Statistical analysis methods

for Physics

Lecture II

Nicolas Berger (LAPP Annecy)

Physics measurement data are produced through **random processes**, Need to be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(n; S, B) = e^{-(S + B)} \frac{(S + B)^n}{n!}$
Binned shape analysis	n _i , i=1N _{bins}	Poisson product $P(\mathbf{n}_{i}; \mathbf{S}, \mathbf{B}) = \prod_{i=1}^{n_{\text{bins}}} e^{-(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})} \frac{(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})^{\mathbf{n}_{i}}}{\mathbf{n}_{i}!}$
Unbinned shape analysis	m _i , i=1n _{evts}	Extended Unbinned Likelihood $P(\boldsymbol{m}_i; \boldsymbol{S}, \boldsymbol{B}) = \frac{e^{-(\boldsymbol{S} + \boldsymbol{B})}}{\boldsymbol{n}_{\text{evts}}!} \prod_{i=1}^{\boldsymbol{n}_{\text{evts}}} \boldsymbol{S} P_{\text{sig}}(\boldsymbol{m}_i) + \boldsymbol{B} P_{\text{bkg}}(\boldsymbol{m}_i)$

Model can include multiple **categories**, each with a separate description Includes **parameters of interest** (POIs) but also **nuisance parameters** (NPs)

Reminders From Lecture I

To **estimate a parameter value**, use the Maximum-likelihood estimate (MLE), a.k.a. Best-fit value of the parameter,

Today, further results:

- Discovery: we see an excess is it a (new) signal, or a background fluctuation ?
- Upper limits: we don't see an excess if there is a signal present, how small must it be ?
- Parameter measurement: what is the allowed range ("confidence interval") for a model parameter ?
- → The Statistical Model already contains all the needed information how to use it ?

Outline

Lecture I: Statistics basics Describing measurements Computing statistics results:

Today:

Computing statistics results:

Discovery

Limits

Confidence intervals

Profiling

Lecture III: Look-Elsewhere Effect, Bayesian methods Practical modeling, BLUE

Computing Statistical Results II. Testing Hypotheses

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H₀: S=0)

 \rightarrow Goal : determine if H₀ is true or false using a test based on the data

Possible outcomes:	Data disfavors H _o (Discovery claim)		Data favors H _o (Nothing found)	
H ₀ is false (New physics!)	Discovery!		Missed discovery Type-II error (1 - Power)	
H _o is true (Nothing new)	False discovery claim Type-I error (→ p-value, significance)		No new physics, none found	Big downases year nations (service) I <td< td=""></td<>
		a (E		

Stringent discovery criteria ⇒ lower Type-I errors, higher Type-II errors → Goal: test that minimizes Type-II errors for given level of Type-I error.

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H₀: S=0)

 \rightarrow Goal : determine if H₀ is true or false using a test based on the data

Possible outcomes:	Data disfavors H _o (Discovery claim)		Data favors H _o (Nothing found)	
H ₀ is false (New physics!)	Discovery!		Missed discovery Type-II error (1 - Power)	
H ₀ is true (Nothing new)	False discovery claim Type-I error (→ p-value, significance)		No new physics, none found	Unit generative via native (sector) unit

Stringent discovery criteria ⇒ lower Type-I errors, higher Type-II errors → Goal: test that minimizes Type-II errors for given level of Type-I error.

Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H_0 and H_1 , the optimal discriminator is the **Likelihood ratio** (LR)

As for MLE, choose the hypothesis that is more likely for the data.

 \rightarrow Minimizes Type-II uncertainties for given level of Type-I uncertainties \rightarrow Always need an **alternate hypothesis** to test against.

Caveat: Strictly true only for *simple hypotheses* (no free parameters)

 \rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-II errors are anyway as small as they can be...

 $L(\mathbf{H}_1; data)$

 $L(\mathbf{H}_{0}; data)$

Statistical Results as Hypothesis Tests

Usual HEP results can be recast in terms of **hypothesis testing**:

• **Discovery**: is the data compatible with background-only? \rightarrow H₀: only background is present

 \rightarrow How well can we reject H_{n} ? \rightarrow p-value (significance)

- Upper limits: no excess observed how small must the signal be ? \rightarrow H₀(S) : B + some signal S
 - \rightarrow How small can we make S, and still reject H₀(S) at 95% C.L. (p=5%)?

Parameter measurement

- \rightarrow H₀(µ): some parameter value µ
- \rightarrow What values μ are <u>not</u> rejected at 68% C.L. (p=32%) ?
- \Rightarrow 1 σ confidence interval on μ

In all cases, H₀: *null hypothesis* – what we are trying to disprove

Computing Statistical Results III. Discovery

Cowan, Cranmer, Gross & Vitells, Eur. Phys. J. C71:1554,2011

Discovery: Test Statistic

Discovery :

- H₀: background only (S = 0) against
- H_1 : presence of a signal ($S \neq 0$)
- \rightarrow For H₁, any S≠0 is possible, which to use ? The one preferred by the data, \hat{s} .

 $\Rightarrow \text{Use LR} \quad \frac{L(S=0)}{L(\hat{S})}$

$$\rightarrow \text{ In fact use the test statistic} \quad t_0 = -2\log\frac{L(S=0)}{L(\hat{S})}$$

 \rightarrow t₀ is computed from the observed data – fit to data to get \hat{S} .

$$\rightarrow$$
 t₀ **always ≥ 0**, t₀ = 0 reached for $\hat{S} = 0$.

 \rightarrow t₀ measures the relative *likelihood* of H₁ vs. H₀ in data:

Large values of $t_0 \Leftrightarrow$ large observed S

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011

11

Discovery p-value

Large values of
$$t_0 = -2\log \frac{L(S=0)}{L(\hat{S})}$$

 \Rightarrow large observed \hat{S}

 \Rightarrow H₀(S=0) *disfavored* compared to H₁(S≠0).

How large t_0 before we can exclude H_0 ? (and claim a discovery!)

p-value: Fraction of outcomes that are **at** least as H,-like (signal-like) as data, when **H**_o is true (no signal present).

 \rightarrow Smaller p-value \Rightarrow Stronger case for discovery

Discovery significance

Interesting p-values are quite small ⇒ express in terms of Gaussian quantiles

0.4

0.35

0.3 0.25 0.2 0.15 0.1 0.05

0<u></u>

-3

-4

-2

 \rightarrow Significance Z

(

$$\Phi(Z) = \int_{-\infty}^{Z} G(u; 0, 1) du$$

Ζ	p-value
1	0.32
2	0.045
3	0.003
5	6 x 10 ⁻⁷

In ROO	T:
$p_0 \rightarrow Z$	(Φ) : ROOT::Math::gaussian_quantile_c
$Z \rightarrow p_0$	(Φ -¹):ROOT::Math::gaussian_cdf_c

-1

0

2

1

3

4

5

p(|x-x₀| < 1σ) = 0.682689

 \Rightarrow How small is small enough ?

 \rightarrow Conventionally, discovery for $p_0 = 6 \ 10^{-7} \Leftrightarrow Z = 5\sigma$

Asymptotic Approximation: Wilks' Theorem

 \rightarrow Assume **Gaussian regime for Ŝ** (e.g. large n_{evts})

 \Rightarrow Central-limit theorem :

 t_0 is distributed as a χ^2 under the hypothesis H_0

 $f(t_0 \mid H_0) = f_{\chi^2(n_{dof}=1)}(t_0)$

In particular, significance:

$$Z = \sqrt{t_0} \qquad \begin{array}{c} \text{By definition,} \\ t_0 \sim \chi^2 \Rightarrow \sqrt{t_0} \sim G(0,1) \end{array}$$

Typically works well for for event counts O(5) and above (5 already "large"...)

The 1-line "proof": asymptotically L and S are Gaussian, so

$$L(S) = \exp\left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^2\right] \Rightarrow t_0 = \left(\frac{\hat{S}}{\sigma}\right)^2 \Rightarrow t_0 \sim \chi^2(n_{dof} = 1) \text{ since } \hat{S} \sim G(0, \sigma)$$

Cowan, Cranmer, Gross & Vitells Eur.Phys.J.C71:1554,2011

 $t_0 = -2\log\frac{L(S=0)}{L(\hat{S})}$

14

One-sided vs. Two-Sided

If $\hat{S} < 0$, is it a *discovery*? (does reject the S=0 hypothesis...)

Usual assumption : only $\hat{\mathbf{S}} > \mathbf{0}$ is a *bona fide* signal

 \Rightarrow Change statistic so that $\hat{\mathbf{S}} < \mathbf{0} \Rightarrow \mathbf{t}_0 = \mathbf{0}$ (perfect agreement with H_0 , as for $\hat{\mathbf{S}} = 0$)

One-Sided Asymptotics

Example: Gaussian Counting

Count number of events n in data

 \rightarrow assume n large enough so process is Gaussian

 $L(S;n) = e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sqrt{S+B}}\right)^2}$

 \rightarrow assume B is known, measure S

Likelihood :

$$\lambda(S;n) = \left(\frac{n - (S + B)}{\sqrt{S + B}}\right)^2$$

MLE for $S : \hat{S} = n - B$

Test statistic: assume $\hat{S} > 0$,

$$q_0 = -2\log\frac{\boldsymbol{L(S=0)}}{\boldsymbol{L(\hat{S})}} = \lambda(S=0) - \lambda(\hat{S}) = \left|\frac{n-B}{\sqrt{B}}\right|^2 = \left|\frac{\hat{S}}{\sqrt{B}}\right|^2$$

~

Finally:

$$Z = \sqrt{q_0} = \frac{S}{\sqrt{B}}$$

Known formula!

 \rightarrow Strictly speaking only

valid in Gaussian regimge

Example: Poisson Counting

Same problem but now not assuming Gaussianity

- $L(S;n) = e^{-(S+B)}(S+B)^n$ $\lambda(S;n) = 2(S+B) 2n\log(S+B)$
- MLE: $\hat{S} = n B$, same as Gaussian

Test statistic (for
$$\hat{S} > 0$$
): $q_0 = \lambda(S=0) - \lambda(\hat{S}) = -2\hat{S} - 2(\hat{S}+B) \log \frac{B}{\hat{S}+B}$

Assuming asymptotic distribution for q_0 ,

$$Z = \sqrt{2\left[\left(\hat{S} + B\right)\log\left(1 + \frac{\hat{S}}{B}\right) - \hat{S}\right]}$$

Exact result can be obtained using pseudo-experiments \rightarrow close to $\sqrt{q_0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (5!)

See G. Cowan's slides for case with B uncertainty 18

Some Examples

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

High-mass X→ yy Search: JHEP 09 (2016) 1

Some Examples

High-mass X→ yy Search: JHEP 09 (2016) 1

Takeaways

Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use value $\hat{\mu}$ that maximizes L(μ).

To decide between hypotheses H_0 and H_1 , use the likelihood ratio $\frac{L(H_0)}{I(H_0)}$

To test for **discovery**, use $q_0 = \begin{vmatrix} -2\log\frac{L(S=0)}{L(\hat{S})} & \hat{S} \ge 0 \\ +2\log\frac{L(S=0)}{L(\hat{S})} & \hat{S} < 0 \end{vmatrix}$ For large energy is the For large enough datasets (n > 5), $Z = \sqrt{q_n}$

For a Gaussian measurement,
$$Z = \frac{\hat{S}}{\sqrt{B}}$$

For a Poisson measurement, $Z = \sqrt{2\left[(\hat{S}+B)\log\left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]}$

What was the question ?

Definition of the p-value:

p-value = $\frac{\text{number of signal-like outcomes with only background present}}{\text{all outcomes with only background present}}$

So 5 σ significance ($p_0 \sim 10^{-7}$) \Leftrightarrow Occurs once in 10⁷ if only background present

However this is **NOT** "*One chance in 10⁷ to be a fluctuation*"

The first statement is about **data probabilities** – **P(data; H₀)**

The second is on $P(H_0)$ itself – not addressed in the framework described so far \rightarrow makes sense in a **Bayesian** context, more on this later in these lectures.

It's also a different statement (although they sometimes get confused) \rightarrow If a signal outcome is also very unlikely, we may not want to reject H₀, even with p₀ ~ 10⁻⁷.

What was the question ?

e.g. Faster-than-light neutrino anomaly

 $(v-c)/c = (2.37 \pm 0.32 \text{ (stat.)} ^{+0.34}_{-0.24} \text{ (sys.)}) \times 10^{-5}$ 6.20 above c

"despite the large significance of the measurement reported here and the stability of the analysis, the potentially great impact of the result motivates the continuation of our studies in order to investigate possible still unknown systematic effects that could explain the observed anomaly."

⇒ Very unlikely to be a background fluctuation, but hard to believe since alternative (v>c) is far-fetched

"Extraordinary claims require extraordinary evidence"

Alternative: $P(\text{fluctuation}) = \frac{\text{number of signal-like outcomes with only B present}}{\text{number of signal-like outcomes from any source (S or B)}$ $= \frac{P(\text{deviation}|B)P(B)}{P(\text{deviation}|S)P(S) + P(\text{deviation}|B)P(B)}$

 \rightarrow Needs *a priori* P(S) and P(B) \rightarrow Bayesian methods, discussed later

- \rightarrow In frequentist context, only have $\mathbf{p}_0 = \mathbf{P}(\mathbf{deviation} \mid \mathbf{B})$
- \Rightarrow However usually same conclusion, assuming P(S) is not $\ll p_0...$

Outline

Lecture I:

Statistics basics

Describing measurements

Computing statistics results:

Today:

Computing statistics results:

Discovery

Limits

Confidence intervals

Profiling

Usual Statistical Results

• **Discovery**: we see an excess – is it a (new) signal, or a background fluctuation ?

• Upper limits: we don't see an excess – if there is a signal present, how small must it be ?

 Parameter measurement: what is the allowed range ("confidence interval") for a model parameter ?

Upper Limits

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?) → More interesting to **exclude large signals** → **Upper limits on signal yield**

For **discovery**

- Try to exclude H₀: S=0
- Alternative : H₁ : S > 0
- Report p-value for the test (or Z)

For **limit-setting**:

- Try to exclude H₀: S=S₀
- Alternative : H₁ : S < S₀
- Usually, adjust S₀ to get a predefined p-value (typically 5%)

→ *Confidence Levels*: CL = 1 - p (p = 5% \Leftrightarrow 95% CL)

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?) → More interesting to **exclude large signals** → **Upper limits on signal yield**

For **discovery**

- Try to exclude H₀: S=0
- Alternative : $H_1 : S > 0$
- Report p-value for the test (or Z)

For **limit-setting**:

- Try to exclude H₀: S=S₀
- Alternative : $\mathbf{H}_1 : \mathbf{S} < \mathbf{S}_0$
- Usually, adjust S_n to get a predefined p-value (typically 5%)

→ *Confidence Levels*: CL = 1 - p (p = 5% \Leftrightarrow 95% CL)

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?) → More interesting to **exclude large signals** → **Upper limits on signal yield**

For **discovery**

- Try to exclude H₀: S=0
- Alternative : $H_1 : S > 0$
- Report p-value for the test (or Z)

For **limit-setting**:

- Try to exclude H₀: S=S₀
- Alternative : $H_1 : S < S_0$
- Usually, adjust S_n to get a predefined p-value (typically 5%)

→ *Confidence Levels*: CL = 1 - p (p = 5% \Leftrightarrow 95% CL)

Test Statistic for Limit-Setting

 $\hat{\mathbf{S}} \sim \mathbf{S}_0$ (no exclusion) : $\mathbf{q}_{so} \sim \mathbf{0}$ $\hat{\mathbf{S}} \ll \mathbf{S}_0$ (good exclusion) : $\mathbf{q}_{so} \gg \mathbf{1}$ Same as q_0 : large values \Rightarrow good rejection of H_{0^1}

One-sided Test Statistic

For upper limits, alternate is $H_1 : S < \mu_0$:

- \rightarrow If **large** signal observed ($\hat{S} \gg S_0$), does not favor H₁ over H₀
- \rightarrow Only consider $\hat{S} < S_0$ for H_1 , and include $\hat{S} \ge S_0$ in H_0 .

 \Rightarrow Set $\mathbf{q}_{so} = \mathbf{0}$ for $\hat{\mathbf{S}} > \mathbf{S}_{o}$ – only small signals ($\hat{\mathbf{S}} < \mathbf{S}_{o}$) help lower the limit.

 \rightarrow Also treat separately the case S < 0 to avoid technical issues in -2logL fits.

Asymptotics:

 $p_0 = 1 - \Phi$

 $q_{so} \sim "\frac{1}{2}\chi^2$ " under $H_0(S=S_0)$, same as q_0 , except for special treatment of $\hat{S} < 0$.

 $\widetilde{q}_{S_0} = \begin{vmatrix} \mathbf{0} & \widehat{S} \ge S_0 \\ -2\log\frac{L(S=S_0)}{L(\widehat{S})} & 0 \le \widehat{S} \le S_0 \\ -2\log\frac{L(S=S_0)}{L(S=0)} & \widehat{S} \le 0 \end{vmatrix}$

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011 31

Inversion : Getting the limit for a given CL

Procedure

- \rightarrow Consider H_0 : H(S=S_0) alternative H_1 : H(Ŝ < S_0)
- \rightarrow Compute q_{s0}, get exclusion p-value p_{s0}.
- → Adjust S₀ until 95% CL exclusion (p_{s0} = 5%) is reached Asymptotics: set target in terms of q_{s0} : $\sqrt{q_{s_0}} = \Phi^{-1}(1-p_0)$

Asymptotics		
CL	Region	
90%	q _s > 1.64	
95%	q _s > 2.70	
99%	q _s > 5.41	

32

Inversion : Getting the limit for a given CL

Procedure

- \rightarrow Consider H_0 : H(S=S_0) alternative H_1 : H(Ŝ < S_0)
- \rightarrow Compute q_{s0}, get exclusion p-value p_{s0}.
- → Adjust S₀ until 95% CL exclusion (p_{s0} = 5%) is reached Asymptotics: set target in terms of q_{s0} : $\sqrt{q_{s_0}} = \Phi^{-1}(1-p_0)$

Asymptotics	
CL	Region
90%	q _s > 1.64
95%	q _s > 2.70
99%	q _s > 5.41

33

Inversion : Getting the limit for a given CL

Procedure

- \rightarrow Consider H_{n} : H(S=S_{n}) alternative H_{1} : H($\hat{S} < S_{n}$)
- \rightarrow Compute q_{so} , get exclusion p-value p_{so} .
- \rightarrow Adjust S_o until 95% CL exclusion (p_{so} = 5%) is reached Asymptotics: set target in terms of q_{s_0} : $\sqrt{q_{s_0}} = \Phi^{-1}(1-p_0)$

Asymptotics		
CL	Region	
90%	q _s > 1.64	
9 5%	q _s > 2.70	
99%	q _s > 5.41	

Upper Limits: Gaussian Example

Usual Gaussian counting example with known B:

$$\lambda(S) = \left(\frac{n - (S + B)}{\sigma_s}\right)^2$$

Reminder:

Best fit signal : $\hat{S} = n - B$ Significance: $Z = \hat{S}/\sqrt{B}$

S+B

١

Compute the 95% CL upper limit on S:

$$q_{S_0} = -2\log\frac{L(S=S_0)}{L(\hat{S})} = \lambda(S_0) - \lambda(\hat{S}) = \left(\frac{n - (S_0 + B)}{\sigma_s}\right)^2 = \left(\frac{S_0 - \hat{S}}{\sigma_s}\right)^2 \quad \text{for} \quad S_0 > \hat{S}$$

 $q_{S_0} = 2.70$ for $S_0 = \hat{S} + \sqrt{2.70} \sigma_s$ SO

And finally $S_{up} = \hat{S} + 1.64 \sigma_s$ at 95% CL

Upper Limit Pathologies

Upper limit: $S_{up} \sim \hat{S} + 1.64 \sigma_{s}$

- **Problem**: for negative Ŝ, get **very** good observed limit.
- \rightarrow For \hat{S} sufficiently negative, even $S_{up} < 0$!

How can this be ?

- → Background modeling issue ?... Or:
- \rightarrow This is a **95%** limit
- \Rightarrow 5% of the time, the limit wrongly excludes the true value, e.g. S*=0.

But if we assume S must be >0, we know a priori this is just a fluctuation.

Options

- \rightarrow live with it: sometimes report limit < 0
- \rightarrow Special procedure to avoid these cases

Upper Limit Pathologies

When setting limits, goal is to exclude large S, to indicate that S~0. What happens at S=0 ?

Normal case: $\hat{S} \sim 0$, S=0 not excluded : S_{up} = \hat{S} + 1.64 σ_s > 0, large p-value for S=0

Pathological case, very negative \hat{S} , S=0 also excluded : S_{IID} = \hat{S} + 1.64 $\sigma_s < 0$, p-value for S=0 also small 0.2_F

Η₀

 \rightarrow However we know a priori that S \geq 0

 \Rightarrow Inject this information into the procedure

A. Read, J.Phys. G28 (2002) 2693-2704

 \boldsymbol{p}_{CL_s}

 p_0

Usual solution in HEP : CL_s.

- \rightarrow Compute modified p-value
- p_{so} is the usual p-value (5%)
- \mathbf{p}_0 is the p-value computed under H(S=0).
- \Rightarrow **Rescale** exclusion at S₀ by exclusion at S=0.
- \rightarrow Somewhat ad-hoc, but good properties...

Good case : $p_0 \sim O(1)$ $p_{CLs} \sim p_{s0} \sim 5\%$, no change.

Pathological case : $p_0 \ll 1$

 $p_{_{CLs}} \sim p_{_{S0}}/p_{_0} \gg 5\%$

 \rightarrow no exclusion \Rightarrow worse limit, usually >0 as desired

Drawback: *overcoverage* \rightarrow limit is actually >95% CL for small p₀.

CL_s : Gaussian Example

Usual Gaussian counting example with known B:

$$\lambda(S) = \left(\frac{n - (S + B)}{\sigma_S}\right)^2$$

Reminder

Best fit signal : $\hat{S} = n - B$ CL_{s+b} limit: $S_{up} = \hat{S} + 1.64 \sigma_s$ at 95 % CL

S+B

CL_s: Poisson Rule of Thumb

Same exercise, for the Poisson case

Exact computation : sum probabilities of cases "at least as extreme as data" (n)

$$p_{S_0}(n) = \sum_{0}^{n} e^{-(S_0 + B)} \frac{(S_0 + B)^k}{k!} \quad \text{and one should solve } p_{CL_s} = \frac{p_{S_{up}}(n)}{p_0(n)} = 5\% \text{ for } S_{up}$$

For n = 0:
$$p_{CL_s} = \frac{p_{S_{up}}(0)}{p_0(0)} = e^{-S_{up}} = 5\% \implies S_{up} = \log(20) = 2.996 \approx 3$$

 \Rightarrow Rule of thumb: when n_{obs}=0, the 95% CL_s limit is 3 events (for any B)

Asymptotics: as before,
$$q_{S_0} = \lambda(S_0) - \lambda(\hat{S}) = 2(S_0 + B - n) - 2n \log \frac{S_0 + B}{n}$$

For n = 0, $q_{S_0}(n=0) = 2(S_0+B)$ $p_{CL_s} = \frac{p_{S_0}}{p_0} = \frac{1-\Phi(\sqrt{q_{S_0}(n=0)})}{1-\Phi(\sqrt{q_{S_0}(n=0)} - \sqrt{q_{S_0}(n=B)})} = 5\%$

 \Rightarrow S_{up} ~ 2, exact value depends on B \Rightarrow Asymptotics not valid in this case (n=0) – need to use exact results, or toys

Expected Limits: Toys

Expected results: median outcome under a given hypothesis

 \rightarrow usually B-only by convention, but other choices possible.

Two main ways to compute:

- \rightarrow Pseudo-experiments (*toys*):
- Generate pseudo-data in B-only hypothesis
- Compute limit

Number of Toys

- Repeat and histogram the results
- Central value = median, bands based on quantiles

Eur.Phys.J.C71:1554,2011 **Computed limit** Phys. Lett. B 775 (2017) 105

Expected Limits: Asimov

Expected results: median outcome under a given hypothesis

 \rightarrow usually B-only by convention, but other choices possible.

Two main ways to compute:

→ Asimov Datasets

- Generate a "perfect dataset" e.g. for binned data, set bin contents carefully, no fluctuations.
- Gives the median result immediately: median(toy results) ↔ result(median dataset)
- Get bands from asymptotic formulas: Band width

$$\sigma_{S_0,A}^2 = \frac{S_0^2}{q_{S_0}(\text{Asimov})}$$

⊕ Much faster (1 "toy") ⊖ Relies on Gaussian approximation

Strictly speaking, Asimov dataset if $\hat{X} = X_n$ for all parameters X,

where X_0 is the generation value

CL_s : Gaussian Bands

Usual Gaussian counting example with known B: 95% CL_s upper limit on S:

$$S_{up} = \hat{S} + \left[\Phi^{-1} \left(1 - 0.05 \Phi(\hat{S}/\sigma_s) \right) \right] \sigma_s$$

Compute expected bands for S=0:

→ Asimov dataset $\Leftrightarrow \hat{S} = 0$: → ± no bands:

$$S_{\text{up,exp}}^{0} = 1.96 \sigma_{s}$$

$$S_{\text{up,exp}}^{\pm n} = \left(\pm n + \left[1 - \Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}$$

CLs :

- Positive bands somewhat reduced,
- Negative ones more so

Band width from $\sigma_{s,A}^2 = \frac{S^2}{q_s(\text{Asimov})}$ depends on S, for non-Gaussian cases, different values for each band...

Upper Limit Examples

ATLAS 2015-2016 4I aTGC Search

Outline

Lecture I:

Statistics basics

Describing measurements

Computing statistics results:

Today:

Computing statistics results:

Discovery

Limits

Confidence intervals Profiling

Usual Statistical Results

Discovery: we see an excess – is it a (new) signal, or a background fluctuation ?

Upper limits: we don't see an excess – if there is a signal present, how small must it be ?

 Parameter measurement: what is the allowed range ("confidence interval") for a model parameter ?

Confidence Intervals

Gaussian Inversion

If $\hat{\mu} \sim G(\mu^*, \sigma)$, known quantiles :

 $P(\mu^* - \sigma < \hat{\mu} < \mu^* + \sigma) = 68\%$

This is a probability for $\hat{\mu}$, not μ ! $\rightarrow \mu^*$ is a fixed number, not a random variable

But we can invert the relation:

$$P(\mu^* - \sigma < \hat{\mu} < \mu^* + \sigma) = 68\%$$

$$\Rightarrow P(|\hat{\mu} - \mu^*| < \sigma) = 68\%$$

$$\Rightarrow P(\hat{\mu} - \sigma < \mu^* < \hat{\mu} + \sigma) = 68\%$$

→ This gives the desired statement on μ^* : *if we repeat the experiment many times,* $[\hat{\mu} - \sigma, \hat{\mu} + \sigma]$ will contain the true value 68% of the time: $\hat{\mu} = \mu^* \pm \sigma$ This is a statement on the interval $[\hat{\mu} - \sigma, \hat{\mu} + \sigma]$ obtained for each experiment

Works in the same way for other interval sizes: $[\hat{\mu} - Z\sigma, \hat{\mu} +]Z\sigma$ ith

Neyman Construction

General case: Build 1σ intervals of observed values for each true value → Confidence belt

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu} < \mu^* < \hat{\mu} + \sigma_{\mu}^+) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{obs} | \mu$) varies with μ .

Likelihood Intervals

Confidence intervals from L:

- Test $H(\mu_n)$ against alternative using
- Two-sided test since true value can be higher or lower than observed

Asymptotics:

- $t_{\mu} \sim \chi^2(N_{POI})$ under $H(\mu_0)$
- $\sqrt{t_u} \sim G(0,1)$ (Gaussian with $d=N_{P(n)}$)

In practice:

- Plot t_{..} vs. µ
- The minimum occurs at $\mu = \hat{\mu}$
- Crossings with $\mathbf{t}_{\mathbf{u}} = \mathbf{Z}^2$ give the **\pmZo uncertainties** (for N_{POI}=1)

 \rightarrow Gaussian case: parabolic profile, $t_{\mu} = \left(\frac{\mu - \hat{\mu}}{\sigma}\right)^2 \Rightarrow \mu_{\pm} = \hat{\mu} \pm \sigma$ at $t_{\mu} = 1$ same result as Neyman construction, also robust against non-Gaussian effects

2D Example: Higgs σ_{vBF} **vs.** σ_{ggF}

ATLAS-CONF-2017-047

Reparameterization

Start with basic measurement in terms of e.g. $\sigma \times B$

 \rightarrow How to measure derived quantities (couplings, parameters in some theory model, etc.)? \rightarrow just reparameterize the likelihood:

e.g. Higgs couplings: σ_{qgF} , σ_{VBF} sensitive to Higgs coupling modifiers κ_{V} , κ_{F} .

Reparameterization: Limits

CMS Run 2 Monophoton Search: measured N_s in a counting experiment reparameterized according to various DM models

Takeaways

Limits : use LR-based test statistic:

 \rightarrow Use CL_{s} procedure to avoid negative limits

Poisson regime, n=0 : S_{up} = 3 events Gaussian regime, n=0 : S_{up} = 1.96 σ_{Gauss}

Uncertainty bands: obtain from toys or from Asimov

Confidence intervals: Use
$$t_{\mu_0} = -2 \log \frac{L(\mu = \mu_0)}{L(\hat{\mu})}$$

$$\rightarrow$$
 1D: crossings with $t_{\mu 0} = Z^2$ for $\pm Z\sigma$ intervals

Gaussian regime: $\mu = \hat{\mu} \pm \sigma_{Gauss}$ (1 σ interval)

$$\widetilde{q}_{\mu_0} = \begin{cases} 0 & \widehat{\mu} \ge \mu_0 \\ -2\log\frac{L(\mu = \mu_0)}{L(\widehat{\mu})} & 0 \le \widehat{\mu} \le \mu_0 \\ -2\log\frac{L(\mu = \mu_0)}{L(\mu = 0)} & \widehat{\mu} < 0 \end{cases}$$

 $\sigma_{S,A}^2 = \frac{S^2}{q_s(\text{Asimov})}$

Historical Aside

Classic Discoveries (1)

ĪŢ

1.55 1.552 1.554 1.556

1000

ADRANG

21

C.

8

100

20

scale

00

Z⁰ Discovery

ψ Discovery

In this graph, the blue data points show a sharp peak in the number of hadrons produced at a narrow range of energies – evidence of the J/Ψ particle. The horizontal axis shows the energy of one of the pair of SPEAR beams, measured in GeV. The height of the peak is so great that, to fit the plot on one sheet of graph paper, the vertical axis is compressed into a logarithmic scale.

Huge signal S/B~50 Several 1000 events

1.56

1.57

Classic Discoveries (2)

OB:20 SON OF GLORY Church Mondrem, Allen Little, Bob Stega Jo it a

NOTES THE RESCAN (RAN 1922) WAS SHELLED AT "1975" DEALINED BY RUMMEN'S SOME NOOM 1.463, SO EUROPENES (DAL'S DON'T CREATING TO MELL AT LINE 1922

15 STOP. DUMP | Rick)

- WIE Preside on it 1,217 -
- Much has compared provides as into pille. That I shared
- 30 DAMN LINAL RACE UP. DUMP + DIAN.

ψ' : discovered online by the (lucky) shifters

First hints of top at D0: O(10) signal events, a few bkg events, 2.4σ

And now ?

Short answer: The high-signal, low-background experiments have been done already (although a surprise would be welcome...) *e.g.* at LHC:

- High background levels, need precise modeling
- Large systematics, need to be described accurately
- Small signals: need optimal use of available information :
 - Shape analyses instead of counting
 - Categories to isolated signal-enriched regions

Discoveries that weren't

UA1 Monojets (1984)

Volume 139B, number 1,2

PHYSICS LETTERS

3 May 1984

(ii) Any invisible Z^0 , such as $Z^0 \rightarrow \nu \bar{\nu} decay, which$ is expected to have a large (18%) branching ratio. Notethat the corresponding decays into charged lepton $pairs <math>Z^0 \rightarrow e^+e^-$, $Z^0 \rightarrow \mu'\mu$ have lower branching ratios (-3%) and may not have yet been produced within the present statistics. (iii) New, non-interacting neutral particles. The jets appear somewhat narrower and with lower multiplicities to the organomic of CDD irt z. J.

At the present time we can only speculate about the origin of this new effect. The missing transverse

energy can be due either to: (i) One or more prompt neutrino

multiplicities than the corresponding QCD jets, although it might be premature to draw conclusions or such limited statistics.

A number of theoretical speculations [9] may be elevant to these results. We mention briefly the possibilities of excited quarks or leptons and of composite or coloured or supersymmetric W's and Higgs. A re cent calculation [10] +8 has been made in the context of the present collider experiment, on the rate of event with large missing transverse energy from gluino pair production with each gluino decaying into a quark, antiquark, and photino. The non-interacting photinos may produce large apparent missing energy. For instance, the calculation gives an expectation of about 100 single-jet events with $\Delta E_{\rm M} > 20$ GeV for a gluino mass of 20 GeV/c2. Taking our excess of 5 events above background as an upper limit for such a process, we deduce that the gluino mass must be greater than about $40 \text{ GeV}/c^2$

EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY ACCOMPANIED BY A JET OR A PHOTON (S) IN $p\bar{p}$ COLLISIONS AT $\sqrt{s} = 540$ GeV

UA1 Collaboration, CERN, Geneva, Switzerland

Pentaquarks (2003)

BICEP2 B-mode Polarization (2014)

Avoid spurious discoveries!

 \rightarrow Treatment of modeling uncertainties, systematics in general

Phys. Rev. Lett. 91, 252001 (2003)

Outline

Lecture I:

Statistics basics

Describing measurements

Computing statistics results:

Today:

Computing statistics results:

Discovery

Limits

Confidence intervals

Profiling

Profiling

Nuisances and Systematics

Likelihood typically includes

- Parameters of interest (POIs) : S, σ×B, m_w, …
- Nuisance parameters (NPs) : other parameters needed to define the model

 \rightarrow Ideally, constrained by data like the POI

e.g. shape of $H \rightarrow \mu\mu$ continuum bkg

What about systematics ?

= what we don't know about the random processs

\Rightarrow Parameterize using additional NPs

\rightarrow By definition, not constrained by the data

⇒ Cannot be free, or would spoil the measurement (lumi free ⇒ no $\sigma \times B$ measurement!)

 \Rightarrow Introduce a constraint in the likelihood:

Phys. Rev. Lett. 119 (2017) 051802

"Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.

G. Punzi, What is systematics ?

$$L(\mu, \theta; data) = L_{measurement}(\mu, \theta; data) C(\theta)$$
POI Systematics Measurement NP Constraint term
NP Likelihood \Rightarrow penalty for $\theta \neq \theta^{nominal}$ 63

Frequentist Constraints

Prototype: NP measured in a separate *auxiliary* experiment e.g. luminosity measurement

 \rightarrow Build the combined likelihood of the main+auxiliary measurements

 $L(\mu, \theta; data) = L_{main}(\mu, \theta; main data) L_{aux}(\theta; aux. data)$

Gaussian form often used by default: $L_{aux}(\theta; aux. data) = G(\theta^{obs}; \theta, \sigma_{syst})$

In the combined likelihood, systematic NPs are constrained \rightarrow now same as other NPs: all uncertainties statistical in nature

→ Often no clear setup for auxiliary measurements
 e.g. theory uncertainties on missing HO terms from scale variations
 → Implemented in the same way nevertheless ("pseudo-measurement")

Independent

measurements:

 \Rightarrow just a product

Likelihood, the full version (binned case)

65

Wilks' Theorem, the unabridged version

The likelihood usually has NPs:

- Systematics
- Parameters fitted in data
- \rightarrow What values to use when defining the hypotheses ? \rightarrow H(µ=0, θ =?)

Answer: let the data choose \Rightarrow use the best-fit values (*Profiling*)

⇒ Profile Likelihood Ratio (PLR)

$$t_{\mu_0} = -2\log\frac{L(\mu = \mu_0, \hat{\hat{\theta}}_{\mu_0})}{L(\hat{\mu}, \hat{\theta})}$$

μ best-fit value for $\mu = \mu_0$ (conditional MLE)

overall best-fit value (unconditional MLE)

Wilks' Theorem: PLR also follows a χ^2 ! $f(t_{\mu_0} | \mu = \mu_0) = f_{\chi^2(n_{dof} = 1)}(t_{\mu_0})$

also with NPs present

- \rightarrow Profiling "builds in" the effect of the NPs
- \Rightarrow Can treat the PLR as a function of the POI only

Profiling Example: ttH→bb

Profiled parameters fixed by aux. meas. + data : here CRs

- \rightarrow Reduction in large uncertainties on tt bkg
- \rightarrow Propagates to the high-S/B categories through the statistical modeling
- ⇒ Care needed in the propagation (e.g. different kinematic regimes)

kinematic regimes)

24 j, 2 b

2.5 j, 2 b

 $2 \ge 6 j, 2 b$

S/B = 0.1%

S/B = 0.1%

В

s/

В

S / \B

S/B = 0.0%

24 j, 3 b

2 5 j, 3 b

 $2 \ge 6 j, 3 b$

S/B = 1.3%

S/B = 0.6%

В

S

Ш

Ś

В

Ś

S/B = 0.3%

В

S

В

Ś

В

S

 $2 |4|, \ge 4b$

 2^{1} 5 j, ≥ 4 b

S/B = 3.6%

 $2 \ge 6 i \ge 4 b$

S/B = 5.29

S/B = 2.2%

Uncertainty decomposition

Pull/Impact plots

ATLAS-CONF-2016-058

Systematics are described by NPs included in the fit. Nominally:

- **NP central value = 0** : corresponds to the pre-fit expectation (usually MC)
- **NP uncertainty = 1** : since NPs normalized to the value of the syst. : $N = N_0 (1 + \sigma_{syst} \theta), \theta \sim G(0, 1)$

Fit results provide information on impact of the systematic on the result:

- If central value ≠ 0: some data feature absorbed by nonzero value ⇒ Need investigation if large pull
- If uncertainty < 1 : systematic is constrained by the data
 ⇒ Needs checking if this legitimate or a modeling issue
- Impact on result of $\pm 1\sigma$ shift of NP

Pull/Impact plots

Systematics are described by NPs included in the fit. Nominally:

- NP central value = 0 : corresponds to the pre-fit expectation (usually MC)
- **NP uncertainty = 1** : since NPs normalized to the value of the syst. : $N = N_0 (1 + \sigma_{syst} \theta), \theta \sim G(0, 1)$

Fit results provide information on impact of the systematic on the result:

- If central value ≠ 0: some data feature absorbed by nonzero value ⇒ Need investigation if large pull
- If uncertainty < 1 : systematic is constrained by the data
 ⇒ Needs checking if this legitimate or a modeling issue
- Impact on result of $\pm 1\sigma$ shift of NP

13 TeV single-t XS (arXiv:1612.07231)

Takeaways

Systematics: uncertainties on the **form of the statistical model** (as opposed to the uncertainties encoded in the model itself)

- \rightarrow Implemented using additional nuisance parameters in the model
- \rightarrow Constrained by adding *auxiliary measurements* (sometimes fictitious ones) to the model usually represented by a single Gaussian for each NP.

 $L(\mu, \theta; data) = L_{main}(\mu, \theta; main data) G(\theta^{obs}, \theta, 1)$

⇒ Systematics treated in the same way as statistical uncertainties, although we still keep track of systematics NPs for bookkeeping purposes

Profiling: when testing a hypothesis, use the best-fit values of the nuisance parameters: *profile likelihood ratio*.

Wilks' Theorem: the PLR has the same asymptotic properties as the LR without systematics: can profile out NPs and just deal with POIs.

 \rightarrow NPs still show up in the PLR as increased uncertainties – Gaussian case:

$$\sigma_{\rm total} = \sqrt{\sigma_{\rm stat}^2 + \sigma_{\rm syst}^2}$$

Profiling can have unintended effects – need to carefully check behavior 72

Summary of Statistical Results Computation

Methods provide:

- \rightarrow Optimal use of information from the data under general hypotheses
- \rightarrow Arbitrarily complex/realistic models (up to computing constraints...)

\rightarrow No Gaussian assumptions in the measurements

Still often assume Gaussian behavior of PLR – but weaker assumption and can be lifted with toys

Systematics treated as auxiliary measurements – modeling can be tailored as needed

\rightarrow Single PLR-based framework for all usual classes of measurements

- Discovery testing
- Upper limits on signal yields
- Parameter estimation
Beyond Asymptotics: Toys

Asymptotics usually work well, but break down in some cases – e.g. small event counts.

Solution: generate *pseudo data* (toys) using the PDF, under the tested hypothesis

 \rightarrow Also randomize the observable

(**9**^{obs}) of each auxiliary experiment:

PDF

120

130

140

150

m (GeV)

160

Vormalized events per GeV

0.025

0.02

0.015

0.01

0.005

100

110

 \rightarrow Samples the true distribution of the PLR

 \Rightarrow Integrate above observed PLR to get the p-value \rightarrow Precision limited by number of generated toys, Small p-values ($5\sigma : p \sim 10^{-7}!$) \Rightarrow large toy samples

3000

2500

2000

1500

1000

500

100

Vormalized events per GeV

p(data|x)

CMS-PAS-HIG-11-022

m (GeV)

Toys: Example

ATLAS X \rightarrow Z γ Search: covers 200 GeV < m_x < 2.5 TeV \rightarrow for m_x > 1.6 TeV, low event counts \Rightarrow derive results from toys

Asymptotic results (in gray) give optimistic result compared to toys (in blue)

Outline

Lecture I:

Statistics basics

Describing measurements

Computing statistics results:

Today:

Computing statistics results:

Discovery

Limits

Confidence intervals

Profiling

Lecture III: Look-Elsewhere Effect, Bayesian methods, Practical modeling, BLUE

Extra Slides

Gaussian Profiling

Gaussian measurement with 1 POI μ and 1 NP θ :

$$L(\mu, \theta; \hat{\mu}, \hat{\theta}) = \exp\left[-\frac{1}{2} \begin{pmatrix} \mu - \hat{\mu} \\ \theta - \hat{\theta} \end{pmatrix}^T C^{-1} \begin{pmatrix} \mu - \hat{\mu} \\ \theta - \hat{\theta} \end{pmatrix}\right] \qquad C = \begin{bmatrix} \sigma_{\mu}^2 & \gamma \sigma_{\mu} \sigma_{\theta} \\ \gamma \sigma_{\mu} \sigma_{\theta} & \sigma_{\theta}^2 \end{bmatrix}$$

"data"

G

Saussian Profiling

$$c = \begin{bmatrix} \sigma_{\mu}^{2} & \gamma \sigma_{\mu} \sigma_{\theta} \\ \gamma \sigma_{\mu} \sigma_{\theta} & \sigma_{\theta}^{2} \end{bmatrix}$$

$$\lambda(\mu, \theta; \hat{\mu}, \hat{\theta}) = F_{\mu\mu}(\mu - \hat{\mu})^{2} + 2F_{\mu\theta}(\mu - \hat{\mu})(\theta - \hat{\theta}) + F_{\theta\theta}(\theta - \hat{\theta})^{2} \qquad F = \begin{bmatrix} F_{\mu\mu} & F_{\mu\theta} \\ F_{\mu\theta} & F_{\theta\theta} \end{bmatrix}$$
Profile d (minimize λ at fixed μ):
Profile likelihood ratio:

$$\lambda(\mu, \hat{\theta}(\mu); \hat{\mu}, \hat{\theta}) = (F_{\mu\mu} - F_{\mu\theta}F_{\theta\theta}^{-1}F_{\theta\mu})(\mu - \hat{\mu})^{2} = C_{\mu\mu}^{-1}(\mu - \hat{\mu})^{2} = \left(\frac{\mu - \hat{\mu}}{\sigma_{\mu}}\right)^{2}$$

$$F_{\mu\mu} \neq C_{\mu\mu}^{-1} \parallel \qquad 3.5$$
Profiled θ crosses ellipse at vertical tangents by definition (L is lower at other points on the tangent)

$$f_{\mu} = \frac{1}{2} + \frac{1}{$$

Gaussian Profiling

Gaussian Profiling

$$\lambda(\mu,\theta;\hat{\mu},\hat{\theta}) = F_{\mu\mu}(\mu-\hat{\mu})^{2} + 2F_{\mu\theta}(\mu-\hat{\mu})(\theta-\hat{\theta}) + F_{\theta\theta}(\theta-\hat{\theta})^{2}$$

$$F \equiv C^{-1} = \frac{1}{1-\gamma^{2}} \begin{bmatrix} \frac{1}{\sigma_{\mu}^{2}} & \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} \\ \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} & \frac{1}{\sigma_{\theta}^{2}} \end{bmatrix}$$

$$F \equiv C^{-1} = \frac{1}{1-\gamma^{2}} \begin{bmatrix} \frac{1}{\sigma_{\mu}^{2}} & \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} \\ \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} & \frac{1}{\sigma_{\theta}^{2}} \end{bmatrix}$$

$$\lambda(\mu,\theta=\hat{\theta};\hat{\mu},\hat{\theta}) = F_{\mu\mu}(\mu-\hat{\mu})^{2} = \begin{pmatrix} \frac{\mu-\hat{\mu}}{\sigma_{\mu}\sqrt{1-\gamma^{2}}} \end{bmatrix}^{2}$$
Uncertainty on μ :
2.5
• From C: σ_{μ}
• From PLR: σ_{μ}
• From $\lambda(\mu)$: $\sigma_{\mu}\sqrt{1-\gamma^{2}}$
• From $\lambda(\mu)$: $\sigma_{\mu}\sqrt{1-\gamma^{2}}$
• From $\lambda(\mu)$: $\sigma_{\mu}\sqrt{1-\gamma^{2}}$
• From $\lambda(\mu)$: $\sigma_{\mu}=\sqrt{(\sqrt{1-\gamma^{2}}\sigma_{\mu})^{2} + (\gamma\sigma_{\mu})^{2}}$