Statistical analysis methods

Nicolas Berger (LAPP Annecy)

Reminders From Lecture I

Physics measurement data are produced through random processes, Need to be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(\boldsymbol{n} ; \boldsymbol{S}, \boldsymbol{B})=e^{-(\boldsymbol{s}+\boldsymbol{B})} \frac{(\boldsymbol{S}+\boldsymbol{B})^{n}}{n!}$
Binned shape analysis	$n_{i}, i=1 . . N_{\text {bins }}$	Poisson product
Unbinned shape analysis	$m_{i}{ }^{\prime}=1 . . n_{\text {evts }}$	Extended Unbinned Likelihood $P\left(\boldsymbol{m}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\frac{e^{-(\boldsymbol{s}+\boldsymbol{B})}}{n_{\text {evts }}!} \prod_{i=1}^{n_{\text {evs }}} \boldsymbol{S} P_{\mathrm{sig}}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\text {bkg }}\left(\boldsymbol{m}_{i}\right)$

Model can include multiple categories, each with a separate description Includes parameters of interest (POls) but also nuisance parameters (NPs)

Reminders From Lecture I

To estimate a parameter value, use the Maximum-likelihood estimate (MLE), a.k.a. Best-fit value of the parameter,

Today, further results:

- Discovery: we see an excess is it a (new) signal, or a background fluctuation?
- Upper limits: we don'† see an excess if there is a signal present, how small must it be ?
- Parameter measurement: what is the allowed range ("confidence interval") for a model parameter ?
\rightarrow The Statistical Model already contains all the needed information - how to use it ?

Reminders from Lecture II: Hypothesis Testing

Hypothesis: assumption on model parameters, say value of $S\left(e . g . \mathbf{H}_{0}: \mathbf{S = 0}\right.$)
\rightarrow Goal : determine if H_{0} is true or false using a test based on the data

Possible outcomes:	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Missed discovery Discovery! $(1-$ Power)	
H_{0} is true (Nothing new)	False discovery claim Type-I error $(\rightarrow \mathrm{p}$-value, significance)	No new physics, none found

Stringent discovery criteria
\Rightarrow lower Type-I errors, higher Type-II errors
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.

Reminders from Lecture II: Hypothesis Testing

Hypothesis: assumption on model parameters, say value of $S\left(e . g . \mathbf{H}_{0}: \mathbf{S = 0}\right.$)
\rightarrow Goal : determine if H_{0} is true or false using a test based on the data

Possible outcomes:	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Missed discovery Discovery! $(1-$ Power)	
H_{0} is true (Nothing new)	False discovery claim Type-I error $(\rightarrow \mathrm{p}$-value, significance)	No new physics, none found

Stringent discovery criteria
\Rightarrow lower Type-I errors, higher Type-II errors
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.

Reminders from Lecture II: Discovery Significance

Given a statistical model $P($ data; $\mu)$, define likelihood $L(\mu)=P($ data; $\boldsymbol{\mu})$

To estimate a parameter, use value $\hat{\boldsymbol{\mu}}$ that maximizes $L(\mu)$.
To decide between hypotheses H_{0} and H_{1}, use the likelihood ratio $\frac{\boldsymbol{L}\left(\boldsymbol{H}_{0}\right)}{\boldsymbol{L}\left(\boldsymbol{H}_{1}\right)}$
To test for discovery, use $\boldsymbol{q}_{\mathbf{0}}= \begin{cases}-2 \log \frac{L(S=0)}{L(\hat{\boldsymbol{S}})} & \hat{S} \geq 0 \\ +2 \log \frac{L(S=0)}{L(\hat{\boldsymbol{S}})} & \hat{S}<0\end{cases}$
For large enough datasets $(\mathrm{n}>5), \quad \mathbf{Z}=\sqrt{\boldsymbol{q}_{\mathbf{0}}}$

For a Gaussian measurement, $\quad Z=\frac{\hat{S}}{\sqrt{B}}$
For a Poisson measurement, $Z=\sqrt{2}\left[(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]$

Reminders from Lecture II: Test Statistic for Limits

For upper limits, alternate is $\mathrm{H}_{1}: \mathrm{S}<\mu_{0}$:
\rightarrow If large signal observed ($\widehat{>}>\mathrm{S}_{0}$), does not favor H_{1} over H_{0}
\rightarrow Only consider $\hat{\mathbf{S}}<\mathrm{S}_{0}$ for H_{1}, and include $\hat{\mathbf{S}} \geq \mathrm{S}_{0}$ in H_{0}.

Discovery Limit-Setting

\Rightarrow Set $\mathbf{q}_{50}=\mathbf{0}$ for $\hat{\mathbf{S}}>\mathbf{S}_{0}$ - only small signals ($\hat{\mathrm{S}}<\mathrm{S}_{0}$) help lower the limit.
\rightarrow Also treat separately the case $S<0$ to avoid technical issues in -2logL fits.

Asymptotics:

$\mathrm{a}_{50} \sim$ " $1 / 2 \mathrm{X}^{2}$ " under $\mathrm{H}_{0}\left(\mathrm{~S}=\mathrm{S}_{0}\right)$, same as q_{0}. except for special treatment of $\hat{S}<0$.

$$
\tilde{\boldsymbol{q}}_{S_{0}}=\left\{\begin{array}{cc}
0 & \hat{S} \geq S_{0} \\
-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{\boldsymbol{S}})} & 0 \leq \hat{S} \leq S_{0} \\
-2 \log \frac{L\left(S=S_{0}\right)}{L(S=0)} & \hat{S}<0
\end{array}\right.
$$

$$
p_{0}=1-\Phi\left(\sqrt{q_{s_{0}}}\right)
$$

Reminders from Lecture II: Limit Inversion

Asymptotics

Procedure

\rightarrow Consider $\mathrm{H}_{0}: \mathrm{H}\left(\mathrm{S}=\mathrm{S}_{0}\right)$ - alternative $\mathrm{H}_{1}: \mathrm{H}\left(\hat{\mathrm{S}}<\mathrm{S}_{0}\right)$
\rightarrow Compute q_{so}, get exclusion p -value p_{so}.
\rightarrow Adjust S_{0} until 95\% CL exclusion ($p_{s 0}=5 \%$) is reached Asymptotics: set target in terms of $\mathrm{q}_{\mathrm{s} 0}: \sqrt{\boldsymbol{q}_{s_{0}}}=\boldsymbol{\Phi}^{-\mathbf{1}}\left(\mathbf{1}-\boldsymbol{p}_{\mathbf{0}}\right)$

$C L$	Region
90%	$q_{S}>1.64$
95%	$q_{S}>2.70$
99%	$q_{S}>5.41$

Reminders from Lecture II: Limit Inversion

Asymptotics

Procedure

\rightarrow Consider $\mathrm{H}_{0}: \mathrm{H}\left(\mathrm{S}=\mathrm{S}_{0}\right)$ - alternative $\mathrm{H}_{1}: \mathrm{H}\left(\hat{\mathrm{S}}<\mathrm{S}_{0}\right)$
\rightarrow Compute q_{so}, get exclusion p -value p_{so}.
\rightarrow Adjust S_{0} until 95\% CL exclusion ($p_{s 0}=5 \%$) is reached Asymptotics: set target in terms of $\mathrm{q}_{\mathrm{s} 0}: \sqrt{\boldsymbol{q}_{s_{0}}}=\boldsymbol{\Phi}^{-\mathbf{1}}\left(\mathbf{1}-\boldsymbol{p}_{\mathbf{0}}\right)$

CL	Region
90%	$q_{S}>1.64$
95%	$q_{S}>2.70$
99%	$q_{S}>5.41$

Reminders from Lecture II: Limit Inversion

Asymptotics

Procedure

\rightarrow Consider $\mathrm{H}_{0}: \mathrm{H}\left(\mathrm{S}=\mathrm{S}_{0}\right)$ - alternative $\mathrm{H}_{1}: \mathrm{H}\left(\hat{\mathrm{S}}<\mathrm{S}_{0}\right)$
\rightarrow Compute q_{so}, get exclusion p -value p_{so}.
\rightarrow Adjust S_{0} until 95\% CL exclusion ($p_{s 0}=5 \%$) is reached Asymptotics: set target in terms of $\mathrm{q}_{\mathrm{s} 0}: \sqrt{\boldsymbol{q}_{s_{0}}}=\boldsymbol{\Phi}^{-\mathbf{1}}\left(\mathbf{1}-\boldsymbol{p}_{\mathbf{0}}\right)$

$C L$	Region
90%	$q_{S}>1.64$
95%	$q_{S}>2.70$
99%	$q_{S}>5.41$

Reminders from Lecture II: CL_{s}

How to avoid negative limits ? in HEP, use : CL_{s}.
\rightarrow Compute modified p-value

- $\boldsymbol{p}_{\mathrm{so}}$ is the usual p-value (5\%) $\quad \boldsymbol{p}_{C L_{s}}=\frac{\boldsymbol{p}_{S_{0}}}{\boldsymbol{p}_{0}}$
- p_{0} is the p-value computed under $H(S=0)$.
\Rightarrow Rescale exclusion at S_{0} by exclusion at $\mathrm{S}=0$.
\rightarrow Somewhat ad-hoc, but good properties...

Good case : $\mathrm{p}_{0} \sim \mathrm{O}(1)$
$p_{\mathrm{Cls}} \sim p_{\mathrm{so}} \sim 5 \%$, no change.

Pathological case : $\mathrm{p}_{0} \ll 1$
$\mathrm{p}_{\mathrm{Cls}} \sim \mathrm{p}_{\mathrm{s} 0} / \mathrm{p}_{0} \gg 5 \%$
\rightarrow no exclusion \Rightarrow worse limit, usually >0 as desired

Drawback: overcoverage
\rightarrow limit is actually $>95 \%$ CL for small p_{0}.
A. Read, J.Phys. G28 (2002) 2693-2704

11

Outline

Computing Statistical Results
 Limits, continued
 Confidence Intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

BLUE

CL_{s} : Gaussian Example

Usual Gaussian counting example with known B:

Reminder

$$
\lambda(S)=\left|\frac{n-(S+B)}{\sigma_{S}}\right|^{2}
$$

Best fit signal : $\hat{\mathbf{S}}=\mathbf{n} \mathbf{- B}$
CL_{s+b} limit:

$$
S_{\mathrm{up}}=\hat{S}+1.64 \sigma_{s} \text { at } 95 \% \mathrm{CL}
$$

CL_{s} upper limit : still have
so need to solve

$$
\boldsymbol{q}_{S_{0}}=\left(\frac{\boldsymbol{S}_{0}-\hat{\boldsymbol{S}}}{\boldsymbol{\sigma}_{\boldsymbol{s}}}\right)^{2} \quad\left(\text { for } \mathrm{S}_{0}>\hat{S}\right)
$$

$$
p_{C L_{s}}=\frac{p_{S_{0}}}{p_{0}}=\frac{1-\Phi\left(\sqrt{q_{S_{0}}}\right)}{1-\Phi\left(\sqrt{q_{S_{0}}}-S_{0} / \sigma_{S}\right)}=5 \%
$$

for $\hat{S}=0$,

$$
\sqrt{\boldsymbol{q}_{s_{0}}} \sim \boldsymbol{G}\left(S_{0} / \sigma_{s}, \mathbf{1}\right)
$$

$$
S_{\text {up }}=\hat{S}+\left[\Phi^{-1}\left(1-0.05 \Phi\left(\hat{S} / \sigma_{S}\right)\right)\right] \sigma_{S} \text { at } 95 \% \mathrm{CL}
$$

$$
\begin{aligned}
& \hat{S} \sim G\left(S, \sigma_{S}\right) \text { so } \\
& \text { Under } H_{0}\left(S=S_{0}\right): \\
& \sqrt{\boldsymbol{q}_{S_{0}}} \sim \mathbf{G}(\mathbf{0}, \mathbf{1}) \\
& \boldsymbol{p}_{S_{0}}=\mathbf{1}-\boldsymbol{\Phi}\left(\sqrt{\boldsymbol{q}_{S_{0}}}\right)
\end{aligned}
$$

Under $\mathrm{H}_{0}(\mathrm{~S}=0)$:

$$
p_{0}=1-\Phi\left(\sqrt{q_{s_{0}}}-S_{0} / \sigma_{s}\right)
$$

$$
\Phi(0)=0.5 \Rightarrow \text { at } 95 \% \mathrm{CL}, \mathbf{C L}_{s}: S_{\mathrm{up}}=1.96 \sigma_{s} \quad \mathrm{CL}_{s+b}: S_{\mathrm{up}}=1.64 \sigma_{\sigma_{13}}
$$

CL_{s} : Poisson Rule of Thumb

Same exercise, for the Poisson case
Exact computation : sum probabilities of cases "at least as extreme as data" (n) $\boldsymbol{p}_{S_{0}}(\boldsymbol{n})=\sum_{0}^{n} \boldsymbol{e}^{-\left(S_{0}+B\right)} \frac{\left(\boldsymbol{S}_{0}+\boldsymbol{B}\right)^{k}}{\boldsymbol{k}!} \quad$ and one should solve $\boldsymbol{p}_{C L_{s}}=\frac{\boldsymbol{p}_{S_{\mathrm{wp}}}(\boldsymbol{n})}{\boldsymbol{p}_{0}(\boldsymbol{n})}=5 \%$ for S_{up}
For $\mathrm{n}=0: \quad \boldsymbol{p}_{C L_{\mathrm{s}}}=\frac{\boldsymbol{p}_{S_{\mathrm{up}}}(0)}{\boldsymbol{p}_{0}(0)}=\boldsymbol{e}^{-S_{\mathrm{up}}}=5 \% \Rightarrow S_{\mathrm{up}}=\log (20)=2.996 \approx 3$
\Rightarrow Rule of thumb: when $\mathrm{n}_{\mathrm{obs}}=0$, the $95 \% \mathrm{CL}_{\mathrm{s}}$ limit is 3 events (for any B)
Asymptotics: as before, $\quad q_{S_{0}}=\lambda\left(S_{0}\right)-\lambda(\hat{S})=2\left(S_{0}+B-n\right)-2 n \log \frac{S_{0}+B}{n}$
For $\mathrm{n}=0, \quad \boldsymbol{q}_{s_{0}}(\boldsymbol{n}=\mathbf{0})=2\left(\boldsymbol{S}_{\mathbf{0}}+\boldsymbol{B}\right)$

$$
p_{C L_{s}}=\frac{p_{s_{0}}}{p_{0}}=\frac{1-\Phi\left(\sqrt{q_{S_{0}}(n=0)}\right)}{1-\Phi\left(\sqrt{q_{S_{0}}(n=0)}-\sqrt{q_{S_{0}}(n=B)}\right)}=5 \%
$$

$\Rightarrow S_{\text {up }} \sim 2$, exact value depends on B
\Rightarrow Asymptotics not valid in this case ($n=0$) - need to use exact results, or toys

Expected Limits: Toys

Expected results: median outcome under a given hypothesis
\rightarrow usually B-only by convention, but other choices possible.

Two main ways to compute:
\rightarrow Pseudo-experiments (toys):

- Generate pseudo-data in B-only hypothesis
- Compute limit
- Repeat and histogram the results
- Central value = median, bands based on quantiles

Expected Limits: Asimov

Expected results: median outcome under a given hypothesis
\rightarrow usually B -only by convention, but other choices possible.
Two main ways to compute:
\rightarrow Asimov Datasets

Strictly speaking, Asimov dataset if
$\hat{\mathbf{X}}=\mathbf{X}_{0}$ for all parameters \mathbf{X}, where X_{0} is the generation value

- Generate a "perfect dataset" - e.g. for binned data, set bin contents carefully, no fluctuations.
- Gives the median result immediately: median(toy results) \leftrightarrow result(median dataset)
- Get bands from asymptotic formulas:

Band width

$$
\sigma_{S_{0}, A}^{2}=\frac{S_{0}^{2}}{q_{S_{0}}(\text { Asimov })}
$$

\oplus Much faster (1"toy")
\ominus Relies on Gaussian approximation

CL_{s} : Gaussian Bands

Usual Gaussian counting example with known B: $95 \% \mathrm{CL}_{\mathrm{s}}$ upper limit on S :

$$
\boldsymbol{S}_{\mathrm{up}}=\hat{\boldsymbol{S}}+\left[\boldsymbol{\Phi}^{-1}\left(1-0.05 \Phi\left(\hat{\boldsymbol{S}} / \sigma_{s}\right)\right)\right] \sigma_{s} \quad \begin{gathered}
\text { with } \\
\sigma_{S}=\sqrt{B}
\end{gathered}
$$

Compute expected bands for S=0:
\rightarrow Asimov dataset $\Leftrightarrow \hat{\mathbf{S}}=\mathbf{0}$:

$$
\begin{aligned}
& S_{\mathrm{up}, \mathrm{exp}}^{0}=1.96 \sigma_{s} \\
& S_{\mathrm{up}, \mathrm{exp}}^{ \pm n}=\left(\pm n+\left[1-\Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}
\end{aligned}
$$

$\rightarrow \pm$ no bands:

CLs :

- Positive bands somewhat reduced,
- Negative ones more so

Band width from $\sigma_{S, A}^{2}=\frac{\boldsymbol{S}^{2}}{\boldsymbol{q}_{s}(\text { Asimov })}$ depends on S , for non-Gaussian cases,different values for each band...

Outline

Computing Statistical Results
Limits, continued
Confidence Intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

BLUE

Gaussian Inversion

If $\hat{\mu} \sim G\left(\mu^{*}, \sigma\right)$, known quantiles :

$$
P\left(\mu^{*}-\sigma<\hat{\mu}<\mu^{*}+\sigma\right)=68 \%
$$

This is a probability for $\hat{\boldsymbol{\mu}}$, not $\boldsymbol{\mu}$!
$\rightarrow \mu^{*}$ is a fixed number, not a random variable

But we can invert the relation:

$$
\begin{aligned}
& P\left(\mu^{*}-\sigma<\hat{\mu}<\mu^{*}+\sigma\right)=68 \% \\
\Rightarrow & P\left(\left|\hat{\mu}-\mu^{*}\right|<\sigma\right)=\mathbf{6 8} \% \\
\Rightarrow & P\left(\hat{\mu}-\sigma<\mu^{*}<\hat{\mu}+\sigma\right)=68 \%
\end{aligned}
$$

\rightarrow This gives the desired statement on μ^{*} : if we repeat the experiment many times, $\left[\hat{\mu}-\sigma, \hat{\mu} \quad \ddagger\right.$ will contain the true value 68\% of the time: $\hat{\boldsymbol{\mu}}=\boldsymbol{\mu}^{*} \pm \boldsymbol{\sigma}$ This is a statement on the interval $[\hat{\mu}-\sigma, \hat{\boldsymbol{\mu}} \quad \ddagger$ बbtained for each experiment

Works in the same way for other interval sizes: $[\hat{\boldsymbol{\mu}} \quad-\mathbf{Z} \boldsymbol{\sigma}, \hat{\boldsymbol{\mu}} \quad+\mathbf{Z} \boldsymbol{\sigma}$ ith

Z	1	1.96	2
$C L$	0.68	0.95	0.955

Neyman Construction

General case: Build 1σ intervals of observed values for each true value \Rightarrow Confidence belt

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $\quad P\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $P\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Likelihood Intervals

Confidence intervals from L :

- Test $\mathrm{H}\left(\mu_{0}\right)$ against alternative using $\boldsymbol{t}_{\mu_{0}}=-2 \log \frac{\boldsymbol{L}\left(\mu-\mu_{0}\right)}{\boldsymbol{L}(\hat{\mu})}$
μ can be several POI!
- Two-sided test since true value can be higher or lower than observed

Asymptotics:

- $t_{\mu} \sim X^{2}\left(N_{\text {POI }}\right)$ under $H\left(\mu_{0}\right)$
- $\sqrt{ } t_{\mu} \sim \mathbf{G}(0,1)$ (Gaussian with $d=N_{\text {POI }}$)

In practice:

- Plot \dagger_{μ} vs. μ
- The minimum occurs at $\boldsymbol{\mu}=\hat{\boldsymbol{\mu}}$
- Crossings with $\mathbf{t}_{\mu}=\mathbf{Z}^{2}$ give the \pm Z σ uncertainties (for $\mathrm{N}_{\mathrm{PO}}=1$)

\rightarrow Gaussian case: parabolic profile, $\boldsymbol{t}_{\mu}=\left(\frac{\mu-\hat{\mu}}{\sigma}\right)^{2} \Rightarrow \mu_{ \pm}=\hat{\mu} \pm \sigma$ at $t_{\mu}=\mathbf{1}$ same result as Neyman construction, also robust against non-Gaussian effects ${ }_{22}$

2D Example: Higgs $\sigma_{\text {VBF }}$ vs. $\sigma_{\text {ggF }}$

$$
\begin{aligned}
t= & -2 \log \frac{L\left(X_{0}, Y_{0}\right)}{L(\hat{X}, \hat{Y})} \\
& \sim \chi^{2}\left(N_{\text {dof }}=2\right)
\end{aligned}
$$

$$
\dagger_{\text {ggFV.VBF }}
$$

Reparameterization

Start with basic measurement in terms of e.g. $\boldsymbol{\sigma} \times \mathbf{B}$
\rightarrow How to measure derived quantities (couplings, parameters in some theory model, etc.)? \rightarrow just reparameterize the likelihood: e.g. Higgs couplings: $\sigma_{\text {ggF }}, \sigma_{\text {VBF }}$ sensitive to Higgs coupling modifiers $\mathrm{k}_{\mathrm{V}}, \mathrm{K}_{\mathrm{F}}$.

Reparameterization: Limits

CMS Run 2 Monophoton Search: measured \mathbf{N}_{s} in a counting experiment reparameterized according to various DM models

Takeaways

Limits : use LR-based test statistic:
\rightarrow Use CL $_{s}$ procedure to avoid negative limits

$$
\tilde{\boldsymbol{q}}_{\mu_{0}}=\left\lvert\, \begin{array}{cc}
0 & \hat{\mu} \geq \mu_{0} \\
-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})} & 0 \leq \hat{\mu} \leq \mu_{0} \\
-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\mu=0)} & \hat{\mu}<0
\end{array}\right.
$$

Poisson regime, $\mathrm{n}=0: \mathrm{S}_{\mathrm{up}}=3$ events
Gaussian regime, $\mathrm{n}=0: \mathrm{S}_{\mathrm{up}}=1.96 \sigma_{\text {Gauss }}$

Uncertainty bands: obtain from toys or from Asimov

$$
\sigma_{S, A}^{2}=\frac{S^{2}}{q_{s}(\text { Asimov })}
$$

Confidence intervals: use $t_{\mu_{0}}=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}$
\rightarrow ID: crossings with $\dagger_{\mu 0}=Z^{2}$ for \pm Zo intervals

Gaussian regime: $\mu=\hat{\mu} \pm \sigma_{\text {Gauss }}$ (l σ interval)

Historical Aside

Classic Discoveries (1)

Z^{0} Discovery

(almost) no

Classic Discoveries (2)

ψ^{\prime} : discovered online by the (lucky) shifters

4, $\mathbf{1 6} \mid 94$

for siste
 Dø Preliminary Top Cross Section

First hints of top at DO: O(10) signal events, a few bkg events, 2.4o

And now?

Short answer: The high-signal, low-background experiments have been done already (although a surprise would be welcome...)
e.g. at LHC:

- High background levels, need precise modeling
- Large systematics, need to be described accurately
- Small signals: need optimal use of available information:
- Shape analyses instead of counting
- Categories to isolated signal-enriched regions

Discoveries that weren't

UA I Monojets (1984)

Volume 139B, number 1,2
PHYSICS LETTERS
3 May 1984

EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY ACCOMPANIED BY A JET OR A PHOTON (S) IN p \bar{p} COLLISIONS AT $\sqrt{s}=540 \mathrm{GeV}$

UA1 Collaboration, CERN, Geneva, Switzerland

At the present time we can only speculate about
the origin of this new effect. The missing transersse the onigin or fis new effect.
(i) One or more prompt neutrinos.
(i) Any invibibl Z^{2}, such as $Z^{0} \rightarrow \nu$

 such linited statistics.
A number of theoretic
A number of theoretical speculations (1) may be

 the present collider experiment, on the rate of events
with lage missing transurse energy from gluino pair with large mising transerse energy from gluino pair
production with each gluino decaying into a quark, production with each gluino decaying into a quark,
antiquark, and photino. The non- interacting photinos may produce lagre apparent misining energy. For in.
stance, the calculation gives an expeetation of about stance, the calauluation gives an expectation of about
100 singlejete events with $\Delta E_{M}>20$ Gev for a gluino mass of $20 \mathrm{GeV} / \mathrm{c}^{2}$. Taking ourrexcess of 5 everits above
backround as an upper limit for such a process, we background as an upper limit for such a process, we
deduce ethat the gluino mass must te e geater than about

Pentaquarks (2003)

BICEP2 B-mode Polarization (2014)

	P1 Selected for a Viewpoint in Physics	
PRL 112, 241101 (2014)	PHYSICAL REVIEW LETTERS	week ending 20 JUNE 2014

Detection of \boldsymbol{B}-Mode Polarization at Degree Angular Scales by BICEP2

$$
r=0.20_{-0.05}^{+0.07}, \text { with } r=0 \text { disfavored at } 7.0 \sigma .
$$

Avoid spurious discoveries!

\rightarrow Treatment of modeling uncertainties, systematics in general

Outline

Computing Statistical Results

Limits, continued
Confidence Intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

BLUE

Nuisances and Systematics

Likelihood typically includes

- Parameters of interest (POIs) : $\mathbf{S}, \mathbf{\sigma \times B}, \mathbf{m}_{w^{\prime}} \ldots$
- Nuisance parameters (NPs) : other parameters needed to define the model
\rightarrow Ideally, constrained by data like the POI e.g. shape of $\mathrm{H} \rightarrow \mu \mu$ continuum bkg

What about systematics?

= what we don' \dagger know about the random processs
\Rightarrow Parameterize using additional NPs
\rightarrow By definition, not constrained by the data
\Rightarrow Cannot be free, or would spoil the measurement (lumi free \Rightarrow no $\sigma \times B$ measurement!)
\Rightarrow Introduce a constraint in the likelihood:

> | "Systematic uncertainty is, in any |
| :--- |
| statistical inference procedure, |
| the uncertainty due to the |
| incomplete knowledge of the |
| probability distribution of the |
| observables. |
| G. Punzi, What is systematics? |

Frequentist Constraints

Prototype: NP measured in a separate auxiliary experiment e.g. luminosity measurement
\rightarrow Build the combined likelihood of the main+auxiliary measurements

$$
L(\mu, \theta ; \text { data })=L_{\text {main }}(\mu, \theta ; \text { main data }) L_{\text {aux }}(\theta ; \text { aux. data })
$$

Gaussian form often used by default: $L_{\text {aux }}(\theta ;$ aux. data $)=G\left(\theta^{\text {obs }} ; \theta, \sigma_{\text {syst }}\right)$

In the combined likelihood, systematic NPs are constrained
\rightarrow now same as other NPs: all uncertainties statistical in nature
\rightarrow Often no clear setup for auxiliary measurements e.g. theory uncertainties on missing HO terms from scale variations \rightarrow Implemented in the same way nevertheless ("pseudo-measurement")

Likelihood, the full version (binned case)

Reminder: Wilks' Theorem

\rightarrow Assume Gaussian regime for $\hat{\mathbf{S}}$ (e.g. large $\mathrm{n}_{\text {evts }}$)
Cowan, Cranmer, Gross \& Vitells Eur.Phys.J.C71:1554,2011
\Rightarrow Central-limit theorem :
t_{0} is distributed as a X^{2} under the hypothesis $H_{0} \quad t_{0}=-2 \log \frac{L(S=0)}{L(\hat{\boldsymbol{S}})}$

$$
f\left(t_{0} \mid H_{0}\right)=\boldsymbol{f}_{\chi^{2}\left(n_{\text {dof }}=1\right)}\left(\boldsymbol{t}_{\mathbf{0}}\right)
$$

In particular, significance:

$$
Z=\sqrt{t_{0}}
$$

By definition,
$t_{0} \sim X^{2} \Rightarrow \downarrow t_{0} \sim G(0,1)$

Typically works well for for event counts O(5) and above (5 already "large"...)

The 1-line "proof" : asymptotically L and S are Gaussian, so

$$
L(S)=\exp \left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^{2}\right] \Rightarrow t_{0}=\left(\frac{\hat{S}}{\sigma}\right)^{2} \Rightarrow t_{0} \sim \chi^{2}\left(n_{\text {dof }}=1\right) \text { since } \hat{S} \sim G(0, \sigma)
$$

Wilks' Theorem, the Full Version

The likelihood usually has NPs:

- Systematics
- Parameters fitted in data
\rightarrow What values to use when defining the hypotheses $\boldsymbol{?} \rightarrow \mathrm{H}(\mathrm{S}=0, \theta=$?)

Answer: let the data choose \Rightarrow use the best-fit values (Profiling)
\Rightarrow Profile Likelihood Ratio (PLR)
$\boldsymbol{t}_{\mu_{0}}=-2 \log \frac{L\left(\mu=\mu_{0}, \hat{\hat{\theta}}_{\mu_{0}}\right)}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})} \quad \begin{aligned} & \hat{\hat{\theta}}_{\mu_{0}} \text { best-fit value for } \mu=\mu_{0} \text { (conditional MLE) } \\ & \hat{\theta} \\ & \text { overall best-fit value (unconditional MLE) }\end{aligned}$
Wilks' Theorem: PLR also follows a $X^{2}!\quad f\left(t_{\mu_{0}} \mid \mu=\mu_{0}\right)=f_{\chi^{2}\left(n_{a t f}=1\right)}\left(t_{\mu_{0}}\right)$ also with NPs present
\rightarrow Profiling "builds in" the effect of the NPs
\Rightarrow Can treat the PLR as a function of the POI only

Gaussian Profiling

Recall: Gaussian
counting, no syst: $\boldsymbol{t}_{\boldsymbol{S}_{0}}=\left|\frac{\boldsymbol{S}_{0}-\hat{\boldsymbol{S}}}{\boldsymbol{\sigma}_{\boldsymbol{S}}}\right|^{2}$
Counting exp. with background uncertainty: $\mathbf{n}=S+\theta$:
\rightarrow Main measurement: $\mathbf{n} \sim \mathbf{G}\left(\mathbf{S}+\boldsymbol{\theta}, \boldsymbol{\sigma}_{\text {stat }}\right)$
\rightarrow Aux. measurement: $\boldsymbol{\theta}^{\text {obs }} \sim \mathbf{G}\left(\boldsymbol{\theta}, \boldsymbol{\sigma}_{\text {syss }}\right)$

$$
L(S, \theta)=G\left(n ; S+\theta, \sigma_{\text {stat }}\right) G\left(\theta^{\text {obs }} ; \theta, \sigma_{\text {syst }}\right)
$$

Then: $\quad \lambda(S, \theta)=\left(\frac{n-(S+\theta)}{\sigma_{\text {stat }}}\right)^{2}+\left(\frac{\theta^{\text {obs }}-\theta}{\sigma_{\text {syst }}}\right)^{2}$
For $\mathrm{S}=\hat{\mathbf{S}}$, matches
MLE as it should

MLEs: $\quad \hat{S}=n-\theta^{\text {obs }} \quad$ Conditional MLE:

$$
\hat{\hat{\theta}}(S)=\theta^{\text {obs }}+\frac{\sigma_{\text {syst }}^{2}}{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}(\hat{S}-S)
$$

PLR: $\quad t_{S_{0}}=-2 \log \frac{L\left(S=S_{0} \hat{\hat{\theta}}_{S_{0}}\right)}{L(\hat{S}, \hat{\theta})}$

$$
=\lambda\left(S_{0,} \hat{\hat{\theta}}\left(S_{0}\right)\right)-\lambda(\hat{S}, \hat{\theta})=\frac{\left(S_{0}-\hat{S}\right)^{2}}{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}} \quad \sigma_{S}=\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}
$$

Stat uncertainty (on n) and syst (on θ) add in quadrature as expected

Profiling Example: ttH $\rightarrow \mathrm{bb}$

Analysis uses low-S/B categories to constrain backgrounds.
\rightarrow Reduction in large uncertainties on tt bkg
\rightarrow Propagates to the high-S/B categories through the statistical modeling \Rightarrow Care needed in the propagation (e.g. different kinematic regimes)

Pull/Impact plots

Systematics are described by NPs included in the fit. Nominally:

- NP central value = 0 : corresponds to the pre-fit expectation (usually MC)
- NP uncertainty = 1 : since NPs normalized to the value of the syst. :

$$
N=N_{0}\left(1+\sigma_{\text {syst }} \theta\right), \theta \sim G(0,1)
$$

Fit results provide information on impact of the systematic on the result:

- If central value $\neq \mathbf{0}$: some data feature absorbed by nonzero value \Rightarrow Need investigation if large pull
- If uncertainty < $\mathbf{1}$: systematic is constrained by the data
\Rightarrow Needs checking if this legitimate or a modeling issue
- Impact on result of $\pm 1 \sigma$ shift of NP

Pull/Impact plots

Systematics are described by NPs included in the fit. Nominally:

- NP central value = 0 : corresponds to the pre-fit expectation (usually MC)
- NP uncertainty = 1 : since NPs normalized to the value of the syst. :

$$
N=N_{0}\left(\mathbf{1}+\sigma_{\text {syst }} \theta\right), \theta \sim G(\mathbf{0}, \mathbf{1})
$$

Fit results provide information on impact of the systematic on the result:

- If central value $\neq \mathbf{0}$: some data feature absorbed by nonzero value \Rightarrow Need investigation if large pull
- If uncertainty < $\mathbf{1}$: systematic is constrained by the data
\Rightarrow Needs checking if this legitimate or a modeling issue
- Impact on result of $\pm l \sigma$ shift of NP

13 TeV single-† XS (arXiv:1612.07231)

Profiling Takeaways

Systematic = NP with an external constraint (auxiliary measurement).
\rightarrow No special treatment, treated like any other NP: statistical and systematic uncertainties represented in the same way.

When testing a hypothesis, use the best-fit values of the nuisance parameters: Profile Likelihood Ratio.

$$
L\left(\mu=\mu_{0,} \hat{\hat{\theta}}_{\mu_{0}}\right)
$$

$$
L(\hat{\mu}, \hat{\theta})
$$

Wilks' Theorem: the PLR has the same asymptotic properties as the LR without systematics: can profile out NPs and just deal with POls.

Profiling systematics includes their effect into the total uncertainty. Gaussian:

$$
\sigma_{\text {total }}=\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}
$$

Guaranteed to work only as long as everything is Gaussian, but typically robust against non-Gaussian behavior.

Beyond Asymptotics: Toys

Asymptotics usually work well, but break down in some cases - e.g. small event counts.

Solution: generate pseudo data (toys) using the PDF, under the tested hypothesis
\rightarrow Also randomize the observable ($\theta^{\text {obs }}$) of each auxiliary experiment:

$$
G\left(\theta^{o b s} ; \theta, \sigma_{\text {syst }}\right)
$$ \rightarrow Samples the true distribution of the PLR

Test Statistic q_{0}
\Rightarrow Integrate above observed PLR to get the p-value
\rightarrow Precision limited by number of generated toys,
Small p-values ($5 \sigma: p \sim 10^{-7}!$) \Rightarrow large toy samples
Repeat $\mathrm{N}_{\text {toys }}$ times

Toys: Example

ATLAS X \rightarrow Zy Search: covers $200 \mathrm{GeV}<\mathrm{m}_{\mathrm{x}}<2.5 \mathrm{TeV}$
\rightarrow for $m_{x}>1.6 \mathrm{TeV}$, low event counts \Rightarrow derive results from toys

Asymptotic results (in gray) give optimistic result compared to toys (in blue)

Summary of Statistical Results Computation

Methods provide:
\rightarrow Optimal use of information from the data under general hypotheses
\rightarrow Arbitrarily complex/realistic models (up to computing constraints...)
\rightarrow No Gaussian assumptions in the measurements
Still often assume Gaussian behavior of PLR - but weaker assumption and can be lifted with toys
Systematics treated as auxiliary measurements - modeling can be tailored as needed
\rightarrow Single PLR-based framework for all usual classes of measurements
Discovery testing
Upper limits on signal yields
Parameter estimation

Outline

Computing Statistical Results

Limits, continued
Confidence Intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

BLUE

Look-Elsewhere Effect

Look-Elsewhere effect

Sometimes, unknown parameters in signal model
e.g. p-values as a function of m_{x}
\Rightarrow Effectively performing multiple, simultaneous searches
\rightarrow If e.g. small resolution and large scan range, many independent experiments

\rightarrow More likely to find an excess anywhere in the range, rather than in a predefined location
\Rightarrow Look-elsewhere effect (LEE)

Testing the same H_{0}, but agains \dagger different alternatives
\Rightarrow different p-values

Global Significance

Probability for a fluctuation anywhere in the range \rightarrow Global p-value. at a given location \rightarrow Local p-value

$\rightarrow p_{\text {global }}>p_{\text {local }} \Rightarrow Z_{\text {global }}<Z_{\text {local }}-$ global fluctuation more likely \Rightarrow less significant
Trials factor : naively = \# of independent intervals:
However this is usually wrong - more on this later

For searches over a parameter range, $\mathbf{p}_{\text {global }}$ is the relevant \mathbf{p}-value
\rightarrow Depends on the scanned parameter ranges e.g. $X \rightarrow W$: $200<m_{x}<2000 \mathrm{GeV}, 0<\Gamma_{x}<10 \% m_{x}$. \rightarrow However what comes out of the usual asymptotic formulas is $\mathrm{p}_{\text {Iocal }}$

How to compute $\mathrm{p}_{\text {global }} ? \rightarrow$ Toys (brute force) or asymptotic formulas.

Global Significance from Toys

Principle: repeat the analysis in toy data:
\rightarrow generate pseudo-dataset
\rightarrow perform the search, scanning over parameters as in the data
\rightarrow report the largest significance found
\rightarrow repeat many times
Local 3.9 σ

\Rightarrow The frequency at which a given Z_{0} is found is the global p-value
e.g. $X \rightarrow Y$ Search: $z_{\text {local }}=3.9 \sigma\left(\Rightarrow p_{\text {local }} \sim 510^{-5}\right)$, scanning $200<m_{x}<2000 \mathrm{GeV}$ and $0<\Gamma_{x}<10 \% m_{x}$
\rightarrow In toys, find such an excess 2% of the time
$\Rightarrow \mathrm{p}_{\text {global }} \sim 2 \mathrm{10}^{-2}, \mathbf{Z}_{\text {global }}=2.1 \sigma$ Less exciting...
\oplus Exact treatment
\ominus CPU-intensive especially for large Z (need $\sim O(100) / p_{\text {global }}$ toys)

Global Significance from Asymptotics

Principle: approximate the global p-value in the asymptotic limit
\rightarrow reference paper: Gross \& Vitells, EPJ.C70:525-530,2010

$$
\begin{aligned}
& \text { EPJ.C70:525-530,2010 } \\
& N_{\text {trials }}=1+\sqrt{\frac{\pi}{2}} N_{\text {indep }} Z_{\text {indep }}=\frac{\text { scan range }}{\text { peak width }}
\end{aligned}
$$

\rightarrow Trials factor is not just $\mathrm{N}_{\text {indep }}$, also depends on $\mathbf{Z}_{\text {local }}$!

Why?

\rightarrow slice scan range into $\mathrm{N}_{\text {indep }}$ regions of size ~ peak width
\rightarrow search for a peak in each region
\Rightarrow Indeed gives $N_{\text {trials }}=N_{\text {indep }}$.
However this misses peaks sitting on edges between regions
$\Rightarrow \operatorname{true} N_{\text {trials }}$ is $>N_{\text {indep }}!$

Global Significance from Asymptotics

Principle: approximate the global p-value in the asymptotic limit
\rightarrow reference paper: Gross \& Vitells, EPJ.C70:525-530,2010

$$
\begin{aligned}
& \text { EPJ.C70:525-530,2010 } \\
& N_{\text {trials }}=1+\sqrt{\frac{\pi}{2}} N_{\text {indep }} Z_{\text {indep }}=\frac{\text { scan range }}{\text { peak width }}
\end{aligned}
$$

\rightarrow Trials factor is not just $\mathrm{N}_{\text {indep }}$, also depends on $\mathbf{Z}_{\text {local }}$!

Why?

\rightarrow slice scan range into $\mathrm{N}_{\text {indep }}$ regions of size ~ peak width
\rightarrow search for a peak in each region
\Rightarrow Indeed gives $N_{\text {trials }}=N_{\text {indep }}$.
However this misses peaks sitting on edges between regions
\Rightarrow true $N_{\text {tricls }}$ is $>N_{\text {indep }}!$

Illustrative Example

Test on a simple example: generate toys with
\rightarrow flat background (100 events/bin)
\rightarrow count events in a fixed-size sliding window, look for excesses
Two configurations:

1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum

Illustrative Example (2)

Very different results if the excess is near a boundary :

1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum

Illustrative Example (3)

$\mathrm{Z}_{\text {Global }}$ Asymptotics Extrapolation

Asymptotic trials factor (1 POI): $\quad N_{\text {trials }}=1+\sqrt{\frac{\pi}{2}} N_{\text {indep }} Z_{\text {local }}$
How to get $\mathbf{N}_{\text {indep }}$? Usually work with a slightly different formula:

$$
N_{\text {trials }}=1+\frac{1}{p_{\text {local }}}\left\langle N_{\text {up }}\left(Z_{\text {test }}\right)\right\rangle e^{\frac{Z_{\text {est }}^{2}-Z_{\text {local }}^{2}}{2}}
$$

\Rightarrow calibrate for small $Z_{\text {test }}$, apply result to higher $Z_{\text {local }}$

Can choose arbitrarily small $Z_{\text {test }}$
\Rightarrow many excesses
\Rightarrow can measure $\mathrm{N}_{\text {up }}$ in data (1 "toy")

Can also measure $\left\langle\mathrm{N}_{\mathrm{up}}\right\rangle$ in multiple toys if large stat uncertainty from too few excesses

In 2D
O. Vitells and E. Gross, Astropart. Phys. 35 (2011) 230

Generalization to 2D scans: consider sections at a fixed $Z_{\text {test }}$, compute its Euler characteristic φ, and use
 $p_{\text {global }} \approx E\left[\phi\left(A_{u}\right)\right]=p_{\text {local }}+e^{-u / 2}\left(N_{1}+\sqrt{u} N_{2}\right)$
\rightarrow Generalizes 1D bump counting

Now need to determine 2 constants N_{1} and N_{2}, from Euler φ measurements at 2 different $Z_{\text {test }}$ values.

Outline

Computing Statistical Results

Limits, continued
Confidence Intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

BLUE

Frequentist vs. Bayesian

All methods described so far are frequentist

- Probabilities (p-values) refer to outcomes if the experiment were repeated identically many times
- Parameters value are fixed but unknown
- Probabilities apply to measurements:
\rightarrow " $\mathrm{m}_{\mathrm{H}}=125.09 \pm 0.24 \mathrm{GeV}$ " :

\rightarrow i.e. $[125.09-0.24 ; 125.09+0.24] \mathrm{GeV}$ has $\mathrm{p}=68 \%$ to contain the true m_{H}.
\rightarrow if we repeated the experiment many times, we would get different intervals, 68% of which would contain the true m_{H}.
\rightarrow "5 σ Higgs discovery"
- if there is really no Higgs, such fluctuations observed in 3.10^{-7} of experiments

Not exactly the crucial question - what we would really like to know is
What is the probability that the excess we see is a fluctuation
\rightarrow we want P (no Higgs |data) - but all we have is P (data | no Higgs)

Frequentist vs. Bayesian

Can use Bayes' theorem to address this:

same as in the frequentist

 formalism (=likelihood)$$
\boldsymbol{P}(\boldsymbol{\mu} \mid \text { data })=\frac{\boldsymbol{P}(\text { data } \mid \boldsymbol{\mu})}{\boldsymbol{P}(\text { data })} \boldsymbol{P}(\boldsymbol{\mu}) \text { Prior Probability }
$$

Can compute $P(\mu \mid$ data $)$, if we provide $P(\mu)$
\rightarrow Implicitly, we have now made μ into a random variable

- Is $m_{H^{\prime}}$ or the presence of $\mathrm{H}(125)$, randomly chosen?
- In fact, different definition of p : degree of belief, not from frequencies.
- $P(\mu)$ Prior degree of belief - critical ingredient in the computation

Compared to frequentist PLR:
\oplus answers the "right" question
Θ answer depends on the prior
"Bayesians address the questions everyone is interested in by using assumptions that no one believes. Frequentist use impeccable logic to deal with an issue that is of no interest to anyone." - Louis Lyons

Bayesian methods

Probability distribution (= likelihood) : same form as frequentist case, but $P(\theta)$ constraints now priors for the systematics NPs, $P(\theta)$ not auxiliary measurements $\mathrm{P}\left(\theta^{\text {mes }} ; \theta\right)$
\oplus Simply integrate them out, no need for profiling: $\quad \boldsymbol{P}(\boldsymbol{\mu})=\int \boldsymbol{P}(\boldsymbol{\mu}, \boldsymbol{\theta}) \boldsymbol{d \theta}$
\rightarrow Use probability distribution $P(\mu)$ directly for limits, credibility intervals e.g. define $68 \% \mathrm{CL}$ ("Credibility Level") interval (A, B) by:
\ominus No simple way to test for discovery

$$
\int_{A}^{B} P(\mu) d \mu=68 \%
$$

Θ Integration over NPs can be CPU-intensive
Priors : most analyses still using flat priors in the analysis variable(s)
\Rightarrow Parameterization-dependent: if flat in $\sigma \times B$, then not flat in $k . .$.
\rightarrow Can use the Jeffreys' or reference priors, but difficult in practice
Frequentist-Bayesian Hybrid methods ("Cousins-Highland")

- Integrate out NPs as in Bayesian measurements
- Once only POIs left, Use P(data | μ) in a frequentist way
\rightarrow "Bayesian NPs, frequentist POls"
- Some use in Run 1, now phased out in favor of frequentist PLR.

Bayesian methods and $\mathrm{CL}_{\mathrm{s}}: \mathrm{CL}_{\mathrm{s}}$ computation

Gaussian counting with systematic on background: $\mathbf{n}=\mathbf{S}+\mathbf{B}+\sigma_{\text {syst }} \boldsymbol{\theta}$
$\boldsymbol{L}(\boldsymbol{n} ; \boldsymbol{S}, \boldsymbol{\theta})=\boldsymbol{G}\left(\boldsymbol{n} ; \boldsymbol{S}+\boldsymbol{B}+\boldsymbol{\sigma}_{\text {syst }} \theta, \boldsymbol{\sigma}_{\text {stat }}\right) G\left(\theta_{\text {obs }}=0 ; \theta, 1\right)$

MLE: $\hat{\boldsymbol{S}}=\boldsymbol{n} \boldsymbol{B}$
Conditional MLE: $\left.\hat{\hat{\theta}}(\mu)=\frac{\sigma_{\text {syst }}}{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}(n-S-B)\right\}$

$$
\text { PLR : } \lambda(\mu)=\left|\frac{S+B-n}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right|^{2}
$$

Gaussian \Rightarrow from previous studies, CL_{s} limit is

$$
\mathrm{CL}_{s}: \quad S_{\mathrm{up}}^{\mathrm{CL}_{s}}=n-B+\left\lceil\Phi^{-1}\left(\left.1-0.05 \Phi\left(\frac{n-B}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right) \right\rvert\,\right] \sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}\right.
$$

Bayesian methods and CL_{s} : Bayesian case

Gaussian counting with systematic on background: $\mathrm{n}=\mathbf{S}+\mathrm{B}+\boldsymbol{\sigma}_{\text {syst }} \boldsymbol{\theta}$

$$
P(n \mid S, \theta)=G\left(n ; S+B+\sigma_{\text {syst }} \theta, \sigma_{\text {stat }}\right) G(\theta \mid 0,1)
$$

Bayesian: $G(\theta)$ is actually a prior on $\theta \Rightarrow$ perform integral (marginalization)

$$
P(n \mid S)=G\left(S ; n-B, \sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}\right) \quad \text { same effect as profiling! }
$$

Need $P(S \mid n) \Rightarrow$ a prior for S - take flat PDF over $S>0$ \Rightarrow Truncate Gaussian at $S=0: P(S \mid n)=P(n \mid S) P(S)$

$$
P(S \mid n)=G\left(S ; n-B, \sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}\right)\left[\Phi\left(\frac{n-B}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right)\right]^{-1}
$$

Bayesian Limit:

$$
\left.\left.\int_{S_{\mathrm{upp}}}^{\infty} P(S \mid n) d S=5 \%=\left[1-\Phi\left(\frac{S_{\mathrm{up}}-(n-B)}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right)\right] \right\rvert\, \Phi\left(\frac{n-B}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right)\right]^{-1}
$$

$$
S_{\text {up }}^{\text {Bayes }}=n-B+\left[\left.\Phi^{-1}\left(1-0.05 \Phi\left(\frac{n-B}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right)\right) \right\rvert\, \sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}} \quad \text { same result as } C L_{s}!\right.
$$

Example: W' \rightarrow Iv Search

- POI: W’ $\sigma \times B \rightarrow$ use flat prior over $[0,+\infty[$.
- NPs: syst on signal ε (6 NPs), bkg (6), lumi (1) \rightarrow integrate over Gaussian priors

Trigger
Lepton reconstruction
and identification
Lepton momentum
scale and resolution
$E_{\mathrm{T}}^{\text {miss }}$ resolution and scale
Jet energy resolution
Pile-up

Multijet background
Top extrapolation
Diboson extrapolation
PDF choice for DY
PDF variation for DY
EW corrections for DY
Luminosity

Why 5 σ ?

One-sided discovery: $5 \sigma \Leftrightarrow p_{0}=310-7 \Leftrightarrow 1$ chance in 3.5 M
\rightarrow Overly conservative?
\rightarrow Do we even know the sampling distributions so far out ? Local $3.9 \sigma, p_{0}=5 \mathrm{E}-5$
Global 2.1 $\sigma, \mathrm{p}_{0}=2 \mathrm{E}-2$
Reasons for sticking with 5σ (from Louis Lyons):

- LEE : searches typically cover multiple independent regions
\Rightarrow Global p-value is the relevant one $\mathrm{N}_{\text {trials }} \sim 1000$: local $5 \sigma \Leftrightarrow \mathrm{O}\left(10^{-4}\right)$ more reasonable
- Mismodeled systematics: factor 2 error in syst-dominated analysis \Rightarrow factor 2 error on Z...
- History: 3σ and 4σ excesses do occur regularly,
 for the reasons above
- "Subconscious Bayes Factor" : p-value should be at least as small as the subjective $p(S)$:

$$
P(\text { fluct })=\frac{P(\text { fluct } \mid B) P(B)}{P(\text { fluct } \mid S) P(S)+P(\text { fluct } \mid B) P(B)}
$$

Extraordinary claims require extraodinary evidence

Outline

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice
Building binned likelihoods
Choosing PDFs in unbinned likelihoods
Implementing systematics

BLUE

Statistical Modeling: in Practice

Bulding statistical models

So far focus has been on concepts, but building a statistical model also requires numerical inputs:

- Data PDFs for all model components
- Constraint PDFs for all sources systematics
- Impact of each systematic uncertainty on all relevant model parameters
\rightarrow Statistical methods are only as accurate (and/or optimal) as the description provided by the model!

Technically, MC simulation provides most of these inputs. However 2 problematic issues:

- Potential MC/data differences
- Limited MC statistics

Which need to be addressed with (yet more) systematics.

Statistical Modeling: I. Component PDFs

PDFs : Binned likelihood

Binned case:
\rightarrow PDF usually just a normalized histogram, from

- MC sample or
- Data control region (CR)
\Rightarrow Statistical uncertainties on the prediction:
- Data CR: counts as statistical uncertainty

- MC sample: uncertainty can be reduced without collecting more data (just need more CPU!) \Rightarrow Counted as systematic

JHEP 12 (2017) 024
Independent counts in each bin
\Rightarrow a separate MC statistics NP in each bin
\rightarrow Poisson constraints Pois $\left(N_{i}{ }^{\text {MC }} ; \mathbf{N}_{i}^{\text {true }}\right)$
Total uncertainty $\sim \sqrt{\sigma_{\text {data stats }}^{2}+\sigma_{\mathrm{MC}}^{2} \text { stats }+\ldots}$
\Rightarrow need enough MC to avoid spoiling the sensitivity!

MC Statistics Requirements

e.g. Discovery: Total uncertainty: $\sigma_{s}^{2} \sim \sqrt{\sigma_{\text {data stats }}^{2}+\sigma_{\text {MC stats }}^{2}+\ldots}$
\Rightarrow need $\quad \sigma_{\mathrm{MC} \text { stats }} \ll \sigma_{\text {data stats }}$

$$
\boldsymbol{B}_{\mathrm{MC}} \gg \boldsymbol{B}_{\text {data }}
$$

By how much?

$\mathbf{B}_{\mathrm{MC}} / \mathbf{B}_{\text {data }}$ (α)	$\begin{gathered} \sigma_{\text {Mc stats }} / \sigma_{\text {data stats }} \\ (1 / V \alpha) \end{gathered}$	$\begin{gathered} \sigma_{\text {datatamc stats }} / \sigma_{\text {datatstats }} \\ \left(\sqrt{ }\left(1+\alpha^{-1}\right)\right) \end{gathered}$
1	1	1.41
4	0.5	1.12
25	0.2	1.02

In the presence of a signal (e.g. limit-setting, $\mathrm{N}_{\text {sig }}$ measurement), relevant uncertainty is $\sqrt{ }(\mathrm{S}+\mathrm{B})$ \Rightarrow S/B also matters:

$$
\frac{\sigma_{S}}{S} \sim \sqrt{1+\frac{S}{B}+\frac{B_{\mathrm{data}}}{B_{\mathrm{MC}}} \frac{1}{1+S / B}}
$$

- low S/B : same problem as for discovery
- high S/B : no issue, dominated by uncertainty on signal itself.

Eur. Phys. J. C (2012) 72: 2241

PDF shapes: Unbinned likelihood

Smooth backgrounds : Describe distribution using appropriate function \Rightarrow Unbinned likelihood. Describes sideband + signal region in one fit.

Phys. Lett. B241 (1990) 278-282

Fig. 1. Invariant mass distribution of the decay $\mathrm{B}^{+} \curvearrowright \pi^{+} \pi^{0}$. (a) At the $\mathrm{Y}(4 \mathrm{~S})$; the curve shows the result of the maximum likelihood fit described in the text. (b) After subtraction of the continuum contribution. The gaussian curve represents the $90 \% \mathrm{CL}$ upper limit on the signal from the above fit (see table 1).

Phys. Rev. Lett. 118 (2017), 191801

PDF Shapes: Unbinned likelihood

Widely used in HEP for smooth backgrounds (\rightarrow no resonances or threshold)
$\mathrm{H} \rightarrow \mathrm{yy}$ Measurements

$X \rightarrow$ ji Search
Phys.Lett. B754 (2016) 302-322

Signal Bias in Unbinned likelihoods

Function usually ad-hoc (no closed form expression for (theory \otimes detector effects), or usually even theory by itself...)
\rightarrow may not accurately describe the data
\Rightarrow Introduce free parameters, fit in sidebands
Jan 2012 Higgs search paper
($4.9 \mathrm{fb}^{-1}$ of 2011 data)
exponential

Problematic especially for low S/B
\rightarrow small mismodelings of B can be large compared to S.
$\rightarrow X^{2}$ test in sideband may not help: even a large bias on the scale of $S(\ll B)$ may remain within stat errors in the sideband!

Signal Bias in Unbinned likelihoods

Function usually ad-hoc (no closed form expression for (theory \otimes detector effects), or usually even theory by itself...)
\rightarrow may not accurately describe the data
\Rightarrow Introduce free parameters, fit in sidebands
\rightarrow Biases may still remain due to functional form itself

Problematic especially for low S/B
\rightarrow small mismodelings of B can be large compared to S.
$\rightarrow X^{2}$ test in sideband may not help: even a large bias on the scale of $S(\ll B)$ may remain within stat errors in the sideband!

Jan 2012 Higgs search paper
($4.9 \mathrm{fb}^{-1}$ of 2011 data)
polynomial

Situation doesn' t improve with more luminosity:
\rightarrow Reduced statistical uncertainties in sideband, but
\rightarrow Also reduced $\sigma_{s^{\prime}}$ in the same proportion

Signal Bias in Unbinned likelihoods

If data cannot fix B shape, use MC \rightarrow Measure signal bias N_{ss} on "credible" shapes taken from MC (Spurious signal) \rightarrow take the maximum bias as systematic

Works well if the true distribution is somewhere in the space of MC distributions scanned...

Also Impose:
$\mathrm{N}_{\mathrm{ss}}<20 \% \sigma_{\text {stat }}$ (small contribution to $\sigma_{\text {totala }}$)
 OR
$\mathrm{N}_{\mathrm{ss}}<10 \% \mathrm{~S}_{\text {exp }}$ (small bias on measured S)

Second criterion more stringent at higher $\mathrm{S} / \sqrt{ } \mathrm{B}$.

If criteria are not met, move to more complex functions (\rightarrow more free parameters)

Signal Bias in Unbinned likelihoods

Problem: for small MC stats, measured bias dominated by fluctuations \rightarrow again, need high MC stats ($\mathrm{B}_{\text {MC }}>25 \mathrm{~B}_{\text {data }}$) when S / B is low.

$\mathrm{B}_{\mathrm{Mc}} / \mathbf{B}_{\text {data }}$ (α)	$\begin{gathered} \sigma_{\text {MC stats }} / \sigma_{\text {datas stats }} \\ (1 / V \operatorname{lon}) \end{gathered}$	$\begin{gathered} \sigma_{\text {datata+MC stats }} / \sigma_{\text {datata stats }} \\ \left(\sqrt{ }\left(1+\alpha^{-1}\right)\right) \end{gathered}$
1	100\%	1.41
4	50\%	1.12
25	20\%	1.02

\rightarrow Can compromise on criterion level (50\% instead of 20% ?)
\rightarrow As before, better situation at at high S / B

Phys. Rev. Lett. 118, 182001 (2017)

Usual Functions

Polynomials: various basis choices (Chebyshev, Bernstein,...)

Bernstein basis:

$$
B_{k, n}(x)=\binom{k}{n} x^{k}(1-x)^{n-k} \text { for } 0 \leq x \leq 1
$$

\rightarrow Positive coefficients \Rightarrow positive polynomial everywhere, useful to avoid numerical issues in - 2 log(PDF) computation
Exponential family : $\exp ($ polynomial)
Power laws : $x^{\alpha}, x^{\alpha}(1-x)^{\beta}, \ldots$

Gaussians

Crystal Ball Functions
$N \cdot \begin{cases}\mathrm{e}^{-0.5 t^{2}} & \text { if }-\alpha_{\text {low }} \leq t \leq \alpha_{\text {high }} \\ \mathrm{e}^{-0.5 \alpha_{\text {low }}^{2}}\left[\frac{\alpha_{\text {low }}}{n_{\text {low }}}\left(\frac{n_{\text {low }}}{\alpha_{\text {low }}}-\alpha_{\text {low }}-t\right)\right]^{-n_{\text {low }}} & \text { if } t<-\alpha_{\text {low }} \\ \mathrm{e}^{-0.5 \alpha_{\text {high }}^{2}}\left[\frac{\alpha_{\text {high }}}{n_{\text {high }}}\left(\frac{n_{\text {high }}}{\alpha_{\text {high }}}-\alpha_{\text {high }}+t\right)\right]^{-n_{\text {high }}} & \text { if } t>\alpha_{\text {high }},\end{cases}$
\rightarrow Sums of the above
\rightarrow Convolutions (resolution \otimes Breit-Wigner, ...)
$t=\left(m_{\gamma \gamma}-\mu_{\mathrm{CB}}\right) / \sigma_{\mathrm{CB}}$

JINST 10 (2015) no.04, P04015

Discrete Profiling

Idea: treat the type of function and number of parameters as discrete NPs, profiled in data
\rightarrow Let data choose the best shape
\rightarrow Similar principle as other NPs, except for discrete nature
\rightarrow Need a penalty on $\mathbf{N}_{\text {pars }}$ to avoid always choosing functions with high $N_{\text {pars }}$

Take lower envelope of all functions when profiling
\rightarrow Used in the CMS $\mathrm{H} \rightarrow \mathrm{W}$ analysis, works well in this context.

Caveats:

\rightarrow for N categories and M functional forms, M^{N} possibilities to check in principle - difficult in practice \rightarrow Need a well-chosen pool of sensible functions for the method to work
\rightarrow Large MC samples for selection and checks

Gaussian Processes: 1-slide Summary

[^0]Image Credits:
K. Cranmer

Gaussian Processes: Longer 1-slide Summary

- Describe background distribution through the correlations between values at different points.
- More flexible than a functional form
- Correlation function (Kernel) can be

$$
K\left(x_{1}, x_{2}\right)=\exp \left[-\frac{\left(x_{1}-x_{2}\right)^{2}}{2 L^{2}}\right]
$$

- Defined using a length scale, to ignore narrow peaks
- Obtained from first principles (e.g. from known JES/PDF effects)

\oplus More flexible than functional form, degrees of freedom less ad-hoc
e Still need large MC samples to check for signal bias
Θ Mainly for Gaussian processes, not well-adapted to Poisson regime

Statistical Modeling: II. Systematics

Systematics NPs

Each systematics NP represent an independent source of uncertainty \Rightarrow Usually constrained by a single 1-D PDF (Gaussian, etc.)

Sometimes multiple parameters conjointly constrained by an n-dim. PDF. \rightarrow multiple measurements constraining multiple NPs
Assume n-dim Gaussian PDF: then can diagonalize the covariance matrix \mathbf{C} and re-express the uncertainties in basis of eigenvector NPs $\Rightarrow \mathbf{n} \mathbf{1}$-dim PDFs

Can also diagonalize to prune irrelevant uncertainties: keep NPs with large eigenvalues, combine in quadrature the others

Systematics : Impact on Model

The effect of each NP θ_{i} should be propagated to all the relevant model parameters X_{i}.
\rightarrow Propagation through MC:

1. Apply $\pm 1 \sigma$ systematic variations in MC,
\Rightarrow obtain shifted values $\mathrm{X}_{\mathrm{i}}{ }^{ \pm}=\mathrm{X}_{\mathrm{i}}^{0}\left(1 \pm \Delta_{\mathrm{ij}}\right)$.
\rightarrow Possibly smooth out MC stats effects

Constrained by unit Gaussian

$$
X_{j} \rightarrow X_{j}^{0}\left(1+\Delta_{i j} \theta_{i}\right)
$$ or morph shapes:

\rightarrow can affect event yields, shapes, etc.
Assumes Gaussian uncertainties and linear impact on model parameters

Systematics : Constraints

Ideally, constraint = likelihood of auxiliary measurement
\Rightarrow e.g. Poisson for constraint from counting in a low-stat CR.
Sometimes no clear auxiliary measurement
\Rightarrow Semi-arbitrary "pseudo-measurement" motivated by Central Limit Theorem:

- Gaussian for additive corrections
- Log-normal for multiplicative corrections

Gaussian:

Constrained by unit Gaussian

- represent impact as $\boldsymbol{X}_{\boldsymbol{j}} \boldsymbol{\rightarrow} \boldsymbol{X}_{\boldsymbol{j}}^{\mathbf{0}}\left(\mathbf{1}+\boldsymbol{\Delta}_{i j} \theta_{i}\right)$
\rightarrow or similar morphing for distributions
Can include asymmetric variations $\Delta^{+}, \Delta_{:}: \quad \boldsymbol{X}_{\boldsymbol{j}} \rightarrow X_{j}^{\mathbf{0}}\left|\mathbf{1}+\left|\begin{array}{ll}\Delta_{i j}^{+} \theta_{i} & \theta_{i}>0 \\ \Delta_{i j}^{-} \theta_{i} & \theta_{i}<\mathbf{0}\end{array}\right|\right)$ However discontinuity in derivative at 0 , so use smooth interpolation instead, e.g. implementation in RooStats: :HistFactory: :FlexibleInterpVar.

Systematics : Log-normal Constraint

Log-normal: $x \sim \log$-normal if $\log (x)$ is normal
\rightarrow always >0, useful to avoid numerical issues
\rightarrow PDF:

$$
P\left(s ; X_{0,} \kappa\right)=\frac{1}{x \kappa \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{\log (x)-X_{0}}{\kappa}\right)^{2}\right)
$$

However usually simpler to implement as:

$$
X_{j} \rightarrow X_{j}^{0} \exp \left(\kappa_{i j} \theta_{i}\right)
$$

where θ_{i} is constrained by a unit Gaussian as usual
\rightarrow Correct form for a multiplicative uncertainty:

$$
\log \sqrt[n]{\left(X_{0} k_{1}\right)\left(X_{0} k_{2}\right) \ldots\left(X_{0} k_{n}\right)}=\frac{1}{n} \sum_{i=1}^{n} \log \left(X_{0} k_{i}\right) \stackrel{n \rightarrow \infty}{\sim} G\left(\log X_{0}, \frac{R M S(\log (k))}{\sqrt{n}}=\kappa\right)
$$

Similarly to Gaussian \rightarrow represent $\mathbf{X}=\mathrm{X}_{0} \mathrm{e}^{\mathrm{k} \theta} \sim \mathrm{G}\left(\log \mathrm{X}_{0}\right.$, k$)$ if $\theta \sim G(0,1)$
Which k to use $? \mathrm{k}=\operatorname{RMS}(X)$ only at first order. For larger uncertainties, e.g. Match $\pm 1 \sigma$ variations: $X_{j}(\theta= \pm 1)=X_{j}^{ \pm} \Rightarrow \quad \kappa_{ \pm}= \pm \log \left(X_{j}^{ \pm} / X_{j}^{0}\right)$

Implemented in RooStats: :HistFactory::FlexibleInterpVar.

Systematics : Theory Constraints

Missing high-order terms in perturbative calculations: evaluate from scale variations - but no underlying random process. Possible constraint shapes:

- Gaussians (ATLAS/CMS Higgs analyses, see Yellow Report 4, I.4.1.d)
\rightarrow Usually several independent "sources" of uncertainty(QCD/EW/resummation)
\Rightarrow overall uncertainty may be rather Gaussian
\rightarrow Numerically well-behaved
\rightarrow Uncertainties add in quadrature as usual
- Flat constraints : " 100% confidence" intervals
\rightarrow no preference for any value in the range
\rightarrow Need regularization to avoid numerical issues
\rightarrow uncertainties add linearly
\rightarrow For Higgs cross-sections, rather similar results for both cases

Constraints : Two-point systematics

Sometimes differences between 2 discrete cases \rightarrow e.g. Pythia vs. Herwig Solutions:

- Results for one case only
- Full results for both cases
- Single result with an uncertainty that covers the difference
\rightarrow Two-point uncertainty

Usually implemented as ID linear interpolations between the two cases
\rightarrow However cannot guarantee this covers the space of possible configurations
\Rightarrow This is not even a pseudo-measurement...

Ideally, need to define proper uncertainties within a single model, which would cover the other cases \rightarrow e.g. showering uncertainties within Pythia, covering Herwig

Next years
generator
Herwig
\rightarrow Usually a difficult task

Profiling Issues

Too simple modeling can have unintended effects
\rightarrow e.g. single Jet E scale parameter:
\Rightarrow Low-E jets calibrate high-E jets - intended?

Two-point uncertainties:

\rightarrow Interpolation may not cover full configuration space, can lead to too-strong constraints

NP central values and uncertainties in pull/impact plots provide important "debugging" information for profiling

Outline

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice
Building binned likelihoods
Choosing PDFs in unbinned likelihoods
Implementing systematics

BLUE

BLUE

BLUE

Commonly-used ansatz for combination of measurements:

1. Build a \mathbf{x}^{2} : (same as $-2 \log L$
C_{ij} : covariance matrix of measurements:

$$
\chi^{2}(\boldsymbol{X})=\sum_{i}\left(\boldsymbol{X}_{\boldsymbol{i}}^{\mathrm{obs}}-\boldsymbol{X}\right) \boldsymbol{C}_{i j}^{-1}\left(\boldsymbol{X}_{\boldsymbol{j}}^{\mathrm{obs}}-\boldsymbol{X}\right)
$$

2. Estimate combined X from minimum of $\mathrm{X}^{2}(\mathrm{X})$

- In the Gaussian case, equivalent to ML solution
\Rightarrow inherits good properties:
- Unbiased : 〈र्X $\rangle=X^{*}$
- Optimal: minimizes the combined uncertainty
- Solution is a linear combination of the inputs:
$\lambda_{i}=$ combination weight of measurement i

$$
\hat{X}=\sum_{i} \lambda_{i}^{\downarrow} X^{o b s, i}
$$

\Rightarrow "Best Linear Unbiased Estimator" (BLUE)

BLUE Example

Example: World $m_{\text {top }}$ combination

Limitation: relies on Gaussian assumptions (satisfied in this case!)
Negative weights possible! (for large correlations, see Eur. Phy. J. C 74 (2014), 2717)

BLUE and PLR

$$
\begin{aligned}
X_{1}=X+\Delta_{1} \theta & \sim G\left(X^{*}, \sigma_{1}\right) \\
X_{2}=X+\Delta_{2} \theta & \sim G\left(X^{*}, \sigma_{2}\right) \\
\theta & \sim G(\mathbf{0}, \mathbf{1})
\end{aligned}
$$

PLR Computation: 2 measurements
+1 auxiliary measurement
Single measurement: $\quad \lambda(X, \theta)=\frac{1}{\sigma_{1}^{2}}\left(X+\Delta_{1} \theta-X_{1}^{\text {obs }}\right)^{2}+\left(\theta-\theta^{\text {obs }}\right)^{2}$
MLEs: $\left\{\begin{array}{l}\hat{\theta}=\theta^{\text {obs }} \\ \hat{X}=X_{1}^{\text {obs }}-\Delta_{1} \theta^{\text {obs }}\end{array}\right.$
PLR: $\quad \lambda(X)=\frac{(X-\hat{X})^{2}}{\sigma_{1, \text { tot }}^{2}} \quad \sigma_{1, \text { tot }}^{2}=\sigma_{1}^{2}+\Delta_{1}^{2}$
Combination: $\quad \lambda(X, \theta)=\frac{1}{\sigma_{1}^{2}}\left(X+\Delta_{1} \theta-X_{1}^{\text {obs }}\right)^{2}+\frac{1}{\sigma_{2}^{2}}\left(X+\Delta_{2} \theta-X_{2}^{\text {obs }}\right)^{2}+\left(\theta-\theta^{\text {obs }}\right)^{2}$
MLE: $\hat{X}=\lambda_{1} X_{1}^{\text {obs }}+\lambda_{2} X_{2}^{\text {obs }}+\lambda_{\theta} \theta^{\text {obs }} \quad \lambda_{1(2)}=\frac{\sigma_{2(1), \text { tot }}^{2}-\Delta_{1} \Delta_{2}}{\sigma_{1, \text { tot }}^{2}+\sigma_{2, \text { tot }}^{2}-2 \Delta_{1} \Delta_{2}}$
PLR: $\quad \lambda(x)=\frac{(X-\hat{X})^{2}}{\sigma_{X, \text { tot }}^{2}} \quad \sigma_{X, \text { tot }}^{2}=\frac{\sigma_{1, \text { tot }}^{2} \sigma_{2, \text { tot }}^{2}-\Delta_{1}^{2} \Delta_{2}^{2}}{\sigma_{1, \text { tot }}^{2}+\sigma_{2, \text { tot }}^{2}-2 \Delta_{1} \Delta_{2}}$

BLUE and PLR

BLUE computation: measurements X_{1} and X_{2} with uncorrelated statistical uncertainties σ_{1} and σ_{2}, correlated systematics Δ_{1} and Δ_{2}.

Single measurement: stat uncertainty σ_{1}, systematic Δ_{1}

- Uncorrelated uncertainties
- Assume everything is Gaussian
\Rightarrow Uncertainties add in quadrature:

$$
\sigma_{1, \text { tot }}^{2}=\sigma_{1}^{2}+\Delta_{1}^{2}
$$

Combination:

$$
C=\left[\begin{array}{cc}
\sigma_{1, \text { tot }}^{2} & \rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }} \\
\rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }} & \sigma_{2, \text { tot }}^{2}
\end{array}\right] \rho=\frac{\Delta_{1} \Delta_{2}}{\sigma_{1, \text { tot }} \sigma_{2, \text { tot }}}
$$

BLUE weights

$$
\hat{X}=\lambda_{1} X_{1}^{\text {obs }}+\lambda_{2} X_{2}^{\text {obs }}
$$

$$
\begin{array}{r}
\lambda_{1(2)}=\frac{\sigma_{2(1), \text { to }}^{2}-\rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }}}{\sigma_{1, \text { tot }}^{2}+\sigma_{2, \text { tot }}^{2}-2 \rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }}} \\
\sigma_{X, \text { tot }}^{2}=\frac{\sigma_{1, \text { tot }}^{2} \sigma_{2, \text { tot }}^{2}\left(1-\rho^{2}\right)}{\sigma_{1, \text { tot }}^{2}+\sigma_{2, \text { tot }}^{2}-2 \rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }}}
\end{array}
$$

Negative BLUE Weights

Occasionally, negative BLUE weights:
Can happen if $\rho \sim 1$:

$$
\lambda_{2}=\frac{\sigma_{1, \text { tot }}\left(\sigma_{1, \text { tot }}-\rho \sigma_{2, \text { tot }}\right)}{\sigma_{1, \text { tot }}^{2}+\sigma_{2, \text { tot }}^{2}-2 \rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }}}<0 \text { for } \rho>\frac{\sigma_{1, \text { tot }}}{\sigma_{2, \text { tot }}}
$$

Not intuitive! (Can also have $\lambda_{2}=0$ for $\sigma_{1, \text { tot }}=\rho \sigma 2$, tot....)
Can be explained in the PLR picture: $\quad \boldsymbol{X}_{1}=\boldsymbol{X}+\boldsymbol{\Delta \theta}$

$$
X_{2}=X+2 \Delta \theta
$$

Without correlated systematics ($\boldsymbol{\Delta}=0$):

With large correlated systematics $\left(\Delta \gg \sigma_{1,2}\right)$

$\rho \sim 1 \Rightarrow \theta$ measurement is important \Rightarrow possibly very different MLE than $X_{1} \oplus X_{2} \cdot 97$

Uncertainty Decomposition

Often useful to break down uncertainties into components (stat + syst, etc.)
PLR approach: perform measurement twice

1. With all uncertainties included
\rightarrow nominal uncertainty $\sigma_{\text {total }}$.
2. Removing some uncertainties
(e.g. all syst uncertainties) $\rightarrow \sigma_{\text {no-syst }}$
\Rightarrow Subtract in quadrature:

$$
\sigma_{\mathrm{syst}}=\sqrt{\sigma_{\mathrm{total}}^{2}-\sigma_{\mathrm{no-syst}}^{2}}
$$

BLUE-based approach:

1. Propagate each source of uncertainty (stat \& syst) to the observables
2. Propagate through to the measurement using the BLUE weights

$$
\hat{X}=\sum_{i} \lambda_{i} X^{o b s, i}
$$

The two methods are not completely equivalent (recently discovered!)
\rightarrow In the BLUE case, weights still computed including systematics effects

Presentation of Results

Presentation of Results

Measurements often recast to constrain a particular theory model.
\rightarrow Ideally, by reparameterizing the likelihood and repeating the measurement

\Rightarrow Done by experiments for selected benchmark models
\rightarrow However, often too complex to implement widely:

- Full likelihood typically not published
- theorists typically do not want to deal with 4000 NPs...
\rightarrow Other approaches: e.g. reimplementing the analysis in a public fastsimulation framework (e.g. SUSY searches). However clear accuracy limitations

Presentation of Results

\rightarrow Current solution: publish covariance matrices in HEPData, together with the individual measurements

\rightarrow Only valid in the Gaussian approximation
\rightarrow To go further, need some form of simplified likelihoods

- Profile likelihood - function of POI only (NPs profiled out)
- Additional terms for non-Gaussian effects
\rightarrow Significantly more complex (many dimensions!)
\rightarrow Will be needed eventually as measurements become syst-dominated

Conclusion

- Significant evolution in the statistical methods used in HEP
- Variety of methods, adapted to various situations and target results
- Allow to
- model the statistical process with high precision in difficult situations (large systematics, small signals)
- make optimal use of available information
- Implemented in standard RooFit/RooStat toolkits within the ROOT framework, as well as other tools (BAT)
- Improvement and uniformization efforts are still ongoing
- Still many open questions and areas that could use improvement \rightarrow e.g. how to present results with all available information to the "outside"

Extra Slides

Uncertainty decomposition

All systematics NPs fixed to 0 : statistical uncertainty only exp. syst. NPs fixed to 0 : stat+theory uncertainty —
ATLAS
$H \rightarrow \gamma \gamma, m_{H}=125.09 \mathrm{GeV} \quad$ - Total — Theory — Stat $\underset{\underset{\sim}{c}}{\underset{\sim}{c}}$

Gaussian Profiling

Gaussian measurement with $1 \mathrm{POl} \mu$ and $1 \mathrm{NP} \theta$:

$$
L(\mu, \theta ; \hat{\mu}, \hat{\theta})=\exp \left[-\frac{1}{2}\binom{\mu-\hat{\mu}}{\theta-\hat{\theta}}^{T} C^{-1}\binom{\mu-\hat{\mu}}{\theta-\hat{\theta}}\right] \quad C=\left[\begin{array}{cc}
\sigma_{\mu}^{2} & \gamma \sigma_{\mu} \sigma_{\theta} \\
\gamma \sigma_{\mu} \sigma_{\theta} & \sigma_{\theta}^{2}
\end{array}\right]
$$

$\rightarrow \lambda(\mu, \theta)$ defines an ellipse:

$$
\lambda(\mu, \theta ; \hat{\mu}, \hat{\theta})=F_{\mu \mu}(\mu-\hat{\mu})^{2}+2 F_{\mu \theta}(\mu-\hat{\mu})(\theta-\hat{\theta})+F_{\theta \theta}(\theta-\hat{\theta})^{2}
$$

$$
\begin{aligned}
F & \equiv C^{-1} \\
& =\left[\begin{array}{ll}
F_{\mu \mu} & F_{\mu \theta} \\
F_{\mu \theta} & F_{\theta \theta}
\end{array}\right]
\end{aligned}
$$

Gaussian Profiling

$\lambda(\mu, \theta ; \hat{\mu}, \hat{\theta})=F_{\mu \mu}(\mu-\hat{\mu})^{2}+2 F_{\mu \theta}(\mu-\hat{\mu})(\theta-\hat{\theta})+F_{\theta \theta}(\theta-\hat{\theta})^{2}$

$$
\begin{aligned}
& C=\left[\begin{array}{cc}
\sigma_{\mu}^{2} & \gamma \sigma_{\mu} \sigma_{\theta} \\
\gamma \sigma_{\mu} \sigma_{\theta} & \sigma_{\theta}^{2}
\end{array}\right] \\
& F=\left[\begin{array}{ll}
F_{\mu \mu} & F_{\mu \theta} \\
F_{\mu \theta} & F_{\theta \theta}
\end{array}\right]
\end{aligned}
$$

Profile likelihood ratio:
Profiled θ (minimize λ at fixed μ):
$\lambda(\boldsymbol{\mu}, \hat{\hat{\theta}}(\mu) ; \hat{\mu}, \hat{\theta})=\left(\boldsymbol{F}_{\mu \mu}^{\mu}-\boldsymbol{F}_{\mu \theta} \boldsymbol{F}_{\theta \theta}^{-1} \boldsymbol{F}_{\theta \mu}\right)(\mu-\hat{\mu})^{2}=C_{\mu \mu}^{-1}(\boldsymbol{\mu}-\hat{\mu})^{2}=\left(\frac{\mu-\hat{\mu}}{\sigma_{\mu}}\right)^{2}$

$$
F_{\mu \mu} \neq C_{\mu \mu}^{-1}!!
$$

Uncertainty on μ :

- From C: $\quad \sigma_{\mu}$
- From PLR: σ_{μ}

Profiled θ crosses ellipse at vertical tangents by definition (L is lower at other points on the tangent)

Gaussian Profiling

$\lambda(\mu, \theta ; \hat{\mu}, \hat{\theta})=F_{\mu \mu}(\mu-\hat{\mu})^{2}+2 F_{\mu \theta}(\mu-\hat{\mu})(\theta-\hat{\theta})+F_{\theta \theta}(\theta-\hat{\theta})^{2}$
\rightarrow For fixed $\theta=\hat{\theta}, \lambda(\mu)$ defines an interval:
$\lambda(\mu, \theta=\hat{\theta} ; \hat{\mu}, \hat{\theta})$
Uncertainty on μ :

- From C: σ_{μ}
- From PLR: σ_{μ}
- From $\lambda(\mu): \sigma_{\mu} \sqrt{1-\gamma^{2}}$

$$
F \equiv C^{-1}=\frac{1}{1-\gamma^{2}}\left|\begin{array}{cc}
\frac{1}{\sigma_{\mu}^{2}} & \frac{\gamma}{\sigma_{\mu} \sigma_{\theta}} \\
\frac{\gamma}{\sigma_{\mu} \sigma_{\theta}} & \frac{1}{\sigma_{\theta}^{2}}
\end{array}\right|
$$

$\hat{\mu})^{2}=\left(\left.\frac{\mu-\hat{\mu}}{\sigma_{\mu} \sqrt{1-\gamma^{2}}}\right|^{2}\right.$

Gaussian Profiling

$\lambda(\mu, \theta ; \hat{\mu}, \hat{\theta})=F_{\mu \mu}(\mu-\hat{\mu})^{2}+2 F_{\mu \theta}(\mu-\hat{\mu})(\theta-\hat{\theta})+F_{\theta \theta}(\theta-\hat{\theta})^{2}$
\rightarrow For fixed $\theta=\hat{\theta}, \lambda(\mu)$ defines an interval:
$\lambda(\mu, \theta=\hat{\theta} ; \hat{\mu}, \hat{\theta})=F_{\mu \mu}(\mu-\hat{\mu})^{2}=\left|\frac{\mu-\hat{\mu}}{\sigma_{\mu} \sqrt{1-\gamma^{2}}}\right|^{2}$

Uncertainty on μ :

$$
F \equiv C^{-1}=\frac{1}{1-\gamma^{2}}\left[\left.\begin{array}{cc}
\frac{1}{\sigma_{\mu}^{2}} & \frac{\gamma}{\sigma_{\mu} \sigma_{\theta}} \\
\frac{\gamma}{\sigma_{\mu} \sigma_{\theta}} & \frac{1}{\sigma_{\theta}^{2}}
\end{array} \right\rvert\,\right.
$$

- From C:
- From PLR:

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC

$$
\begin{aligned}
q_{L E P} & =-2 \log \frac{L(\mu=0, \widetilde{\theta})}{L(\mu=1, \widetilde{\theta})} \\
q_{\text {Tevatron }} & =-2 \log \frac{L\left(\mu=0, \hat{\hat{\theta}}_{0}\right)}{L\left(\mu=1, \hat{\theta}_{1}\right)}
\end{aligned}
$$

- Compare $\mu=0$ and $\mu=1$
- Tevatron: PLR with profiled NPs

Both compare to $\boldsymbol{\mu}=\mathbf{1}$ instead of best-fit $\hat{\boldsymbol{\mu}}$

LEP/Tevatron LHC

\rightarrow Asymptotically:

- LEP/Tevaton: q linear in $\mu \Rightarrow \sim$ Gaussian
- LHC: q quadratic in $\mu \Rightarrow \sim x^{2}$
\rightarrow Still use TeVatron-style for discrete cases

Spin/Parity Measurements

Phys. Rev. D 92 (2015) 012004

[^0]: * the dimension is the number of data points.

