondary beam
- Note: This process has no classical limit (energy threshold)! \rightarrow purely quantum, requires $\chi \sim \mathcal{O}(1)$!

LUXE: first experiment to measure Breit-Wheeler pair production with real photons!

E144 experiment at SLAC

Reminder of the 1990ies....

- E144: SLAC experiment in 1990's using 46.6 GeV electron beam (e+LASER only!) \bullet
- reached $\chi \leq 0.25$, $\xi < 0.4$
- observed process $e^- + n\gamma_L \rightarrow e^- e^+ e^-$
- observed start of the ξ^{2n} power law, but not departure \bullet LUXE : Three orders of magnitude more powerful laser than E144, will enter non-perturbative regime

[Bamber et al. (SLAC 144) '99]

- E320: ongoing SF-QED experiment at SLAC using 13 GeV electron beam (FACET-II) and 16 TW optical Laser \bullet
- first electron-laser collisions in 2022
- By design: similar parameter reach as LUXE ullet(after laser and detector upgrades)
- Main differences to LUXE: •
 - electron-laser collision mode only
 - E-320 data-taking time limited due to other users of FACET-II

IJ

Laser-Plasma Experiments

and comparison with LUXE

- Nowadays multiple experiments proposed worldwide:
 - Astra Gemini (UK), ELI-NP (RO), LUXE (DE)
 - Summary of parameters needed to reach nonperturbative regime

e- Beam	I _{Laser} [W/cm ²]	
1 eV	1029	(Not currently achievable
1 GeV	1022	(corresponds to 10 PW las
10 GeV	1020	(corresponds to 100 TW la

• LUXE: precision measurents over large part of ξ vs X phase space.

- Might be the first one to report observation of non perturbative regime.
- Only experiment proposed to directly explore photonlaser interactions.

n=' E144 tio ξ (a0) "obvious" in laser context - less clear how 0.100 that translates to beambeam collisions? +=0.07 estimated for round beams [<u>arxiv:1807.06968</u>] 0.010 (I don't know a corresponding Diocles¹ formula for flat beams T=0.007 - if you do, let me know!) 0.001 2 $\frac{r_e}{-}N$ BNL-ATF a_0 $\overline{\pi^3} \ \overline{\sigma_0}$

Beamstrahlung and Depolarisation in Collision

10

0.1

3

Gemini¹

DRACO

-

ال س

LUXE 0

SF-QED and e+e- Colliders

 $\chi = \eta \xi$

SF-QED and e+e- Colliders

n=' E144 tio ξ (a0) "obvious" in laser context - less clear how 0.100 that translates to beambeam collisions? +=0.07 estimated for round beams [<u>arxiv:1807.06968</u>] 0.010 (I don't know a corresponding Diocles¹ formula for flat beams T=0.007 - if you do, let me know!) 0.001 2 $\frac{r_e}{-}N$ BNL-ATF a_0 $\overline{\pi^3} \ \overline{\sigma_0}$

Beamstrahlung and Depolarisation in Collision

10

0.1

3

Gemini¹

DRACO

-

ال س

LUXE 0

SF-QED and e+e- Colliders

 $\chi = \eta \xi$

Beamstrahlung and Depolarisation in Collision 10 $\chi = \eta \zeta$ **n=**' -E144 tio ال س context - less clear how LUXE 0 0.100 +=0.07 0.010 Gemini Dⁱ cles¹ X=0.007 DRACO 0.001 BNL-ATF ATLAS-MPC

0.1

SF-QED and e+e- Colliders

3

 ξ (a0) "obvious" in laser

that translates to beambeam collisions?

estimated for round beams [<u>arxiv:1807.06968</u>] (I don't know a corresponding formula for flat beams

- if you do, let me know!)

$$a_0 = \sqrt{\frac{2}{\pi^3}} \frac{r_e}{\sigma_0} N$$

n=' E144 tio ξ (a0) "obvious" in laser context - less clear how 0.100 that translates to beambeam collisions? +=0.07 estimated for round beams [<u>arxiv:1807.06968</u>] 0.010 (I don't know a corresponding Diocles¹ formula for flat beams T=0.007 - if you do, let me know!) 0.001 2 $\frac{r_e}{-}N$ BNL-ATF a_0 $\overline{\pi^3} \ \overline{\sigma_0}$

Beamstrahlung and Depolarisation in Collision

10

0.1

3

Gemini¹

DRACO

-

ال س

LUXE 0

SF-QED and e+e- Colliders

 $\chi = \eta \xi$

n=' E144 tio ξ (a0) "obvious" in laser context - less clear how 0.100 that translates to beambeam collisions? +=0.07 estimated for round beams [<u>arxiv:1807.06968</u>] 0.010 (I don't know a corresponding Diocles¹ formula for flat beams T=0.007 - if you do, let me know!) 0.001 2 $\frac{r_e}{-}N$ BNL-ATF a_0 $\overline{\pi^3} \ \overline{\sigma_0}$

Beamstrahlung and Depolarisation in Collision

10

0.1

3

Gemini¹

DRACO

-

ال س

LUXE 0

SF-QED and e+e- Colliders

 $\chi = \eta \zeta$

n=' E144 tio ξ (a0) "obvious" in laser context - less clear how 0.100 that translates to beambeam collisions? +=0.07 estimated for round beams [<u>arxiv:1807.06968</u>] 0.010 (I don't know a corresponding Diocles¹ formula for flat beams +=0.007 - if you do, let me know!) 0.001 $\frac{2}{\pi^3} \frac{r_e}{\sigma_0} N$ BNL-ATF a_0

Beamstrahlung and Depolarisation in Collision

10

0.1

3

Gemini¹

DRACO

-

ال س

LUXE 0

SF-QED and e+e- Colliders

n=' E144 tio ξ (a0) "obvious" in laser context - less clear how 0.100 that translates to beambeam collisions? +=0.07 estimated for round beams [<u>arxiv:1807.06968</u>] 0.010 (I don't know a corresponding Diocles¹ formula for flat beams +=0.007 - if you do, let me know!) 0.001 $\frac{2}{\pi^3} \frac{r_e}{\sigma_0} N$ BNL-ATF a_0

Beamstrahlung and Depolarisation in Collision

10

0.1

-

ال س

LUXE 0

SF-QED and e+e- Colliders

 $\chi = \eta \xi$

n=' E144 tio ξ (a0) "obvious" in laser context - less clear how 0.100 that translates to beambeam collisions? +=0.07 estimated for round beams [<u>arxiv:1807.06968</u>] 0.010 (I don't know a corresponding Diocles¹ formula for flat beams +=0.007 - if you do, let me know!) 0.001 $\frac{2}{\pi^3} \frac{r_e}{\sigma_0} N$ BNL-ATF a_0

Beamstrahlung and Depolarisation in Collision

10

0.1

—

ال س

LUXE 0

SF-QED and e+e- Colliders

 $\chi = \eta \xi$

LUXE Experimental Setup & Challenges

The European XFEL Running since 2017

• Linear electron accelerator.

- 1.9 km long.
- Up to 17.5 GeV.
- 2700 electron bunches at 10 Hz.

• Provide X-ray photons to 6 experiments.

- Electron through undulator:
 - SASE (self-amplified spontaneous emission)
- 0.25 keV to 25 keV.

Electron Energy [GeV]

17.5

14.0

12.0

8.5

0.2

LUXE@Eu.XFEL

Located in Osdorfer Born

- in annex of XS1 shaft building.
 - Built for XFEL extension (after 2030).
- Experiment will have no impact on photon science:
 - Only use 1 of the 2700 bunches.
- Beam parameters:
 - 1 bunch at 10 Hz
 - 1.5 10⁹ electrons/bunch (0.25nC).
 - E = 16.5 GeV
 - Width $\sigma_x, \sigma_y = 5...10 \mu m$.
 - Length 130 fs

From the Accelerator to the Experiment

New extraction line

- Construct dedicated new extraction line at the end of the LINAC.
 - Reusing magnet design from XFEL for septum and dipoles.
 - New fast kicker magnets (2 μ s: kicks bunch at end of bunch train).
 - Reuse quads from HERA.
 - retrofit to reduce aperture size and power consumption.
- Design of the beam line mostly ready.
- Beam jitter parameters measured at the machine recently:
 - Shot to shot position: $\sim 1 \mu m$.
 - Energy variation <0.1%.
 - Time of arrival variation: ~20 fs.

Slow (1 Hz) Energy Measurement in the Dogleg during 5 minutes of SA2 tuning

The LUXE laser JETI40 & Co

LUXE basic Laser paramete	ers
active medium	Ti:Sa
wavelength (energy)	800nm (1.55eV)
crossing angle	17.2°
pulse length	30fs
spot size	≥3µm
power	40TW / 350TW
peak intensity [10 ¹⁹ W/cm ²]	13.3 / 120
repetition rate	1 Hz

- for LUXE Phase-0: existing 40TW JETI40 (Jena) laser will be used (alternatively: custom LASER)
- LUXE Phase-1: upgrade to 350TW laser system \bullet
- thanks to electron boost, don't need to push limits of current state-of-the-art of laser intensity
- electrons 10Hz, laser 1 Hz \rightarrow 9 bunches for background measurements, calibration shots etc
- BUT: need exceptional shot-to-shot stability! \rightarrow precision LASER diagnostics \bullet

Laser Stability

Data Taking Modes

Two setups

e+e- Pair Production Modes

Three methods with different energy ranges

- Compton scattering with interaction between Compton photon and laser.
 - Largest rate via trident production
 - e-laser mode
- Bremsstrahlung photons produced upstream (with target).
 - Highest energy available.
 - gamma-laser mode.
- Compton photon produced upstream.
 - Monochromatic photon source: E=9 GeV.
 - gamma-laser mode via Inverse Compton Scattering

Trident DESY. LUXE J. List, U Geneva, Sep 20, 2023 **Breit-Wheeler**

Rates

Need specific technologies for each location

- e⁺ precision: tracker, calorimeter.
- e-
 - (e-laser) high flux: Cherenkov, screen.
 - (χ-laser) precision: tracker, calorimeter.
- γ high flux: scintillating screen, beam profiler, backscattering calorimeter

What will it look like?

CAD & Geant4

CAD:

Full Geant4 simulation:

DESY. LUXE J. List, U Geneva, Sep 2

===

Bremsstrahlung

Target

The Electron & Positron Systems

Overview

- Two complementary detector technologies per measurement:
- Cross-calibration, reduction of systematic uncertainties.

The Pixel Tracker

e-laser: positron side, γ -laser: both sides

ALPIDE tracking detector stave

- four layers of ALPIDE silicon pixel sensors → developed for ALICE pixel tracker upgrade
- pitch size (27 x 29 μ m), 5 μ m resolution
- Radiation hard (99.5 to 98% efficiency after 1MRad).
- tracking performance: $\varepsilon > 98\%$, $\frac{\delta p}{\delta m} \approx 0.3\%$
- very small background (<0.1 event / bunch crossing)
- Telescope built in WIS.
- Plan to get full system in fall 2023.
- Test beam will follow until installation.

High signal efficiency, high resolution!

Mockup of electron tracker

Electromagnetic Calorimeter

e-laser: positron side, γ -laser: both sides

Ecal-P model

- Si High-granularity Calorimeter: (ECAL-P e-laser)
 - Based on Forward Calorimeter for ILC (FCAL). Read out by FLAME ASIC.

• Energy $\frac{\sigma_E}{E} = \frac{19.3\%}{\sqrt{E/GeV}}$, position: $\sigma_x = 0.78 \ mm$

- shower medium: 3.5mm Tungsten plates (1X₀), active medium: Silicon sensors (9x9cm², 320µm thick).
- Procurement of sensors started.
- Si High-granularity Calorimeter: (ECAL-E χ -laser)
- Based on ILC ECal. Read out by SKIROC2A ASICs.
- shower medium: Tungsten plates (21 X_0), active medium: Silicon sensors (5x5cm², 500 μ m thick)
- Prototype of detector exist, assembly of 15 layers for LUXE scheduled for 2024.

DESY. LUXE J. List, U Geneva, Sep 20, 2023

ECAL-E prototype

• 20-layer sampling calorimeter (15 active layer) – high granularity: independent energy measurement through shower and positio

15-layer sampling calorimeter – high granularity: independent energy measurement through shower and position

Reconstruction performance Tracking Efficiency and ECal Energy Reconstruction

- First implementation of the detector geometry in Key4HEP:
 - Tracker geometry in DD4HEP used as guinea pig.
 - Allows out of the box usage of tracking with ACTS.
 - Next: implementation of the calorimeter. => full ParticleFlow roconstruction!
- - Tracking with quantum computing.
 - Calorimeter energy reconstruction with ML.
 - => Results in agreement with standard algorithms.

- Cherenkov detector:
 - Finely segmented ($\emptyset = 4mm$) Air-filled channel (reflective tubes as light guides) \rightarrow charged particles create Cherenkov light
 - **Electron detectors: High rate tolerance, large dynamic range!**

DESY. LUXE J. List, U Geneva, Sep 20, 2023

Beam spot imaged on Scint. Screen

Active medium Air: low refractive index - reduce light yield, suppress backgrounds (Cherenkov threshold 20 MeV)

Electron Detection - Performance

e-laser: IP electron side, γ -laser: brems target instrumentation

ChargeScan, beamOnCh3(SiPM13), with Angle20deg, screen At0mm

Edge reconstruction with FIR on screen output

Cherenkov detector at the ARES testbeam.

- Reconstruction of Compton edges position using Finite Impulse Response filters.
 - Allow model independent reconstruction of kinematic edges in a smooth spectrum.
 - Tested successfully on both scintillating screen and Cherenkov detectors output.

Test beams results

- Both systems tested together in various facilities (DESY2, Laser wakefield facility in DESY), ARES.
- Accessed different level of beam parameters (bunch charge, electron energy, stability, etc..).
- ARES deliver very stable electrons @150 MeV with bunch charge 1-100 pC.

DESY. LUXE J. List, U Geneva, Sep 20, 2023

Light yield measured in the scintillating screen detector at the ARES testbeam.

Photon Detection System

Technology choices

Gamma profiler (sapphire strips)

- Measure profile of γ beam using sapphire strips.
- Prototype tested successfully in various high-rate facility.
- Gamma spectrometer with scintillator screens behind converter
 - Measure γ energy spectrum thanks to converter target and spectrometer magnet.
- Gamma flux monitor
 - Measure photon flux using crystal placed around final beam dump.
 - Plan to do measurement to test concept at FlashForward.

Photon detectors: precision measurement of ξ , complementary to laser diagnostics

DESY. LUXE J. List, U Geneva, Sep 20, 2023

Gamma flux prototype

Photon Detection System Performances

DESY. LUXE J. List, U Geneva, Sep 20, 2023

tested at Apollon.

Precision 3-10% depending

LUXE Expected Results, Bonus Option & Timeline

Projected Results Combining several systems

Positrons rates

- Number of Breit-Wheeler pairs produced in γ -laser collisions
- HEre: 10 days data-taking, 0.01 background events/BX
- 40% correlated uncertainty to illustrate effect

Compton Edge Position

- simulated measurement as function of ξ in e-laser mode.
- Here: 1h data-taking, no background.
- 2% energy scale uncertainty to illustrate impact => can easily be calibrated to perturbative Comtpon edge at low ξ

Looking back at the ξ - χ phase space

LUXE will provide precision measurements over large range

- Plan to provide high precision data that can be compared to state of the art theoretical predictions.
- Complementary and unique measurements with respect to other existing experiments.

Light Exotic Particle Production?

In Beam Dump - Place Detector Behind

- Explore sensibility to BSM theories.
 - Axion-like particles (ALPs) produced in dump.
 - New neutral particles produced at IP.
 - Milli-charged particles.
- For ALPs:
 - sensitive to masses $m(a) \sim 100$ MeV.
 - decay to photons after some lifetime τ .
 - Place detector behind dump.
 - Could use calorimeter with good pointing resolution to constrain decay point.

• First sensitivity show very competitive results! After just 1 year of data.

Timeline of LUXE

Past, presence and future

- initiated in 2017 (A. Ringwald, B. Heinemann)
- 2022: international collaboration with ~20 institutional members, significant contributions to the experiment by external partners envisioned.
- Nov 2022: officially recognized as a DESY experiment
- August 2023: TDR published arXiv:2308.00515
- Currently securing funding in parallel detector prototyping
- Need ~3 years for full construction & installation
 - Data-taking could start as early as 2027.
 - Use long shutdown of EUXFEL in 2025 as much as possible.
- Extensive material on detailed design and planning available

Conclusions and Outlook

- LUXE will explore QED in uncharted regime
- Observe transition from perturbative to non-perturbative QED
- Directly observe pair production from real photons
- Complementary approach to other ongoing SFQED experiments
- Search for BSM physics with photon beam dump
- Goal: installation in 2025 during extended shutdown planned for European XFEL
- Very diverse detector technologies, optimized for LUXE physics goals
- Ideal testbed for new technologies for future colliders

LUXE: exciting window of opportunity for a near-term new particle physics experiment

Open to new collaborators!

more...

From the Accelerator to the Experiment

New extraction line

- Construct dedicated new extraction line at the end of the LINAC.
 - Reusing magnet design from XFEL for septum and dipoles.
 - New fast kicker magnets (2 μ s: kicks bunch at end of bunch train).
 - Reuse quads from HERA.
 - retrofit to reduce aperture size and power consumption.
- Design of the beam line mostly ready.
 - MVS, support structure concept done, need to finish production design.
 - Magnet tender being prepared.
 - MCS, BI, power supply, etc are standard.

DESY. LUXE J. List, U Geneva, Sep 20, 2023

ULTRA INTENSE LASER - CPA TECHNIQUE

Use Chirped Pulse Amplification (CPA) technique

- Half of the NP 2018 shared by Gerard Mourou and Donna Strickland
 - "for their method of generating high-intensity, ultra-short optical pulses."
- Technological leap to reach very-high intensity with laser!

© Nobel Media AB. Photo: A. Mahmoud Gérard Mourou Prize share: 1/4

© Nobel Media AB. Photo: A. Mahmoud

Donna Strickland Prize share: 1/4

LASER IN LUXE

- Use Ti:Sa laser with 800 nm wavelength (E=1.55 eV).
- Energy focused strongly in both time and space to obtain high intensity.

• Two phases:

- In phase 0 reuse JETI40 (Jena custom 40 TW laser), or new system.
- In phase I will use commercial 350 TW laser.
- Laser parameters:
 - Repetition rate: 1Hz.
 - Pulse length 30 fs

Parameter	Phase 0	Phase 0	Phase I
Laser power	40 TW		350 TW
Laser energy after compression [J]	1.2		10
Percentage of laser in focus [%]	50		
Laser focal spot size w ₀ [µm]	>8	>3	>3
Peak intensity [10 ¹⁹ W/cm2]	1.9	13.3	120
Peak intensity parameter ξ	3.0	7.9	23.6
Peak quantum parameter X E _{beam} =16.5 GeV	0.56	1.5	4.5

- Laser installed in new surface building.
- Guided from iso-6 clean room down to IP via ~50m beam line.
- Thick concrete slab in laser lab to allows laser stability.

LASER DIAGNOSTICS

- Laser characterisation quantities: energy, pulse length, spot size
- many (partially redundant) measurements planned
 - Laser is not perturbed by e⁻ beam allow multiple diagnostics
 In IP chamber and back in laser clean room.
- Laser intensity uncertainty has a large impact on sensitivity
- goal: \leq 5% uncertainty on Laser intensity, 1% shot-to-shot uncertainty

BSM PHYSICS? RECENT STUDIES.

- Optimised photon dump geometry to minimise background and maximise signal
 - Computing challenge.
 - Need to compare tens of geometries and simulate billions of electrons with G4.
- Determined optimal detector characteristics for signal detection and background rejection
- Investigation of options that have been developed which could match these requirements
 - Alice FoCal.
 - H1 SPACAL.
 - Calice SiPM on Tiles.
 - etc.

Detector physics goals:

- Signal efficiency
- Photons shower separation (~ 2 cm)
- Suppression of residual backgrounds
 - Shower shape determination (neutrons)
- Good time resolution (< lns) (neutrons)
- Precise reconstruction of ALP invariant mass
 - Good resolution of photons direction and energy (in the range of the few GeV)
 - Non-resonant photons rejections

A small detector (r \leq 50 cm) will also ensure a high signal acceptance

 \rightarrow Ideal candidate: tracking calorimeter

10.1088/1742-6596/1162/1/012012

