Travaux pratiques d'électronique: Les amplificateurs opérationnels

S. Orsi, J.A. Aguilar, V. Boccone Lundi 4 Novembre 2013

Dans ce labo, vous apprendrez les caractéristiques des amplificateurs opérationnels et leur utilisation dans des configurations simples. Tous les montages seront faits à l'aide d'un "classique", l'OpAmp LM741. Dans le schéma ci-dessous, les connections de la puce sont montrées.

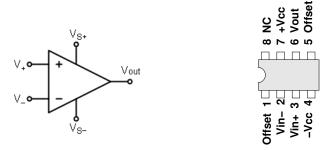


Figure 1: Le symbole de l'amplificateur opérationnel (gauche) et ses connections (droite). $V_S=V_{cc}$

1 L'OpAmp comme amplificateur

1.1 Amplificateur non-inverseur

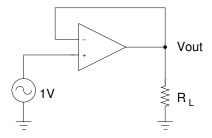


Figure 2: Un amplificateur suiveur

- 1. Familiarisez-vous avec le OpAmp 741 en lisant ses spécifications. N'oubliez pas de brancher les tensions $+V_{cc}$ et $-V_{cc}$ (V_{cc} =15 V) pour tous les montages présentés dans ce labo (sauf indications contraires).
- 2. Montez le circuit de la figure 2 en choisissant $R_L = 1 \text{ k}\Omega$. Mesurez le gain en fonction de la fréquence (de 100 Hz à 5 MHz). A quelle fréquence le gain $(G = \frac{V_{out}}{V_{in}})$ commence-t-il à diminuer (fréquence de coupure)?

- 3. Observez le signal de sortie pour différentes valeurs de R_L =1k, 100, 22, 10 Ω . Décrivez le changement observé à la sortie, s'il y a lieu. Expliquez vos observations.
- 4. Mesurez les impédances d'entrée et de sortie en changeant le signal d'entrée pour un courant continu de 6 V (ces mesures sont approximatives, mais elles vous donnent le bon ordre de grandeur).
 - (a) Mettez $R_L = 85 \Omega$ et déterminez Z_{out} en mesurant la tension aux bornes de R_L (indice: il s'agit d'un diviseur de tension simple).
 - (b) Déterminez Z_{in} en ajoutant une résistance de 1 $M\Omega$ entre la borne v_+ et V_{in} et en mettant v_- à la masse (indice: il s'agit d'un diviseur de tension simple).

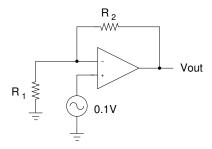


Figure 3: Un amplificateur non-inverseur

- 5. Déterminez l'expression pour le gain de l'amplificateur non-inverseur figure 3 (indice: considérez les voltages aux entrées égaux et exprimez v_{-} comme un diviseur de tension).
- 6. Modifiez votre montage pour celui de la figure 3 de façon à obtenir un gain de 20. Mesurez à nouveau la fréquence de coupure. Est-ce que cette fréquence correspond à celle que vous aviez obtenue pour le montage suiveur (gain=1)? Que pouvez-vous extrapoler sur la relation entre le gain et la bande passante d'opération de l'OpAmp? Prenez quelques mesures pour différents gains.

1.2 Amplificateur inverseur

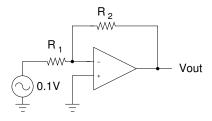


Figure 4: Un amplificateur inverseur

- 1. Obtenez une expression pour le gain du circuit inverseur figure 4 en utilisant la même technique que pour le non-inverseur (indice: considérez aussi que les entrées d'un OpAmp ne tire aucun courant).
- 2. Réalisez le montage de la figure 4 en choisissant R_1 et R_2 de façon à obtenir un gain de 100. Quelle est la fréquence de coupure?
- 3. Expliquez pourquoi ce montage s'appelle "amplificateur inverseur" et pourquoi aussi on appelle la borne d'entrée v_+ non-inverseuse et v_- inverseuse.

2 L'OpAmp comme application mathématique

L'amplificateur opérationnel tire son nom de sa capacité à accomplir des opérations mathématiques de base (comme une calculatrice) et il sert ainsi de base à la construction d'un ordinateur. Les circuits suivants illustrent ceci.

2.1 Sommateur

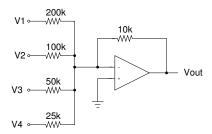


Figure 5: Un sommateur

- 1. Réalisez le montage de la figure 5.
- 2. Appliquez une tension continue de 0 V ou 5 V à chacune des entrées. Obtenez une expression pour la valeur de sortie en fonction du voltage appliqué à l'entrée et des résistances utilisées.
- 3. Vérifiez votre expression en essayant les 16 combinaisons possibles à l'entrée.
- 4. Changez toutes les résistances pour 10 k Ω et appliquez 5 V sur chaque entrée. Obtenez-vous le résultat attendu?
- 5. Eliminez 2 bornes d'entrée en gardant la configuration précédente. Obtenez-vous le résultat attendu? Expliquez ces deux dernières mesures.

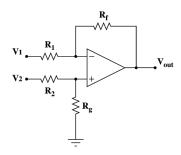


Figure 6: Amplificateur différentiel

2.2 Amplificateur différentiel

- 1. Réalisez le montage de la figure 6 avec les valeurs suivantes: $R_f=10~k\Omega,~R_g=5~k\Omega$ et $R_1=R_2=1~k\Omega.$
- 2. Appliquez $V_1=V_2=5$ V et vérifiez le voltage de sortie mesuré avec la valeur théorique donnée par:

$$V_{out} = V_2 \left(\frac{R_f + R_1}{R_q + R_2} \cdot \frac{R_g}{R_1} \right) - V_1 \cdot \frac{R_f}{R_1}$$
 (1)

- 3. Changez R_q pour 10 k Ω et notez vos résultats.
- 4. Quelle configuration faut-il pour obtenir une soustraction? Vérifiez votre hypothèse avec votre montage.

2.3 Intégrateur

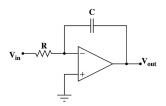


Figure 7: Circuit intégrateur

- 1. Réalisez le montage de la figure 7 avec les valeurs suivantes: C = 0.1 μ F et R = 10 k Ω .
- 2. Appliquez des ondes de différentes formes (sinusoïdale, carrée, triangulaire) et notez le signal de sortie.
- 3. Montrez que le circuit agit comme un intégrateur:

$$V_{out} = \frac{-1}{RC} \int V_{in} dt \tag{2}$$

4. Ajoutez une résistance de 100 M Ω en parallèle avec le condensateur et notez vos observations. Expliquez pourquoi on place une résistance à cet endroit.

2.4 Dérivateur

- 1. Comment pourriez-vous modifier le circuit de la figure 7 pour en faire un circuit dérivateur?
- 2. Montrez l'expression d'un dérivateur:

$$V_{out} = -RC \frac{dV_{in}}{dt} \tag{3}$$

2.5 Amplificateur logarithmique

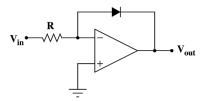


Figure 8: Amplificateur logarithmique

1. Figure 8 est un amplificateur logarithmique. En utilisant les principes de l'OpAmp et votre connaissance des diodes, montrez que:

$$V_{out} = -V_T \ln \left(\frac{V_{in}}{R \cdot I_S} \right) \tag{4}$$

2. Comment pourriez-vous transformer ce circuit en amplificateur exponentiel? Expliquez.

3 Comparateurs

- 1. Réalisez le montage de la figure 9 et appliquez un signal sinusoïdal de 5 V à l'entrée.
- 2. Observez les signaux à l'entrée et à la sortie sur l'oscilloscope. Comment pouvezvous modifier le niveau de comparaison à 0.5 V plutôt qu'à 0 V?

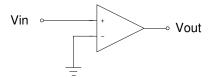


Figure 9: Circuit comparateur

- 3. Modifiez le comparateur précédent pour obtenir celui de la figure 10 avec $R_1 = 1 \text{ k}\Omega$ et $R_2 = 2.2 \text{ k}\Omega$. Dans ce cas, changez la polarisation l'OpAmp (V_{cc}) à $\pm 5 \text{ V}$.
- 4. Appliquez une onde sinusoïdale de 3 V d'amplitude à l'entrée et observez le signal de sortie sur l'oscilloscope. Comment ce comparateur se distingue-t-il du précédent?
- 5. Calculez les deux seuils (supérieur et inférieur) de comparaison.

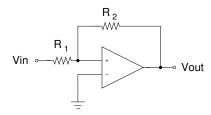


Figure 10: Comparateur à deux seuils ou Trigger de Schmitt