Statistical analysis methods

for Physics

Nicolas Berger (LAPP)

Introduction

Statistical methods play a critical role in many areas of physics

Higgs discovery: "We have 5 σ "!

Phys. Lett. B 716 (2012) 1-29

Introduction

Sometimes difficult to distinguish a bona tide discovery from a background fluctuation...

Uncertainties

Many important questions answered by precision measurements, especially if no new peaks found at high mass...
Key point = determination of uncertainties

Consistency of the SM...
... or the fate of the universe

Overview

Topics covered:

- Computing statistics results
- Interpreting statistical results
- Understanding the measurement process (what is a systematic ?)

Prerequisites:

- Some background in High energy physics
- Some basic knowledge of statistics - but will review the basics.

I will mostly use the "physics" names of statistical quantities, rather than those used in the statistics community ("significance" and not "size of a test", etc.)

Much of the discussion and examples have an ATLAS/CMS/LHC slant due to my limited experience... But hopefully the concepts should be generally applicable.

Books and Courses

KENDALL'S ADVANCED
 Theory of STATISTICS

Alan Stuart \& J. Keith Ord
FIFTH EDITION

Volume 2
CLASSICAL INFERENCE AND RELATIONSHIP

Some courses available online:

Glen Cowan's Cours d'Hiver and 2010 CERN Academic Training lectures Kyle Cranmer's CERN Academic Training lectures Louis Lyons'and Lorenzo Moneta's CERN Academic Training Lectures

Outline

Statistics basics for HEP
 Random processes
 Probability distributions
 Describing HEP measurements
 Computing statistics results
 Likelihoods
 Estimating parameter values

Lecture 2: Testing hypotheses, Computing discovery significances, Limits
Lecture 3: Look-elsewhere effect, Profiling, Bayesian methods

Random Processes

Random Processes

Statistics is the description of random processes. Where does this come into physics results?

Measurement errors

Quantum
 Randomness

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Randomness involved in all stages
\rightarrow Classical randomness: detector reponse
\rightarrow Quantum effects in production, decay

Hard scattering

PDFs, Parton shower, Pileup

Decays

Detector response

Reconstruction

Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter

Cannot predict the measured value for a given event \Rightarrow Random process \Rightarrow Need a probabilistic description

Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter

Cannot predict the measured value for a given event \Rightarrow Random process
\Rightarrow Need a probabilistic description

Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter

Cannot predict the measured value for a given event \Rightarrow Random process
\Rightarrow Need a probabilistic description

Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter Measure leakage behind calorimeter

Cannot predict the measured value for a given event \Rightarrow Random process
\Rightarrow Need a probabilistic description

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 \mathrm{I}$

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 \mathrm{I}$

Rare process: Expect 1 signal event every ~6 days

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 \mid$

Quantum randomness: "Will I get an event today ?" \rightarrow only probabilistic answer

Randomness in Physics

Questions with probabilistic answers:

- Is my Higgs-like excess just a background fluctuation?
\rightarrow associated with prob ~10-9 (by now ~10-24)
\Rightarrow above the famous (and conventional) $5 \boldsymbol{\sigma}$

- For measurements: probability that the true value of a parameter is within an interval:

68\% chance that the true m_{w} is within the orange interval

Randomness in Physics

Particularly important for searches for new phenomena:
\rightarrow Robust methods needed to control spurious "discoveries"...
\rightarrow... and accurately report the significance of excesses in case of surprises

Phys. Lett. B 775 (2017) 105

Example Analyses

Example 1: Z \rightarrow ee Inclusive $\sigma^{\text {fid }}$

Measurement Principle:
$35000 \pm(\sqrt{ } 35000=187)$

Signal events	$34865 \pm 187 \pm 7 \pm 3$
Correction C	$0.552_{-0.005}^{+0.006}$
$\sigma^{\text {fid }}[\mathrm{nb}]$	$0.781 \pm 0.004 \pm 0.008 \pm 0.016$

Phys. Lett. B 759 (2016) 601

Simple uncertainty propagation:

$$
\sigma^{\text {fid }}=0.781 \pm 0.004(\text { stat }) \pm 0.008 \text { (syst) } \pm 0.016 \text { (lumi) nb }
$$

\rightarrow Simplest possible example in several ways

- "Single bin counting" : only data input is $\mathbf{N}_{\text {data }}$.
- Here Gaussian assumptions

Example 2: ttH $\rightarrow \mathrm{bb}$

Example 3: Unbinned shape analysis

Phys. Lett. B 775 (2017) 105

Describe spectrum without discrete binning
\rightarrow use smooth functions of a continuous variable.

Unbinned shape analysis

How to describe the shapes?

Goals:
\rightarrow Discovery significance
$\rightarrow \sigma \times \mathrm{BR}$ measurements
\rightarrow Upper limits.

Probability Distributions

Short reminder on Probability Distribution functions (PDFs)

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution :
 $\left\{P_{i}\right\}$ for $i=0,1,2$

Properties

- $P_{i}>0$
- $\sum P_{i}=1$

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution :
 $\left\{P_{i}\right\}$ for $i=0,1,2$

Properties

- $P_{i}>0$
- $\sum \mathrm{P}_{\mathrm{i}}=1$

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution:
$\left\{P_{i}\right\}$ for $i=0,1,2$

Properties

- $P_{i}>0$
- $\sum P_{i}=1$

100 trials

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution :

$\left\{P_{i}\right\}$ for $i=0,1,2$

Properties

- $P_{i}>0$
- $\sum P_{i}=1$

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $\mathrm{p}_{\mathrm{i}} \mathrm{i}=1 . . \mathrm{n}_{\text {bins }}$

X

Bin size $\rightarrow 0$: Probability distribution function $\mathbf{P (x)}$
\rightarrow High values \Leftrightarrow high chance to get a measurement here
$\rightarrow P(x)>0$
$\rightarrow \int P(x) d x=1$
Generalizes to multiple variables : $\int P(x, y) d x d y=1$

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{\text {bins }}$

x

Bin size $\rightarrow 0$: Probability distribution function $P(x)$
\rightarrow High values \Leftrightarrow high chance to get a measurement here
$\rightarrow P(x)>0$
$\rightarrow \int P(x) d x=1$
Generalizes to multiple variables : $\int P(x, y) d x d y=1$

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{\text {bins }}$

X

Bin size $\rightarrow 0$: Probability distribution function $\mathbf{P (x)}$
\rightarrow High values \Leftrightarrow high chance to get a measurement here
$\rightarrow P(x)>0$
$\rightarrow \int P(x) d x=1$
Generalizes to multiple variables : $\int P(x, y) d x d y=1$

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{\text {bins }}$

Contours: P(x,y)

Bin size $\rightarrow 0$: Probability distribution function $P(x)$
\rightarrow High values \Leftrightarrow high chance to get a measurement here
$\rightarrow P(x)>0$
$\rightarrow \int P(x) d x=1$
Generalizes to multiple variables : $\int P(x, y) d x d y=1$

PDF Properties: Mean

$E(x)=\langle x\rangle$: Mean of x - expected outcome on average over many measurements

$$
\begin{aligned}
\langle x\rangle & =\sum_{i} x_{i} P_{i} \\
\langle x\rangle & =\int x P(x) d x
\end{aligned}
$$

\rightarrow Property of the PDF

For measurements $x_{1} \ldots x_{n}$, then can compute the Sample mean:

$$
\bar{x}=\frac{1}{n} \sum_{i} x_{i}
$$

\rightarrow Property of the sample
\rightarrow approximates the PDF mean.

PDF Properties: Variance

Variance of x :

$$
\operatorname{Var}(x)=\left\langle(x-\langle x\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \operatorname{RMS}(x)=\sqrt{ } \operatorname{Var}(x)=\sigma_{x}$ standard deviation

Can be approximated by sample variance:

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Covariance of x and y :

$$
\operatorname{Cov}(x)=\langle(x-\langle x\rangle)(y-\langle y\rangle)\rangle
$$

\rightarrow Large if variations of x, y are "synchronized"

- $\operatorname{Cov}(\mathbf{x}, \mathrm{y})>\mathbf{0}$ if x and y vary in the same direction
- $\operatorname{Cov}(x, y)<0$ if x and y vary in opposite direction
- $\operatorname{Cov}(\mathbf{x}, \mathbf{y})=\mathbf{0}$ if x and y vary independently

Correlation coefficient

$$
\gamma=\frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{Var}(x) \operatorname{Var}(y)}}
$$

PDF Properties: Variance

Variance of x :

$$
\operatorname{Var}(x)=\left\langle(x-\langle x\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \operatorname{RMS}(\mathrm{x})=\sqrt{ } \operatorname{Var}(\mathrm{x})=\sigma_{\mathrm{x}}$ standard deviation

Can be approximated by sample variance:

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Covariance of x and y :

$$
\operatorname{Cov}(x)=\langle(x-\langle x\rangle)(y-\langle y\rangle)\rangle
$$

\rightarrow Large if variations of x, y are "synchronized"

- $\operatorname{Cov}(\mathbf{x}, \mathrm{y})>\mathbf{0}$ if x and y vary in the same direction
- $\operatorname{Cov}(x, y)<0$ if x and y vary in opposite direction
- $\operatorname{Cov}(x, y)=0$ if x and y vary independently

Correlation coefficient

$$
\gamma=\frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{Var}(x) \operatorname{Var}(y)}}
$$

PDF Properties: Variance

Variance of x :

$$
\operatorname{Var}(x)=\left\langle(x-\langle x\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \operatorname{RMS}(x)=\sqrt{ } \operatorname{Var}(x)=\sigma_{x}$ standard deviation

Can be approximated by sample variance:

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Covariance of x and y :

$$
\operatorname{Cov}(x)=\langle(x-\langle x\rangle)(y-\langle y\rangle)\rangle
$$

\rightarrow Large if variations of x, y are "synchronized"

- $\operatorname{Cov}(\mathbf{x}, \mathrm{y})>\mathbf{0}$ if x and y vary in the same direction
- $\operatorname{Cov}(x, y)<0$ if x and y vary in opposite direction
- $\operatorname{Cov}(\mathbf{x}, \mathbf{y})=\mathbf{0}$ if x and y vary independently

Correlation coefficient

$$
\gamma=\frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{Var}(x) \operatorname{Var}(y)}}
$$

Gaussian PDF

Gaussian distribution:

$$
G\left(x ; X_{0}, \sigma\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x-X_{0}\right)^{2}}{2 \sigma^{2}}}
$$

\rightarrow Mean : X_{0}

\rightarrow Variance : $\sigma^{2}(\Rightarrow$ RMS $=\sigma)$
Generalize to \mathbf{N} dimensions:
\rightarrow Mean : X_{0}

$$
G\left(x ; X_{0}, C\right)=\frac{1}{(2 \pi|C|)^{N / 2}} e^{-\frac{1}{2}\left(x-X_{0}\right)^{T} C^{-1}\left(x-X_{0}\right)}
$$

\rightarrow Covariance matrix :

$$
\begin{aligned}
C & =\left[\begin{array}{ll}
\operatorname{Var}\left(x_{1}\right) & \operatorname{Cov}\left(x_{1}, x_{2}\right) \\
\operatorname{Cov}\left(x_{2}, x_{1}\right) & \operatorname{Var}\left(x_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sigma_{x_{1}}^{2} & \gamma \sigma_{x_{1}} \sigma_{x_{2}} \\
\gamma \sigma_{x_{1}} \sigma_{x_{2}} & \sigma_{x_{2}}^{2}
\end{array}\right]
\end{aligned}
$$

Gaussian Quantiles

Probability to be away from the Gaussian mean:
Consider $z=\left(\frac{x-x_{0}}{\sigma}\right) \quad$ "pull"
P depends only on $z \sim G(0,1)$

Z	$P\left(\left\|x-x_{0}\right\|>Z \sigma\right)$
1	0.327
2	0.045
3	0.003
5	6×10^{-7}

Gaussian Cumulative Distribution Function (CDF) :


```
root [0] R00T::Math::gaussian_cdf(1) - R00T::Math::gaussian_cdf(-1)
(double) 0.68268949
root [1] ROOT::Math::gaussian_quantile_c(0.05/2, 1)
(double) 1.9599640
```


Gaussian Quantiles

$P\left(\left|x-x_{0}\right|>Z \sigma\right)$

Probability to be away from the Gaussian mean:
Consider $z=\left(\frac{x-x_{0}}{\sigma}\right) \quad$ "pull"
P depends only on $z \sim G(0,1)$
5
0.327

2
0.045
$3 \quad 0.003$
6×10^{-7}

Gaussian Cumulative Distribution Function (CDF) :

Gaussian Quantiles

Probability to be away from the Gaussian mean:
Consider $z=\left(\frac{x-x_{0}}{\sigma}\right) \quad$ "pull"
P depends only on $z \sim G(0,1)$
5 $\mathrm{P}\left(\left|\mathrm{x}-\mathrm{x}_{0}\right|>\mathrm{Z} \mathrm{\sigma}\right)$

Gaussian Cumulative Distribution Function (CDF) :
$: \quad \mathbf{P}\left(\left|x-x_{0}\right|<3 \sigma\right)=99.7 \%$

$$
\Phi(z)=\int_{-\infty}^{z} G(u ; 0,1) d u
$$

In ROOT,

$z \rightarrow \Phi$: ROOT: :Math::gaussian_cdf(p)
$\phi \rightarrow z$: ROOT : : Math: :gaussian_quantile ($p, 1$) and add _c to use 1-ф instead of ϕ

```
root [0] R00T::Math::gaussian_cdf(1) - R00T::Math::gaussian_cdf(-1)
(double) 0.68268949
root [1] ROOT::Math::gaussian_quantile_c(0.05/2, 1)
(double) 1.9599640
```


Chi-squared

Multiple Independent Gaussians:
Define

$$
\left.\chi^{2}=\sum_{i=1}^{n} \left\lvert\, \frac{x_{i}-x_{i}^{0}}{\sigma_{i}}\right.\right)^{2}
$$

Measures global distance from reference point ($\mathrm{x}_{1}{ }^{0} \ldots \mathrm{x}_{\mathrm{n}}{ }^{0}$)

Distribution depends on n :
Rule of thumb: χ^{2} / n should be $\lesssim 1$

Exact distributions in ROOT:

root [0] R00T: :Math: chisquared_cdf(1, 1)
(double) 0.68268949
root [1] ROOT: :Math: :chisquared_cdf(4, 1)

Chi-squared

Multiple Independent Gaussians:
Define

$$
\left.\chi^{2}=\sum_{i=1}^{n} \left\lvert\, \frac{x_{i}-x_{i}^{0}}{\sigma_{i}}\right.\right)^{2}
$$

Measures global distance from reference point ($x_{1}{ }^{0} \ldots . . x_{n}{ }^{0}$)

Distribution depends on n :

Rule of thumb: χ^{2} / n should be $\lesssim 1$

Exact distributions in ROOT:
ROOT: :Math: :chisquared_pdf(x, n)

Histogram Chi-squared

Histogram x2 with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) - (number of fit parameters)

BLUE histogram

$$
\begin{aligned}
& x^{2}=3.0 \\
& p\left(x^{2}=3.0, n=10\right)=98 \%
\end{aligned}
$$

BLUE histogram

$$
x^{2}=25.7
$$

$$
p\left(x^{2}=25.7, n=10\right)=0.4 \% \quad X
$$

Central Limit Theorem

For an observable X with any distribution, one has(*)
(*) Assuming $\sigma_{x}<\infty$ and other regularity conditions

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \stackrel{n \rightarrow \infty}{\sim} G\left(\langle X\rangle, \frac{\sigma_{X}}{\sqrt{n}}\right)
$$

What this means:

- The average of many measurements is always Gaussian, whatever the distribution for a single measurement
- The mean of the Gaussian is the average of the single measurements
- The RMS of the Gaussian decreases as $\sqrt{ } \mathbf{n}$: less fluctuations when averaging over many measurements

Another version, for the sum:

$$
\sum_{i=1}^{n} x_{i} \stackrel{n \rightarrow \infty}{\sim} G\left(n\langle x\rangle, \sqrt{n} \sigma_{x}\right)
$$

Mean scales like n, but RMS only like $\sqrt{ }$ n

Central Limit Theorem in action

Draw events from a x^{2} distribution (for illustration only)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a x^{2} distribution (for illustration only)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a x^{2} distribution (for illustration only)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a x^{2} distribution (for illustration only)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a x^{2} distribution (for illustration only)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a x^{2} distribution (for illustration only)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a x^{2} distribution (for illustration only)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a x^{2} distribution (for illustration only)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Outline

Statistics basics for HEP
 Random processes
 Probability distributions

Describing HEP measurements

Computing statistics results
Likelihoods
Estimating parameter values
Testing hypotheses
Computing discovery significance

Describing HEP measurements

Statistical Model

Goal:

Describe the random process by which the data was obtained.
\rightarrow Build a Statistical Model

Ingredients:

1. Statistical description of the random aspects \Rightarrow Probability distributions
2. Assumptions on the underlying statistical processes (physics, etc.)
\rightarrow Uncertainties on the assumptions themselves: systematic uncertainties

Counting events

Consider N total events, select good events with probability P. Probability to get \mathbf{n} good events ?

Binomial distribution: $\quad P(n ; N, P)=C_{N}^{n} P^{n}(1-P)^{N-n}$

Mean = N•P
Variance $=$ N.P(1-P)

N trials
OOO0000000000000000000000000

However suppose $\mathbf{P}<\mathbf{1}, \mathbf{N} \gg \mathbf{1}$, and let $\boldsymbol{\lambda}=\mathbf{N} \cdot \mathbf{P}$:
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution:

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

Mean = $\boldsymbol{\lambda}$

Uncertainty of $\sqrt{ } \mathrm{N}$ on N expected events

Rare Processes?

HEP : almost always use Poisson distributions. Why?

ATLAS :

- Event rate ~ 1 GHz
($\mathrm{L} \sim 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \sim 10 \mathrm{nb}^{-1} / \mathrm{s}, \sigma_{\text {tot }} \sim 10^{8} \mathrm{nb}$,)
- Trigger rate ~ 1 kHz
(Higgs rate $\sim 0.1 \mathrm{~Hz}$)
$\Rightarrow P \sim 10^{-6} \ll 1\left(P_{H \rightarrow W} \sim 10^{-13}\right)$

A day of data: $\mathrm{N} \sim 10^{14} \gg 1$
\Rightarrow Poisson regime!
(Large $\mathrm{N}=$ design requirement, to get not-too-small $\lambda=$ NP...)
proton - (anti)proton cross sections

Poisson Distributions

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

- Discrete distribution (integers only), asymmetric for small $\boldsymbol{\lambda}$
- Typical variation (RMS) of n events is $\sqrt{ } n$
- Central limit theorem : becomes Gaussian for large $\boldsymbol{\lambda}$:

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

Poisson Distributions

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

Mean = λ
Variance $=\lambda$
$\sigma=\sqrt{ } \lambda$

- Discrete distribution (integers only), asymmetric for small $\boldsymbol{\lambda}$
- Typical variation (RMS) of n events is $\sqrt{ } n$
- Central limit theorem : becomes Gaussian for Iarge $\boldsymbol{\lambda}$:

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

Poisson Distributions

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

Mean = λ
Variance $=\lambda$
$\sigma=\sqrt{ } \lambda$

- Discrete distribution (integers only), asymmetric for small $\boldsymbol{\lambda}$
- Typical variation (RMS) of n events is $\sqrt{ } n$
- Central limit theorem : becomes Gaussian for large $\boldsymbol{\lambda}$:

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

Poisson Distributions

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

Mean = λ
Variance $=\lambda$
$\sigma=\sqrt{ } \lambda$

- Discrete distribution (integers only), asymmetric for small $\boldsymbol{\lambda}$
- Typical variation (RMS) of n events is $\sqrt{ } n$
- Central limit theorem : becomes Gaussian for Iarge $\boldsymbol{\lambda}$:

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

Poisson Distributions

$\lambda=10$

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

Mean = λ
Variance $=\lambda$
$\sigma=\sqrt{ } \lambda$

- Discrete distribution (integers only), asymmetric for small $\boldsymbol{\lambda}$
- Typical variation (RMS) of n events is $\sqrt{ } n$
- Central limit theorem : becomes Gaussian for Iarge $\boldsymbol{\lambda}$:

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

Poisson Distributions

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

Mean = λ
Variance $=\lambda$
$\sigma=\sqrt{ } \lambda$

- Discrete distribution (integers only), asymmetric for small $\boldsymbol{\lambda}$
- Typical variation (RMS) of n events is $\sqrt{ } n$
- Central limit theorem : becomes Gaussian for Iarge $\boldsymbol{\lambda}$:

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

Statistical Model for Counting

Counting experiment:
observable: a number of events n
\rightarrow describe by a Poisson distribution

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

Typically both signal and background expected:

$$
\boldsymbol{P}(n ; \boldsymbol{S}, \boldsymbol{B})=\boldsymbol{e}^{-(s+\boldsymbol{B})} \frac{(\boldsymbol{S}+\boldsymbol{B})^{n}}{n!} \quad \begin{aligned}
& \mathbf{S}: \text { \# of events from signal process } \\
& \mathbf{B}: \text { : of events from bkg. process(es) }
\end{aligned}
$$

We have assumed a Poisson distribution for n : This is our model, based on physics knowledge (but usually a very safe one).

Model has parameters \mathbf{S} and \mathbf{B}. B can be known a priori or not (S usually not...) \rightarrow Example: can assume \mathbf{B} is known, use the measured n to find out about the parameter S .

Z \rightarrow ee Inclusive $\sigma^{\text {fid }}$

Measurement Principle:
$35000 \pm(\sqrt{ } 35000=187)$

Signal events	$34865 \pm 187 \pm 7 \pm 3$
Correction C	$0.552_{-0.005}^{+0.006}$
$\sigma^{\text {fid }}[\mathrm{nb}]$	$0.781 \pm 0.004 \pm 0.008 \pm 0.016$

Phys. Lett. B 759 (2016) 601

Simple uncertainty propagation:

$$
\sigma^{\text {fid }}=0.781 \pm 0.004(\text { stat }) \pm 0.008 \text { (syst) } \pm 0.016 \text { (lumi) nb }
$$

\rightarrow Simplest possible example in several ways

- "Single bin counting" : only data input is $\mathbf{N}_{\text {data }}$.
- Describe using Poisson distribution, or Gaussian for large $\mathrm{n}_{\text {data }}$

Unbinned Shape Analysis

Observable: set of values $m_{1} \ldots m_{n^{\prime}}$, one per event
\rightarrow Describe shape of the distribution of m
\rightarrow Deduce the probability to observe $\mathrm{m}_{1} \ldots \mathrm{~m}_{\mathrm{n}}$
$\mathrm{H} \rightarrow \mathrm{y} \boldsymbol{\gamma}$-inspired example:

- Gaussian signal $\boldsymbol{P}_{\text {signal }}(m)=G\left(m ; m_{H}, \sigma\right)$
- Exponential bkg $\boldsymbol{P}_{\mathrm{bkg}}(\boldsymbol{m})=\alpha \boldsymbol{e}^{-\alpha m}$

Expected yields : S, B
\Rightarrow Total PDF for a single event:

$P_{\text {total }}(m)=\frac{S}{S+B} G\left(m ; m_{H}, \sigma\right)+\frac{B}{S+B} \alpha e^{-\alpha m}$
\Rightarrow Total PDF for a dataset
Probability to observe n events
Probability to observe the value m_{i}

$\boldsymbol{P}\left(\left\{\boldsymbol{m}_{i}\right\}_{i=1 \ldots n}\right)=e^{-(S+B)} \frac{(S+B)^{n}}{n!} \prod_{i=1}^{n} \frac{S}{S+B} G\left(m_{i} ; m_{H}, \sigma\right)+\frac{B}{S+B} \alpha e^{-\alpha m_{i}}$

$\mathrm{H} \rightarrow \mathrm{Y}$

The Halfway Option: Binned Shape Analysis

Instead of using $m_{1} \ldots m_{n}$ directly, can build a histogram $n_{1} \ldots n_{N}$.
$\rightarrow \mathrm{N}$: number of bins
Per-bin fractions (=shapes)
of Signal and Background

$\boldsymbol{P}\left(\left\{n_{i}\right\} ; S, B\right)=\prod_{i=1}^{N} \underbrace{e^{-\left(S f_{s, i}+B f_{B, i}\right)} \frac{\left(S f_{S, i}+B f_{B, i}\right)^{n_{i}}}{n_{i}!}}$
Poisson distribution in each bin

$\mathrm{N}=1$: Counting analysis
$\mathbf{N} \rightarrow \boldsymbol{\infty}$: Unbinned shape analysis (the fractions become PDF values)
Shapes specified through $f_{\mathrm{s}, \mathrm{i}} f_{\mathrm{B}, \mathrm{i}}$ rather than $\mathrm{P}_{\text {signal }}(\mathrm{m}), \mathrm{P}_{\mathrm{bkg}}(\mathrm{m})$
\oplus Obtained directly from MC, no need to define continuous PDFs.
\ominus MC stat fluctuations can create artefacts, especially for $S \ll B$.
\rightarrow discussed in more detail on Wednesday

Summary: How to describe data

Description	Observable	Likelihood
Counting	n : measured number of events	Poisson $P(\boldsymbol{n} ; \boldsymbol{S}, \boldsymbol{B})=e^{-(\boldsymbol{s}+\boldsymbol{B})} \frac{(\boldsymbol{S}+\boldsymbol{B})^{n}}{n!}$ S, B : expected signal \& background
Binned shape analysis	$n_{i^{\prime}} \mathrm{i}=1 . . N_{\text {bins }}:$ measured events in each bin.	Poisson product $\boldsymbol{P}\left(\boldsymbol{n}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\prod_{i=1}^{n_{\text {bins }}} e^{-\left(\boldsymbol{S} f_{i}^{\mathrm{sig}}+\boldsymbol{B} f_{i}^{\mathrm{bgg}}\right)} \frac{\left(\boldsymbol{S} f_{i}^{\mathrm{sig}}+\boldsymbol{B} \boldsymbol{f}_{i}^{\mathrm{bkg}}\right)^{n_{i}}}{\boldsymbol{n}_{i}!}$

Unbinned
shape analysis
$m_{i}, i=1 . . n_{\text {evts }}:$
Extended Unbinned Likelihood
observable value for each event

S, B : expected signal \& background
$f^{\text {sig }}{ }_{i} \mathrm{ftkg}_{\mathrm{i}}$: fraction of sig \& bkg in each bin

$$
\boldsymbol{P}\left(\boldsymbol{n}_{\boldsymbol{i}} ; \boldsymbol{S}, \boldsymbol{B}\right)=\prod_{i=1}^{n_{\mathrm{bins}}} e^{-\left(\boldsymbol{s} f_{i}^{\mathrm{sig}}+\boldsymbol{B} f_{i}^{\mathrm{bkg}}\right)} \frac{\left(\boldsymbol{S} f_{i}^{\mathrm{sig}}+\boldsymbol{B} f_{i}^{\mathrm{bkg}}\right)^{\boldsymbol{n}_{i}}}{\boldsymbol{n}_{\boldsymbol{i}}!}
$$

$$
P\left(\boldsymbol{m}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\frac{e^{-(\boldsymbol{s}+\boldsymbol{B})}}{\boldsymbol{n}_{\mathrm{evts}}!} \prod_{i=1}^{n_{\mathrm{evs}}} \boldsymbol{S} P_{\mathrm{sig}}\left(\boldsymbol{m}_{\boldsymbol{i}}\right)+\boldsymbol{B} P_{\mathrm{bkg}}\left(\boldsymbol{m}_{\boldsymbol{i}}\right)
$$

S, B : expected signal \& background
$\mathbf{P}_{\mathrm{sig}}, \mathbf{P}_{\mathrm{bkg}}:$ PDFs for m in signal and bkg.

Model Parameters

Model typically includes:

- Parameters of interest (POIs) : what we want to measure
$\rightarrow \mathbf{S}, \sigma \times \mathbf{B}, \mathrm{m}_{\mathrm{w}}, \cdots$
- Nuisance parameters (NPs) : other parameters needed to define the model
$\rightarrow B$
\rightarrow For binned data, \boldsymbol{f}_{i} sig $_{i}, f^{\mathrm{fokg}}{ }_{i}$
\rightarrow For unbinned data, parameters needed to define $P_{\text {bkg }}$ e.g. exponential slope α of $\mathrm{H} \rightarrow \mu \mu$ background.

NPs must be either
\rightarrow known a priori (possibly within systematics) or
\rightarrow constrained by the data (e.g. in sidebands)

Categories

Multiple analysis regions often used:

- Multiple decay modes
- Multiple kinematic selections, etc.
\rightarrow Useful to model these separately if
- Better sensitivity in some regions (avoids dilution)

- Some regions can constrain NPs
- e.g. Control regions for backgrounds
\Rightarrow Analysis categories :
PDF for category k

\rightarrow Similar to a-posteriori combination of the various regions, but allows proper handling of correlated parameters (e.g. systematics).

Categories for $\mathrm{H} \rightarrow \mathrm{Y}$ Property Measurements

Categories also useful to provide measurements of separate kinematic regions \rightarrow e.g. differential cross-section measurements

Most categories aimed at one particular truth region
\rightarrow also cross-feed from other regions (detector acceptance, pileup, etc.)
\Rightarrow Combined analysis for optimal use of all information

Model Example: $\mathrm{H} \rightarrow \mathrm{Y} \boldsymbol{\gamma}$ Discovery Analysis

ATLAS Higgs Combination Model

W. Verkerke, SOS 2014

Technical Implementation

Implemented in ROOT using the RooFit/RooStats/HistFactory toolkits

- C++ classes for PDFs, formulas, variables, etc.
- Numerical methods: convolutions, automatic computation of normalization factors. Analytical evaluation used when possible
- Template morphing

- Storage in RooWorkspace structures within ROOT files
\rightarrow Standard tools in LHC experiments, used in similar ways in ATLAS and CMS Realistic models can be quite complex: ATLAS+CMS Higgs couplings comb. :
- 20 POIs, $\mathbf{4 2 0 0}$ parameters, $\mathbf{6 0 0}$ categories
- > 7 GB memory footprint
- Time for 1 MINUIT fit ~ O(few hours)

Takeaways

HEP data is produced through random processes,
Need to be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(\boldsymbol{n} ; \boldsymbol{S}, \boldsymbol{B})=e^{-(\boldsymbol{s}+\boldsymbol{B})} \frac{(\boldsymbol{S}+\boldsymbol{B})^{n}}{n!}$
Binned shape analysis	$n_{i}, i=1 . . N_{\text {bins }}$	Poisson product $P\left(n_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\prod_{i=1}^{n_{\text {bise }}} e^{-\left(\boldsymbol{S} f_{i}^{\text {Si }}+\boldsymbol{B} f_{i}^{\text {bsg }}\right)} \frac{\left(\boldsymbol{S} f_{i}^{\text {sig }}+\boldsymbol{B} f_{i}^{\mathrm{bkg}}\right)^{n_{i}}}{n_{i}!}$
Unbinned shape analysis	$m_{i}{ }^{\prime}=1 . . n_{\text {evts }}$	Extended Unbinned Likelihood $P\left(\boldsymbol{m}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\frac{e^{-(\boldsymbol{s}+\boldsymbol{B})}}{n_{\text {evts }}!} \prod_{i=1}^{n_{\text {evs }}} \boldsymbol{S} P_{\mathrm{sig}}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\text {bkg }}\left(\boldsymbol{m}_{i}\right)$

Model can include multiple categories, each with a separate description Includes parameters of interest (POIs) but also nuisance parameters (NPs) Next step: use the model to obtain information on the POls

Outline

Statistics basics for HEP
 Random processes
 Probability distributions
 Describing HEP measurements

Computing statistics results
Likelihoods
Estimating parameter values
Testing hypotheses
Computing discovery significance

Computing Statistical Results

Overview

What we have so far:

- Observed data
- Statistical model : P(data; parameters)
 description of the random process producing the data \rightarrow includes parameters that we want to measure ($\mathbf{S}, \boldsymbol{\sigma} \times \mathbf{B}, \mathrm{m}_{\mathrm{w}}, \ldots$)

What we want : Statistical Results

- Parameter measurement: $\mathrm{x}_{0} \pm$ uncertainty
- Upper limits on signal yields, etc.
- Discovery significance

Computing Statistical Results I. Parameter Estimation

Using the PDF

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

$$
P(\lambda=5)
$$

$2,5,3,7,4,9, \ldots$.
Each entry = separate "experiment"

Likelihood

Model describes the distribution of the observable: $\mathbf{P (n ; \lambda) , ~ P (d a t a ; ~ p a r a m e t e r s) ~}$
\Rightarrow Possible outcomes of the experiment, for given parameter values
We want the other direction: use data to get information on parameters

$$
P(\lambda=?)
$$

2

Estimate

Likelihood: L(parameters) = P(data;parameters)
\rightarrow same as the PDF, but seen as function of the parameters

Poisson Example

Assume Poisson distribution with $B=0$:

$$
P(n ; S)=e^{-s} \frac{S^{n}}{n!}
$$

Say we observe $\mathrm{n}=5$, want to infer information on the parameter \mathbf{S}
\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $B=0$:

$$
P(n ; S)=e^{-s} \frac{S^{n}}{n!}
$$

Say we observe $\mathrm{n}=5$, want to infer information on the parameter \mathbf{S}
\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $B=0$:

$$
P(n ; S)=e^{-s} \frac{S^{n}}{n!}
$$

Say we observe $\mathrm{n}=5$, want to infer information on the parameter \mathbf{S}
\rightarrow Try different values of S for a fixed data value n=5
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $B=0$:

$$
P(n ; S)=e^{-s} \frac{S^{n}}{n!}
$$

Say we observe $\mathrm{n}=5$, want to infer information on the parameter \mathbf{S}
\rightarrow Try different values of S for a fixed data value n=5
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $B=0$:

$$
P(n ; S)=e^{-s} \frac{S^{n}}{n!}
$$

Say we observe $\mathrm{n}=5$, want to infer information on the parameter \mathbf{S}
\rightarrow Try different values of S for a fixed data value $\mathrm{n}=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Maximum Likelihood Estimation

Estimate a parameter μ : Find the value that maximizes $L(\mu)$
\Rightarrow the value of μ for which this data was most likely to occur
\rightarrow Maximum Likelihood Estimator, $\hat{\mu}$

$$
\hat{\mu}=\arg \max L(\mu)
$$

$\hat{S}=5$, maximum for $n=5$

The MLE is a function of the data - itself an observable
No guarantee it is the true value (data may be "unlikely") but sensible estimate

MLEs in Shape Analyses

Binned shape analysis:

$$
L\left(\boldsymbol{S} ; \boldsymbol{n}_{i}\right)=P\left(\boldsymbol{n}_{i} ; \boldsymbol{S}\right)=\prod_{i=1}^{N} \operatorname{Pois}\left(\boldsymbol{n}_{i} ; \boldsymbol{S} \boldsymbol{f}_{i}+B_{i}\right)
$$

Need to maximize L(S) :
 in practice easier to minimize

Classification BDT output

$$
\lambda_{\text {Pois }}(S)=-2 \log L(S)=-2 \sum_{i=1}^{N} \log \operatorname{Pois}\left(n_{i} ; \boldsymbol{S} f_{i}+B_{i}\right)
$$

Or in the Gaussian limit

$$
\boldsymbol{\lambda}_{\text {Gaus }}(\boldsymbol{S})=\sum_{i=1}^{N}-2 \log G\left(\boldsymbol{n}_{i} ; \boldsymbol{S} f_{i}+B_{i}, \sigma_{i}\right)=\sum_{i=1}^{N}\left(\frac{\boldsymbol{n}_{\boldsymbol{i}}-\left(\boldsymbol{S} f_{i}+B_{i}\right)}{\sigma_{i}}\right)^{2} \quad x^{2} \text { formula! }
$$

\rightarrow Gaussian MLE (min x^{2} or min $\lambda_{\text {Gaus }}$) : same Best fit value in a x^{2} fit
\rightarrow Poisson MLE (min $\lambda_{\text {Pois }}$) : Best fit value in a likelihood fit (in ROOT, fit option "L") In RooFit, $\boldsymbol{\lambda}_{\text {Pois }} \Rightarrow$ RooAbsPdf: :fitTo(), $\boldsymbol{\lambda}_{\text {Gaus }} \Rightarrow$ RooAbsPdf: :chi2FitTo().

In both cases, MLE \Leftrightarrow Best Fit

$H \rightarrow Y$

$$
L\left(\boldsymbol{S}, \boldsymbol{B} ; \boldsymbol{m}_{i}\right)=e^{-(\boldsymbol{s}+\boldsymbol{B})} \prod_{i=1}^{n_{\mathrm{ves}}} \boldsymbol{S} P_{\mathrm{sig}}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\mathrm{bkg}}\left(\boldsymbol{m}_{\boldsymbol{i}}\right)
$$

Estimate \boldsymbol{S} using MLE $\hat{\boldsymbol{s}}$?
\rightarrow Just perform (likelihood) bestfit of model to data
\Rightarrow fit result for S is the desired $\hat{\mathbf{S}}$.

MLE Properties

- Consistent: $\hat{\mu}$ converges to the true value for large $n, \hat{\mu} \xrightarrow{n \rightarrow \infty} \mu^{*}$
- Asymptotically Gaussian:
for Itrge dataseets $\quad \boldsymbol{P}(\hat{\mu}) \propto \exp \left(-\frac{\left.\left(\hat{\mu}-\mu^{*}\right)^{2}\right) \quad \text { for } n \rightarrow \infty}{2 \sigma_{\hat{\imath}}^{2}}\right) \quad$ for $n \rightarrow \infty$ Standard deviation of the distribution of $\hat{\mu}$
- Asymptotically Efficient : σ_{ρ} is the lowest possible value (in the limit $n \rightarrow \infty$) among consistent estimators.
\rightarrow MLE captures all the available information in the data
- Log-likelihood : Can also minimize $\lambda=-2 \log \mathrm{~L}$
\rightarrow Usually more efficient numerically
\rightarrow For Gaussian L, λ is parabolic: $\quad \lambda(\mu)=\left(\frac{\hat{\mu}-\mu}{\sigma_{\mu}}\right)^{2}$
- Can drop multiplicative constants in L (additive constants in λ)

Fisher Information

Fisher Information:

$$
I(\mu)=\left\lvert\,\left\langle\left.\frac{\partial}{\partial \mu} \log L(\mu)\right|^{2}\right|=-\left|\frac{\partial^{2}}{\partial \mu^{2}} \log L(\mu)\right|\right.
$$

Measures the amount of information available in the measurement of μ.
Gaussian likelihood: $I(\mu)=\frac{1}{\sigma_{\text {Likelihood }}^{2}}$
\rightarrow smaller $\sigma_{\text {Likellhood }} \Rightarrow$ more information.

Cramer-Rao bound:
For any estimator $\hat{\mu}$,

$$
\operatorname{Var}(\hat{\mu}) \geq \frac{1}{I(\mu)}
$$

\rightarrow cannot be more precise than information allows.

Efficient estimators reach the bound : e.g. MLE in the large n limit.

What's next? Usual Statistical Results

We need more than just best-fit values:

- Discovery: we see an excess is it a (new) signal, or a background fluctuation?
- Upper limits: we don'† see an excess if there is a signal present, how small must it be?
- Parameter measurement: what is the allowed range ("confidence interval") for a model parameter ?

The Statistical Model already contains all the necessary information - how to use it?

Computing Statistical Results II. Testing Hypotheses

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. \mathbf{H}_{0} : S=0)
\rightarrow Goal : determine if H_{0} is true or false using a test based on the data

Possible outcomes:	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Missed discovery Discovery! $(1-$ Power)	
H_{0} is true (Nothing new)	False discovery claim Type-I error $(\rightarrow \mathrm{p}$-value, significance)	No new physics, none found

Stringent discovery criteria
\Rightarrow lower Type-I errors, higher Type-II errors
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. \mathbf{H}_{0} : S=0)
\rightarrow Goal : determine if H_{0} is true or false using a test based on the data

Possible outcomes:	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Missed discovery Discovery! $(1-$ Power)	
H_{0} is true (Nothing new)	False discovery claim Type-I error $(\rightarrow \mathrm{p}$-value, significance)	No new physics, none found

Stringent discovery criteria
\Rightarrow lower Type-I errors, higher Type-II errors
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.
Background

Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses \boldsymbol{H}_{0} and \boldsymbol{H}_{1}, the $\underline{L\left(H_{1} ; \text { data }\right)}$
$L\left(H_{0} ;\right.$ data $)$
As for MLE, choose the hypothesis that is more likely for the data.
\rightarrow Minimizes Type-II uncertainties for given level of Type-I uncertainties
\rightarrow Always need an alternate hypothesis to test against.
Caveat: Strictly true only for simple hypotheses (no free parameters)
\rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors),
trusting that Type-II errors are anyway as small as they can be...

Statistical Results as Hypothesis Tests

Usual HEP results can be recast in terms of hypothesis testing:

- Discovery: is the data compatible with background-only?
$\rightarrow \mathrm{H}_{0}$: only background is present
\rightarrow How well can we reject H_{0} ? $\rightarrow \mathrm{p}$-value (significance)
- Upper limits: no excess observed - how small must the signal be ?
$\rightarrow H_{0}(S): B+$ some signal S
\rightarrow How small can we make S, and still reject $\mathrm{H}_{0}(\mathrm{~S})$ at 95% C.L. ($\mathrm{p}=5 \%$) ?
- Parameter measurement
$\rightarrow \mathrm{H}_{0}(\mu)$: some parameter value μ
\rightarrow What values μ are not rejected at 68\% C.L. $(p=32 \%)$?
\Rightarrow l σ confidence interval on μ
In all cases, H_{0} : null hypothesis - what we are trying to disprove

Computing Statistical Results III. Discovery

Discovery: Test Statistic

Discovery :

- H_{0} : background only ($\mathbf{S}=\mathbf{0}$) against
$\mathrm{S}=0$
- \mathbf{H}_{1} : presence of a signal $(\mathbf{S} \neq \mathbf{0})$
\rightarrow For H_{1}, any $\mathrm{S} \neq \mathrm{O}$ is possible, which to use ? The one preferred by the data, $\hat{\mathbf{s}}$.
\Rightarrow Use LR $\frac{L(S=0)}{L(\hat{S})}$
\rightarrow In fact use the test statistic $\quad t_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})}$
$\rightarrow \dagger_{0}$ is computed from the observed data - fit to data to get $\hat{\mathrm{S}}$.
$\rightarrow t_{0}$ always $\geq 0, t_{0}=0$ reached for $\hat{S}=0$.
$\rightarrow t_{0}$ measures the relative likelihood of H_{1} vs. H_{0} in data:
Large values of $\mathrm{t}_{0} \Leftrightarrow$ large observed S

Discovery p-value

Large values of $\boldsymbol{t}_{\mathbf{0}}=-2 \log \frac{L(S=0)}{L(\hat{S})}$
\Rightarrow large observed $\widehat{\mathrm{S}}$
$\Rightarrow \mathrm{H}_{0}(\mathrm{~S}=0)$ disfavored compared to $\mathrm{H}_{1}(\mathrm{~S} \neq 0)$.

How large t_{0} before we can exclude H_{0} ? (and claim a discovery!)
p-value : Fraction of outcomes that are at least as H_{1}-like (signal-like) as data, when \boldsymbol{H}_{0} is true (no signal present).
\rightarrow Smaller p-value \Rightarrow Stronger case for discovery
\rightarrow Compute from distribution $f\left(t_{0} \mid H_{0}\right)$ of t_{0} if H_{0} is true:

Discovery significance

Interesting p-values are quite small
\Rightarrow express in terms of Gaussian quantiles
\rightarrow Significance Z

$$
\begin{aligned}
p_{0} & =1-\int_{-Z}^{+Z} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u \\
& =1-2 \Phi(Z)
\end{aligned}
$$

$$
\Phi(Z)=\int_{-\infty}^{Z} G(u ; 0,1) d u
$$

In ROOT:
20.045
$\mathbf{p}_{0} \rightarrow \mathbf{Z}$ (Ф) : ROOT::Math::gaussian_quantile_c
$Z \rightarrow p_{0}\left(\Phi^{-1}\right):$ ROOT: :Math::gaussian_cdf_c
\Rightarrow How small is small enough ?
\rightarrow Conventionally, discovery for $p_{0}=610^{-7} \Leftrightarrow Z=5 \sigma$

Asymptotic Approximation

\rightarrow Assume Gaussian regime for $\hat{\mathbf{s}}$ (e.g. large $\mathrm{n}_{\text {evts }}$) \Rightarrow Central-limit theorem :
$\Rightarrow \mathbf{t}_{0}$ is distributed as $\mathbf{a} X^{2}$ under the hypothesis H_{0}

$$
f\left(\boldsymbol{t}_{\mathbf{0}} \mid \boldsymbol{H}_{\mathbf{0}}\right)=\boldsymbol{f}_{\chi^{2}\left(n_{\text {dof }}=1\right)}\left(\boldsymbol{t}_{\mathbf{0}}\right)
$$

In particular, significance:

$$
Z=\sqrt{t_{0}}
$$

$$
\begin{gathered}
\text { By definition, } \\
t_{0} \sim x^{2} \Rightarrow \sqrt{ } t_{0} \sim G(0,1)
\end{gathered}
$$

Typically works well for for event counts O (5) and above (5 already "Iarge"...)

$$
t_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})}
$$

The 1-line "proof" : asymptotically L and S are Gaussian, so

$$
L(S)=\exp \left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^{2}\right] \Rightarrow t_{0}=\left(\frac{\hat{S}}{\sigma}\right)^{2} \Rightarrow t_{0} \sim \chi^{2}\left(n_{\mathrm{dof}}=1\right) \text { since } \hat{S} \sim G(0, \sigma)
$$

One-sided vs. Two-Sided

If $\hat{\mathrm{S}}<0$, is it a discovery? (does reject the $\mathrm{S}=0$ hypothesis...)
Usual assumption : only $\hat{s}>0$ is a bona fide signal
\Rightarrow Change statistic so that $\hat{\mathbf{S}}<\mathbf{0} \Rightarrow \mathrm{t}_{0}=\mathbf{0}$ (perfect agreement with H_{0}, as for $\hat{\mathrm{S}}=0$)

One-sided

$\boldsymbol{q}_{0}=\left\{\begin{array}{cc}-2 \log \frac{\boldsymbol{L}(\boldsymbol{S}=\mathbf{0})}{\boldsymbol{L}(\hat{\boldsymbol{S}})} & \hat{S} \geq 0 \\ 0 & \hat{S}<0\end{array}\right.$

$$
Z=\Phi^{-1}\left(1-p_{0}\right)
$$

\Rightarrow Same Z in both cases for a given signal S

One-Sided Asymptotics

\rightarrow One-sided test:

$$
\left.\boldsymbol{q}_{0}=\left\lvert\, \begin{array}{cc}
-2 \log \frac{\boldsymbol{L}(S=0)}{\boldsymbol{L}(\hat{S})} & \hat{S} \geq 0 \\
0 & \hat{S}<0
\end{array}\right.\right)
$$

Asymptotics: "half- $\chi^{2 "}$ distribution: $\quad f\left(q_{0} \mid S=0\right)=\frac{1}{2} \delta\left(q_{0}\right)+\frac{1}{2} f_{\chi^{2}\left(n_{\text {of }}=1\right)}\left(q_{0}\right)$

Example: Gaussian Counting

Count number of events n in data
\rightarrow assume n large enough so process is Gaussian
\rightarrow assume B is known, measure S
Likelihood: $\quad L(S ; n)=e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sqrt{S+B})^{2}}\right.}$

$$
\lambda(S ; n)=\left(\left.\frac{n-(S+B)}{\sqrt{S+B}}\right|^{2}\right.
$$

$S+B$

MLE for $\mathbf{S}: \hat{S}=\mathrm{n}-\mathrm{B}$

Test statistic: assume $\hat{S}>0$,

$$
q_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})}=\lambda(S=0)-\lambda(\hat{S})=\left|\frac{n-B}{\sqrt{B}}\right|^{2}=\left|\frac{\hat{S}}{\sqrt{B}}\right|^{2}
$$

Finally:

$$
Z=\sqrt{q_{0}}=\frac{\hat{S}}{\sqrt{B}}
$$

Known formula!
\rightarrow Strictly speaking only valid in Gaussian regimge

Example: Poisson Counting

Same problem but now not assuming Gaussianity

$$
L(S ; n)=e^{-(S+B)}(S+B)^{n} \quad \lambda(S ; n)=2(S+B)-2 n \log (S+B)
$$

MLE: $\hat{S}=\mathrm{n}-\mathrm{B}$, same as Gaussian
Test statistic (for $\hat{S}>0$): $\quad \boldsymbol{q}_{0}=\lambda(S=0)-\lambda(\hat{S})=-2 \hat{S}-2(\hat{S}+B) \log \frac{B}{\hat{S}+B}$
Assuming asymptotic distribution for a_{0},

$$
Z=\sqrt{2\left\lfloor(\hat{S}+B) \log \left|1+\frac{\hat{S}}{B}\right|-\hat{S}\right]}
$$

Exact result can be obtained using pseudo-experiments \rightarrow close to $\sqrt{ } \mathrm{a}_{0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of $\mathrm{S}+\mathrm{B}$ (5!)

Example: Multi-bin counting

Likelihood: $\quad L(S ; n)=\prod_{i=1}^{N} \operatorname{Pois}\left(n_{i} ; S f_{i}+B_{i}\right)$
Assume Gaussianity:

$$
\lambda(S)=\sum_{i=1}^{N}\left|\frac{n_{i}-\left(S f_{i}+B_{i}\right)}{\sqrt{S f_{i}+B_{i}}}\right|^{2}
$$

$$
\hat{S}=\frac{\sum_{i=1}^{N} f_{i} \frac{n_{i}-B_{i}}{B_{i}}}{\sum_{i=1}^{N} \frac{f_{i}^{2}}{B_{i}}}
$$

Test statistic: assuming $\hat{\mathrm{S}}>0$,

$$
q_{0}=\lambda(S=0)-\lambda(\hat{S})=\left|\hat{S} \sqrt{\sum_{i=1}^{N} \frac{f_{i}^{2}}{B_{i}}}\right|^{2}
$$

Asymptotics:

$$
\underset{\text { ncertainty }}{\boldsymbol{Z}=\sqrt{\boldsymbol{q}_{\mathbf{0}}}=\frac{\hat{\boldsymbol{S}}}{\text { nhe bins }}} \rightarrow \left\lvert\, \begin{aligned}
& \left.\sum_{i=1}^{N} \frac{\boldsymbol{f}_{i}^{2}}{\boldsymbol{B}_{\boldsymbol{i}}}\right|^{-\mathbf{1 / 2}}
\end{aligned} \begin{aligned}
& \text { Always better than } \\
& \text { • Any bin by itself (for same } \hat{\mathrm{S}} \text {) } \\
& \text { - All bins merged together }
\end{aligned}\right.
$$

Some Examples

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

High-mass X $\boldsymbol{T} \mathbf{Y Y}$ Search: JHEP 09 (2016)

Some Examples

High-mass X $\boldsymbol{\rightarrow} \mathbf{Y Y}$ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

Takeaways

Given a statistical model $P($ data; $\mu)$, define likelihood $L(\mu)=P($ data; $\boldsymbol{\mu})$

To estimate a parameter, use value $\hat{\boldsymbol{\mu}}$ that maximizes $L(\mu)$.
To decide between hypotheses H_{0} and H_{1}, use the likelihood ratio $\frac{L\left(\boldsymbol{H}_{0}\right)}{L\left(\boldsymbol{H}_{1}\right)}$
To test for discovery, use $\quad \boldsymbol{q}_{0}=\left\lvert\, \begin{array}{cl}-2 \log \frac{\boldsymbol{L}(\boldsymbol{S}=0)}{\boldsymbol{L}(\hat{\boldsymbol{S}})} & \hat{S} \geq 0 \\ 0 & \hat{S}<0\end{array}\right.$
For large enough datasets, $\quad \mathbf{Z}=\sqrt{\boldsymbol{q}_{\mathbf{0}}}$

For a Gaussian measurement, $\quad Z=\frac{\hat{S}}{\sqrt{B}}$
For a Poisson measurement, $\quad Z=\sqrt{2}\left[(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]$

What was the question?

Definition of the p-value:

$$
\mathrm{p} \text {-value }=\frac{\text { number of signal-like outcomes with only background present }}{\text { all outcomes with only background present }}
$$

So 5 σ significance $\left(p_{0} \sim 10^{-7}\right) \Leftrightarrow$ Occurs once in 10^{7} if only background present

However this is NOT "One chance in 10^{7} to be a fluctuation"

The first statement is about data probabilities - $\mathrm{P}\left(\right.$ data; $\left.\mathrm{H}_{0}\right)$

The second is on $\mathrm{P}\left(\mathrm{H}_{0}\right)$ itself - not addressed in the framework described so far
\rightarrow makes sense in a Bayesian context, more on this tomorrow.

It's also a different statement (although they sometimes get confused)
\rightarrow If a signal outcome is also very unlikely, we may not want to reject H_{0}, even with $\mathrm{p}_{0} \sim 10^{-7}$.

What was the question?

e.g. Faster-than-light neutrino anomaly

$$
(\mathrm{v}-c) / c=\left(2.37 \pm 0.32(\text { stat. })_{-0.24}^{+0.34}(\text { sys. })\right) \times 10^{-5} \quad \text { 6.2б above c }
$$

"despite the large significance of the measurement reported here and the stability of the analysis, the potentially great impact of the result motivates the continuation of our studies in order to investigate possible still unknown systematic effects that could explain the observed anomaly."
\Rightarrow Very unlikely to be a background fluctuation, but hard to believe since alternative ($v>c$) is far-fetched

> "Extraordinary claims require extraordinary evidence"

Alternative: $\boldsymbol{P}($ fluctuation $)=\frac{\text { number of signal-like outcomes with only } B \text { present }}{\text { number of signal-like outcomes from any source }(\mathrm{S} \text { or } B)}$

$$
=\frac{P(\text { fluct } \mid B) P(B)}{P(\text { fluct } \mid S) P(S)+P(\text { fluct } \mid B) P(B)}
$$

\rightarrow Needs a priori $P(S)$ and $P(B) \rightarrow$ Bayesian methods, discussed tomorrow
\rightarrow In frequentist context, only have $\mathbf{p}_{0}=P($ fluct $\mid B)$ (and $P($ fluct $\mid S)=$ power ~ 1)
\Rightarrow However usually same conclusion, assuming $P(S)$ is not $\ll P_{0} \ldots$

