Statistical analysis methods

for Physics

Lecture III

Nicolas Berger (LAPP Annecy)

Physics measurement data are produced through **random processes**, Need to be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(n; S, B) = e^{-(S + B)} \frac{(S + B)^n}{n!}$
Binned shape analysis	n _i , i=1N _{bins}	Poisson product $P(\mathbf{n}_{i}; \mathbf{S}, \mathbf{B}) = \prod_{i=1}^{n_{\text{bins}}} e^{-(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})} \frac{(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})^{\mathbf{n}_{i}}}{\mathbf{n}_{i}!}$
Unbinned shape analysis	m _i , i=1n _{evts}	Extended Unbinned Likelihood $P(\boldsymbol{m}_i; \boldsymbol{S}, \boldsymbol{B}) = \frac{e^{-(\boldsymbol{S} + \boldsymbol{B})}}{\boldsymbol{n}_{\text{evts}}!} \prod_{i=1}^{\boldsymbol{n}_{\text{evts}}} \boldsymbol{S} P_{\text{sig}}(\boldsymbol{m}_i) + \boldsymbol{B} P_{\text{bkg}}(\boldsymbol{m}_i)$

Model can include multiple **categories**, each with a separate description Includes **parameters of interest** (POIs) but also **nuisance parameters** (NPs)

Reminders From Lecture I

To **estimate a parameter value**, use the Maximum-likelihood estimate (MLE), a.k.a. Best-fit value of the parameter,

Today, further results:

- Discovery: we see an excess is it a (new) signal, or a background fluctuation ?
- Upper limits: we don't see an excess if there is a signal present, how small must it be ?
- Parameter measurement: what is the allowed range ("confidence interval") for a model parameter ?
- → The Statistical Model already contains all the needed information how to use it ?

Reminders from Lecture II: Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H_0 : S=0)

 \rightarrow Goal : determine if $\rm H_{_0}$ is true or false using a test based on the data

Possible outcomes:	Data disfavors H _o (Discovery claim)	Data favors H _o (Nothing found)
H ₀ is false (New physics!)	Discovery!	Missed discovery Type-II error (1 - Power)
H _o is true (Nothing new)	False discovery claimType-I error(\rightarrow p-value, significance)	No new physics, none found

Stringent discovery criteria ⇒ lower Type-I errors, higher Type-II errors → Goal: test that minimizes Type-II errors for given level of Type-I error.

Reminders from Lecture II: Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H_0 : S=0)

 \rightarrow Goal : determine if $\rm H_{_0}$ is true or false using a test based on the data

Possible outcomes:	Data disfavors H _o (Discovery claim)	Data favors H _o (Nothing found)
H ₀ is false (New physics!)	Discovery!	Missed discovery Type-II error (1 - Power)
H _o is true (Nothing new)	False discovery claim Type-I error (→ p-value, significance)	No new physics, none found

Stringent discovery criteria ⇒ lower Type-I errors, higher Type-II errors → Goal: test that minimizes Type-II errors for given level of Type-I error.

Reminders from Lecture II: Discovery Significance

Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use value $\hat{\mu}$ that maximizes L(μ).

To decide between hypotheses H_0 and H_1 , use the likelihood ratio $\frac{L(H_0)}{I(H_1)}$

To test for **discovery**, use $q_0 = \begin{vmatrix} -2\log\frac{L(S=0)}{L(\hat{S})} & \hat{S} \ge 0 \\ +2\log\frac{L(S=0)}{L(\hat{S})} & \hat{S} < 0 \end{vmatrix}$ For large ensures to t For large enough datasets (n > 5), $Z = \sqrt{q_n}$

For a Gaussian measurement,
$$Z = \frac{\hat{S}}{\sqrt{B}}$$

For a Poisson measurement, $Z = \sqrt{2\left[(\hat{S}+B)\log\left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]}$

Reminders from Lecture II: Test Statistic for Limits

For upper limits, alternate is $H_1 : S < \mu_0$:

- \rightarrow If **large** signal observed ($\hat{S} \gg S_0$), does not favor H₁ over H₀
- \rightarrow Only consider $\hat{S} < S_0$ for H_1 , and include $\hat{S} \ge S_0$ in H_0 .

 \Rightarrow Set $\mathbf{q}_{so} = \mathbf{0}$ for $\hat{\mathbf{S}} > \mathbf{S}_{o}$ – only small signals ($\hat{\mathbf{S}} < \mathbf{S}_{o}$) help lower the limit.

 \rightarrow Also treat separately the case S < 0 to avoid technical issues in -2logL fits.

Asymptotics:

 $q_{so} \sim "\frac{1}{2}\chi^2$ " under $H_0(S=S_0)$, same as q_0 , except for special treatment of $\hat{S} < 0$.

 $\widetilde{q}_{S_0} = \begin{vmatrix} \mathbf{0} & \widehat{S} \ge S_0 \\ -2\log\frac{L(S=S_0)}{L(\widehat{S})} & 0 \le \widehat{S} \le S_0 \\ -2\log\frac{L(\widehat{S}=S_0)}{L(S=0)} & \widehat{S} \le 0 \end{vmatrix}$

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011 7

$$p_0 = 1 - \Phi \left(\sqrt{q_{S_0}} \right)$$

Reminders from Lecture II: Limit Inversion

Procedure

- \rightarrow Consider H_0 : H(S=S_0) alternative H_1 : H(Ŝ < S_0)
- \rightarrow Compute q_{s0} , get exclusion p-value p_{s0} .
- → Adjust S₀ until 95% CL exclusion (p_{s0} = 5%) is reached Asymptotics: set target in terms of q_{s0} : $\sqrt{q_{s_0}} = \Phi^{-1}(1-p_0)$

CL	Region	
90%	q _s > 1.64	
9 5%	q _s > 2.70	
99%	q _s > 5.41	

Asymptotics

Reminders from Lecture II: Limit Inversion

Procedure

- \rightarrow Consider H_0 : H(S=S_0) alternative H_1 : H(Ŝ < S_0)
- \rightarrow Compute q_{s0} , get exclusion p-value p_{s0} .
- → Adjust S₀ until 95% CL exclusion (p_{s0} = 5%) is reached Asymptotics: set target in terms of q_{s0} : $\sqrt{q_{s_0}} = \Phi^{-1}(1-p_0)$

/		
CL	Region	
90%	q _s > 1.64	
9 5%	q _s > 2.70	
99%	q _s > 5.41	

Asymptotics

Reminders from Lecture II: Limit Inversion

Procedure

- \rightarrow Consider H_0 : H(S=S_0) alternative H_1 : H(Ŝ < S_0)
- \rightarrow Compute q_{s0} , get exclusion p-value p_{s0} .
- → Adjust S₀ until 95% CL exclusion ($p_{s0} = 5\%$) is reached Asymptotics: set target in terms of q_{s0} : $\sqrt{q_{s_0}} = \Phi^{-1}(1-p_0)$

CL	Region	
90%	q _s > 1.64	
95%	q _s > 2.70	
99%	q _s > 5.41	

Asymptotics

Reminders from Lecture II: CL_s

How to avoid negative limits ? in HEP, use : CL_s .

 $p_{CL_s} =$

- \rightarrow Compute modified p-value
- **p**_{so} is the usual p-value (5%)
- \mathbf{p}_0 is the p-value computed under H(S=0).
- \Rightarrow **Rescale** exclusion at S₀ by exclusion at S=0.
- \rightarrow Somewhat ad-hoc, but good properties...

Good case : $p_0 \sim O(1)$ $p_{CLs} \sim p_{s0} \sim 5\%$, no change.

Pathological case : $p_0 \ll 1$

 $p_{_{CLs}} \sim p_{_{S0}}/p_{_0} \gg 5\%$

 \rightarrow no exclusion \Rightarrow worse limit, usually >0 as desired

Drawback: *overcoverage* \rightarrow limit is actually >95% CL for small p₀.

Outline

Computing Statistical Results Limits, continued Confidence Intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

BLUE

CL_s : Gaussian Example

Usual Gaussian counting example with known B:

$$\lambda(S) = \left(\frac{n - (S + B)}{\sigma_S}\right)^2$$

Reminder

Best fit signal : $\hat{S} = n - B$ CL_{s+b} limit: $S_{up} = \hat{S} + 1.64 \sigma_s$ at 95 % CL

S+B

$$\begin{aligned} \mathbf{CL}_{s} \text{ upper limit : still have} \\ \text{so need to solve} \qquad \mathbf{q}_{S_{0}} = \left(\frac{S_{0}-\hat{S}}{\sigma_{s}}\right)^{2} \text{ (for } S_{0} > \hat{S}) \\ \mathbf{p}_{CL_{s}} = \frac{p_{S_{0}}}{p_{0}} = \frac{1-\Phi(\sqrt{q_{S_{0}}})}{1-\Phi(\sqrt{q_{S_{0}}}-S_{0}/\sigma_{s})} = 5\% \\ \text{for } \hat{S} = 0, \\ \mathbf{S}_{up} = \hat{S} + \left[\Phi^{-1}\left(1-0.05\ \Phi\left(\hat{S}/\sigma_{s}\right)\right)\right]\sigma_{s} \text{ at } 95\% \text{ CL} \\ \Phi(0) = 0.5 \Rightarrow \text{ at } 95\% \text{ CL}, \ \mathbf{CL}_{s}: \ S_{up} = 1.96\sigma_{s} \end{aligned} \\ \begin{aligned} \hat{S} \sim G(S, \sigma_{s}) \text{ so} \\ \text{Under } H_{0}(S = S_{0}) : \\ \sqrt{q_{S_{0}}} \sim G(0,1) \\ p_{S_{0}} = 1-\Phi(\sqrt{q_{S_{0}}}) \\ \text{Under } H_{0}(S = 0) : \\ \sqrt{q_{S_{0}}} \sim G(S_{0}/\sigma_{s},1) \\ p_{0} = 1-\Phi(\sqrt{q_{S_{0}}}-S_{0}/\sigma_{s}) \end{aligned}$$

CL_s: Poisson Rule of Thumb

Same exercise, for the Poisson case

Exact computation : sum probabilities of cases "at least as extreme as data" (n)

$$p_{S_0}(n) = \sum_{0}^{n} e^{-(S_0 + B)} \frac{(S_0 + B)^k}{k!} \quad \text{and one should solve } p_{CL_s} = \frac{p_{S_{up}}(n)}{p_0(n)} = 5\% \text{ for } S_{up}$$

For n = 0:
$$p_{CL_s} = \frac{p_{S_{up}}(0)}{p_0(0)} = e^{-S_{up}} = 5\% \implies S_{up} = \log(20) = 2.996 \approx 3$$

 \Rightarrow Rule of thumb: when n_{obs}=0, the 95% CL_s limit is 3 events (for any B)

Asymptotics: as before,
$$q_{S_0} = \lambda(S_0) - \lambda(\hat{S}) = 2(S_0 + B - n) - 2n \log \frac{S_0 + B}{n}$$

For n = 0, $q_{S_0}(n=0) = 2(S_0+B)$ $p_{CL_s} = \frac{p_{S_0}}{p_0} = \frac{1-\Phi(\sqrt{q_{S_0}(n=0)})}{1-\Phi(\sqrt{q_{S_0}(n=0)}-\sqrt{q_{S_0}(n=B)})} = 5\%$

 \Rightarrow S_{up} ~ 2, exact value depends on B \Rightarrow Asymptotics not valid in this case (n=0) – need to use exact results, or toys

Expected Limits: Toys

Expected results: median outcome under a given hypothesis

 \rightarrow usually B-only by convention, but other choices possible.

Two main ways to compute:

- \rightarrow Pseudo-experiments (*toys*):
- Generate pseudo-data in B-only hypothesis
- Compute limit

Number of Toys

- Repeat and histogram the results
- Central value = median, bands based on quantiles

10²

Eur.Phys.J.C71:1554,2011 **Computed limit**

Expected Limits: Asimov

Expected results: median outcome under a given hypothesis

 \rightarrow usually B-only by convention, but other choices possible.

Two main ways to compute:

→ Asimov Datasets

- Generate a "perfect dataset" e.g. for binned data, set bin contents carefully, no fluctuations.
- Gives the median result immediately: median(toy results) ↔ result(median dataset)
- Get bands from asymptotic formulas: Band width

$$\sigma_{S_0,A}^2 = \frac{S_0^2}{q_{S_0}(\text{Asimov})}$$

⊕ Much faster (1 "toy") ⊖ Relies on Gaussian approximation

Strictly speaking, Asimov dataset if $\hat{X} = X_n$ for all parameters X,

where X_0 is the generation value

CL_s : Gaussian Bands

Usual Gaussian counting example with known B: 95% CL_s upper limit on S:

$$S_{up} = \hat{S} + \left[\Phi^{-1} \left(1 - 0.05 \Phi(\hat{S}/\sigma_s) \right) \right] \sigma_s$$

Compute expected bands for S=0:

→ Asimov dataset $\Leftrightarrow \hat{S} = 0$: → ± no bands:

$$S_{\text{up,exp}}^{0} = 1.96 \sigma_{s}$$

$$S_{\text{up,exp}}^{\pm n} = \left(\pm n + \left[1 - \Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}$$

CLs :

- Positive bands somewhat reduced,
- Negative ones more so

Band width from $\sigma_{s,A}^2 = \frac{S^2}{q_s(\text{Asimov})}$ depends on S, for non-Gaussian cases, different values for each band...

Outline

Computing Statistical Results Limits, continued Confidence Intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

BLUE

Gaussian Inversion

If $\hat{\mu} \sim G(\mu^*, \sigma)$, known quantiles :

 $P(\mu^* - \sigma < \hat{\mu} < \mu^* + \sigma) = 68\%$

This is a probability for $\hat{\mu}$, not μ ! $\rightarrow \mu^*$ is a fixed number, not a random variable

But we can invert the relation:

$$P(\mu^* - \sigma < \hat{\mu} < \mu^* + \sigma) = 68\%$$

$$\Rightarrow P(|\hat{\mu} - \mu^*| < \sigma) = 68\%$$

$$\Rightarrow P(\hat{\mu} - \sigma < \mu^* < \hat{\mu} + \sigma) = 68\%$$

→ This gives the desired statement on μ^* : *if we repeat the experiment many times,* $[\hat{\mu} - \sigma, \hat{\mu} + \sigma] \#$ *add the time:* $\hat{\mu} = \mu^* \pm \sigma$ This is a statement *on the interval* $[\hat{\mu} - \sigma, \hat{\mu} + \sigma] = \sigma$

Works in the same way for other interval sizes: $[\hat{\mu} - Z\sigma, \hat{\mu} +]Z\sigma$ ith

Neyman Construction

General case: Build 1σ intervals of observed values for each true value → Confidence belt

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu}^{-} < \mu^{*} < \hat{\mu} + \sigma_{\mu}^{+}) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{\text{obs}} \mid \mu$) varies with $\mu.$

Likelihood Intervals

Confidence intervals from L:

- Test $H(\mu_n)$ against alternative using
- Two-sided test since true value can be higher or lower than observed

Asymptotics:

- $t_{\mu} \sim \chi^2(N_{POI})$ under $H(\mu_0)$
- $\sqrt{t_u} \sim G(0,1)$ (Gaussian with $d=N_{P(n)}$)

In practice:

- Plot t_{..} vs. µ
- The minimum occurs at $\mu = \hat{\mu}$
- Crossings with $\mathbf{t}_{\mathbf{u}} = \mathbf{Z}^2$ give the **\pmZo uncertainties** (for N_{POI}=1)

µ can be

 \rightarrow Gaussian case: parabolic profile, $t_{\mu} = \left(\frac{\mu - \hat{\mu}}{\sigma}\right)^2 \Rightarrow \mu_{\pm} = \hat{\mu} \pm \sigma$ at $t_{\mu} = 1$ same result as Neyman construction, also robust against non-Gaussian effects

2D Example: Higgs σ_{vBF} **vs.** σ_{ggF}

ATLAS-CONF-2017-047

Reparameterization

Start with basic measurement in terms of e.g. $\sigma \times B$

 \rightarrow How to measure derived quantities (couplings, parameters in some theory model, etc.)? \rightarrow just reparameterize the likelihood:

e.g. Higgs couplings: σ_{qgF} , σ_{VBF} sensitive to Higgs coupling modifiers κ_{V} , κ_{F} .

Reparameterization: Limits

CMS Run 2 Monophoton Search: measured N_s in a counting experiment reparameterized according to various DM models

Takeaways

Limits : use LR-based test statistic:

 \rightarrow Use CL_{s} procedure to avoid negative limits

Poisson regime, n=0 : S_{up} = 3 events Gaussian regime, n=0 : S_{up} = 1.96 σ_{Gauss}

Uncertainty bands: obtain from toys or from Asimov

Confidence intervals: Use
$$t_{\mu_0} = -2 \log \frac{L(\mu = \mu_0)}{L(\hat{\mu})}$$

$$\rightarrow$$
 1D: crossings with $t_{\mu 0} = Z^2$ for $\pm Z\sigma$ intervals

Gaussian regime: $\mu = \hat{\mu} \pm \sigma_{Gauss}$ (1 σ interval)

$$\widetilde{q}_{\mu_0} = \begin{cases} 0 & \widehat{\mu} \ge \mu_0 \\ -2\log \frac{L(\mu = \mu_0)}{L(\widehat{\mu})} & 0 \le \widehat{\mu} \le \mu_0 \\ -2\log \frac{L(\mu = \mu_0)}{L(\mu = 0)} & \widehat{\mu} < 0 \end{cases}$$

Historical Aside

Classic Discoveries (1)

ĪŢ

1.55 1.552 1.554 1.556

1000

ADRANG

21

C.

8

100

20

scale

00

80

90

100

mete-

110

(GeV)

ψ Discovery

In this graph, the blue data points show a sharp peak in the number of hadrons produced at a narrow range of energies – evidence of the J/Ψ particle. The horizontal axis shows the energy of one of the pair of SPEAR beams, measured in GeV. The height of the peak is so great that, to fit the plot on one sheet of graph paper, the vertical axis is compressed into a logarithmic scale.

Huge signal S/B~50 Several 1000 events

1.56

1.57

Classic Discoveries (2)

OB:20 SON OF GLORY Church Mondrem, Allen Little, Bob Stega Jo it a

NOTES THE RESCAN (RAN 1922) WAS SHELLED AT "1975" DEALINED BY RUMMEN'S SOME NOOM 1.463, SO EUROPENES (DAL'S DON'T CREATING TO MELL AT LINE 1922

15 STOP. DUMP | Rick)

- WIE Preside on it 1,217 -
- Much has compared provides as into pille. That I shared
- 30 DAMN LINAL RACE UP. DUMP + RIGA.

ψ' : discovered online by the (lucky) shifters

First hints of top at D0: O(10) signal events, a few bkg events, 2.4σ

And now ?

Short answer: The high-signal, low-background experiments have been done already (although a surprise would be welcome...) *e.g.* at LHC:

- High background levels, need precise modeling
- Large systematics, need to be described accurately
- Small signals: need optimal use of available information :
 - Shape analyses instead of counting
 - Categories to isolated signal-enriched regions

Discoveries that weren't

UA1 Monojets (1984)

Volume 139B, number 1,2

PHYSICS LETTERS

3 May 1984

At the present time we can only speculate about the origin of this new effect. The missing transverse energy can be due either to: (i) One or more prompt neutrinos. (ii) Any invisible \mathbb{Z}^0 , such as $\mathbb{Z}^0 \rightarrow \nu \overline{\nu}$ decay, which

(ii) Any invisible Z^{0} , such as $Z^{0} \rightarrow \nu \rho$ decay, which is expected to have a large (18%) branching ratio. Note that the corresponding decays into charged lepton pairs $Z^{0} \rightarrow e^{+}e^{-}$, $Z^{0} \rightarrow \mu^{+}\mu^{-}$ have lower branching ratios ($\sim 3\%$) and may not have yet been produced within the present statistics.

(iii) New, non-interacting neutral particles. The jets appear somewhat narrower and with lower multiplicities than the corresponding QCD jets, although it might be premature to draw conclusions on such limited statistics.

A number of theoretical speculations [9] may be elevant to these results. We mention briefly the possibilities of excited quarks or leptons and of composite or coloured or supersymmetric W's and Higgs. A re cent calculation [10] +8 has been made in the context of the present collider experiment, on the rate of event with large missing transverse energy from gluino pair production with each gluino decaying into a quark, antiquark, and photino. The non-interacting photinos may produce large apparent missing energy. For instance, the calculation gives an expectation of about 100 single-jet events with $\Delta E_{\rm M} > 20$ GeV for a gluino mass of 20 GeV/c2. Taking our excess of 5 events above background as an upper limit for such a process, we deduce that the gluino mass must be greater than about $40 \text{ GeV}/c^2$

EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY ACCOMPANIED BY A JET OR A PHOTON (S) IN pp COLLISIONS AT \sqrt{s} = 540 GeV

UA1 Collaboration, CERN, Geneva, Switzerland

Pentaquarks (2003)

BICEP2 B-mode Polarization (2014)

Avoid spurious discoveries!

 \rightarrow Treatment of modeling uncertainties, systematics in general

Phys. Rev. Lett. 91, 252001 (2003)

Outline

Computing Statistical Results Limits, continued Confidence Intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

BLUE

Nuisances and Systematics

Likelihood typically includes

- Parameters of interest (POIs) : S, σ×B, m_w, …
- Nuisance parameters (NPs) : other parameters needed to define the model

 \rightarrow Ideally, constrained by data like the POI

e.g. shape of $H \rightarrow \mu\mu$ continuum bkg

What about systematics ?

= what we don't know about the random processs

\Rightarrow Parameterize using additional NPs

\rightarrow By definition, not constrained by the data

⇒ Cannot be free, or would spoil the measurement (lumi free ⇒ no $\sigma \times B$ measurement!)

 \Rightarrow Introduce a constraint in the likelihood:

Phys. Rev. Lett. 119 (2017) 051802

"Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.

G. Punzi, What is systematics ?

$$L(\mu, \theta; data) = L_{measurement}(\mu, \theta; data) C(\theta)$$
POI Systematics Measurement NP Constraint term
NP Likelihood \Rightarrow penalty for $\theta \neq \theta^{nominal}$ 33

Frequentist Constraints

Prototype: NP measured in a separate *auxiliary* experiment e.g. luminosity measurement

 \rightarrow Build the combined likelihood of the main+auxiliary measurements

 $L(\mu, \theta; data) = L_{main}(\mu, \theta; main data) L_{aux}(\theta; aux. data)$

Gaussian form often used by default: $L_{aux}(\theta; aux. data) = G(\theta^{obs}; \theta, \sigma_{syst})$

In the combined likelihood, systematic NPs are constrained \rightarrow now same as other NPs: all uncertainties statistical in nature

→ Often no clear setup for auxiliary measurements
 e.g. theory uncertainties on missing HO terms from scale variations
 → Implemented in the same way nevertheless ("pseudo-measurement")

Independent

measurements:

 \Rightarrow just a product

Likelihood, the full version (binned case)

35

Reminder: Wilks' Theorem

 \rightarrow Assume Gaussian regime for \hat{S} (e.g. large n_{evts})

 \Rightarrow Central-limit theorem :

 t_0 is distributed as a χ^2 under the hypothesis H_0

 $f(t_0 \mid H_0) = f_{\chi^2(n_{dof}=1)}(t_0)$

In particular, significance:

$$Z = \sqrt{t_0} \qquad \qquad \begin{array}{c} \text{By definition,} \\ t_0 \sim \chi^2 \Rightarrow \sqrt{t_0} \sim G(0,1) \end{array}$$

Typically works well for for event counts O(5) and above (5 already "large"...)

The 1-line "proof": asymptotically L and S are Gaussian, so

$$L(S) = \exp\left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^2\right] \Rightarrow t_0 = \left(\frac{\hat{S}}{\sigma}\right)^2 \Rightarrow t_0 \sim \chi^2(n_{dof} = 1) \text{ since } \hat{S} \sim G(0, \sigma)$$

0.5 μ~0 0.45 0.4 0.35 0.3 $t_{\chi^2,ndof=1}(t_0)$ 0.25 0.2 0.15 0.1 $\mu \gg \sigma_{\mu}$ 0.05 8_† 9 2 3 5 6

Cowan, Cranmer, Gross & Vitells Eur.Phys.J.C71:1554,2011

Wilks' Theorem, the Full Version

The likelihood usually has NPs:

- Systematics
- Parameters fitted in data
- \rightarrow What values to use when defining the hypotheses ? \rightarrow H(S=0, θ =?)

Answer: let the data choose \Rightarrow use the best-fit values (*Profiling*)

⇒ Profile Likelihood Ratio (PLR)

$$t_{\mu_0} = -2\log\frac{L(\mu = \mu_0, \hat{\hat{\theta}}_{\mu_0})}{L(\hat{\mu}, \hat{\theta})}$$

μ best-fit value for $\mu = \mu_0$ (conditional MLE)

overall best-fit value (unconditional MLE)

Wilks' Theorem: PLR also follows a χ^2 ! $f(t_{\mu_0} | \mu = \mu_0) = f_{\chi^2(n_{dof} = 1)}(t_{\mu_0})$

 $|\mu - \mu_0| - I_{\chi^2(n_{dof}=1)} |\iota_{\mu}|$ also with NPs present

 \rightarrow Profiling "builds in" the effect of the NPs

 \Rightarrow Can treat the PLR as a function of the POI only

Gaussian Profiling

Recall: Gaussian counting, no syst: $t_{S_0} = \left(\frac{S_0 - \hat{S}}{\sigma_S}\right)^2$

Counting exp. with background uncertainty: $\mathbf{n} = \mathbf{S} + \mathbf{\Theta}$:

 $\rightarrow \text{Main measurement: } \mathbf{n} \sim \mathbf{G}(\mathbf{S} + \mathbf{\theta}, \sigma_{\text{stat}}) \\ \rightarrow \text{Aux. measurement: } \mathbf{\theta}^{\text{obs}} \sim \mathbf{G}(\mathbf{\theta}, \sigma_{\text{syst}}) \end{cases} \left\{ L(S, \mathbf{\theta}) = G(n; S + \mathbf{\theta}, \sigma_{\text{stat}}) G(\mathbf{\theta}^{\text{obs}}; \mathbf{\theta}, \sigma_{\text{syst}}) \right\}$

Then:
$$\lambda(S,\theta) = \left(\frac{n - (S + \theta)}{\sigma_{stat}}\right)^2 + \left(\frac{\theta^{obs} - \theta}{\sigma_{syst}}\right)^2$$

MLE as it should λ
 $\hat{S} = n - \theta^{obs}$ Conditional MLE: $\hat{\hat{\theta}}(S) = \theta^{obs} + \frac{\sigma_{syst}^2}{2}(\hat{S} - S)$

$$\hat{\theta} = \theta^{obs}$$

$$- \theta^{obs}$$
 Conditiona

$$\hat{\hat{\theta}}(S) = \theta^{\text{obs}} + \frac{\sigma_{\text{syst}}^2}{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$$

PLR:
$$t_{S_0} = -2\log \frac{L(S = S_0, \hat{\theta}_{S_0})}{L(\hat{S}, \hat{\theta})}$$
$$= \lambda(S_0, \hat{\theta}(S_0)) - \lambda(\hat{S}, \hat{\theta}) = \frac{(S_0 - \hat{S})^2}{\sigma_{stat}^2 + \sigma_{syst}^2} \qquad \sigma_S = \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}$$

Stat uncertainty (on n) and syst (on θ) add in quadrature as expected

Profiling Example: ttH→bb

Analysis uses low-S/B categories to constrain backgrounds.

- \rightarrow Reduction in large uncertainties on tt bkg
- \rightarrow Propagates to the high-S/B categories through the statistical modeling
- ⇒ Care needed in the propagation (e.g. different

kinematic regimes)

Pull/Impact plots

ATLAS-CONF-2016-058

Systematics are described by NPs included in the fit. Nominally:

- **NP central value = 0** : corresponds to the pre-fit expectation (usually MC)
- **NP uncertainty = 1** : since NPs normalized to the value of the syst. : $N = N_0 (1 + \sigma_{syst} \theta), \theta \sim G(0, 1)$

Fit results provide information on impact of the systematic on the result:

- If central value ≠ 0: some data feature absorbed by nonzero value ⇒ Need investigation if large pull
- If uncertainty < 1 : systematic is constrained by the data
 ⇒ Needs checking if this legitimate or a modeling issue
- Impact on result of $\pm 1\sigma$ shift of NP

Pull/Impact plots

Systematics are described by NPs included in the fit. Nominally:

- **NP central value = 0** : corresponds to the pre-fit expectation (usually MC)
- **NP uncertainty = 1** : since NPs normalized to the value of the syst. : $N = N_0 (1 + \sigma_{syst} \theta), \theta \sim G(0, 1)$

Fit results provide information on impact of the systematic on the result:

- If central value ≠ 0: some data feature absorbed by nonzero value ⇒ Need investigation if large pull
- If uncertainty < 1 : systematic is constrained by the data
 ⇒ Needs checking if this legitimate or a modeling issue
- Impact on result of ±1σ shift of NP

13 TeV single-t XS (arXiv:1612.07231)

Profiling Takeaways

Systematic = NP with an external constraint (auxiliary measurement).

 \rightarrow No special treatment, treated like any other NP: statistical and systematic uncertainties represented in the same way.

When testing a hypothesis, use the best-fit values of the nuisance parameters: *Profile Likelihood Ratio*.

 $\frac{L(\mu = \mu_{0,} \hat{\hat{\theta}}_{\mu_{0}})}{L(\hat{\mu}, \hat{\theta})}$

Wilks' Theorem: the PLR has the same asymptotic properties as the LR without systematics: can profile out NPs and just deal with POIs.

Profiling systematics includes their effect into the total uncertainty. Gaussian:

$$\sigma_{\rm total} = \sqrt{\sigma_{\rm stat}^2 + \sigma_{\rm syst}^2}$$

Guaranteed to work only as long as everything is Gaussian, but typically robust against non-Gaussian behavior.

Profiling can have unintended effects – need to carefully check behavior

Beyond Asymptotics: Toys

Asymptotics usually work well, but break down in some cases – e.g. small event counts.

Solution: generate *pseudo data* (toys) using the PDF, under the tested hypothesis

 \rightarrow Also randomize the observable

(**9**^{obs}) of each auxiliary experiment:

PDF

120

130

140

150

m (GeV)

160

Vormalized events per GeV

0.025

0.02

0.015

0.01

0.005

100

110

 \rightarrow Samples the true distribution of the PLR

 \Rightarrow Integrate above observed PLR to get the p-value \rightarrow Precision limited by number of generated toys, Small p-values ($5\sigma : p \sim 10^{-7}!$) \Rightarrow large toy samples

3000

2500

2000

1500

1000

500

100

Vormalized events per GeV

p(data|x)

CMS-PAS-HIG-11-022

m (GeV)

Toys: Example

ATLAS X \rightarrow Z γ Search: covers 200 GeV < m_x < 2.5 TeV \rightarrow for m_x > 1.6 TeV, low event counts \Rightarrow derive results from toys

Asymptotic results (in gray) give optimistic result compared to toys (in blue)

Summary of Statistical Results Computation

Methods provide:

- \rightarrow Optimal use of information from the data under general hypotheses
- \rightarrow Arbitrarily complex/realistic models (up to computing constraints...)

\rightarrow No Gaussian assumptions in the measurements

Still often assume Gaussian behavior of PLR – but weaker assumption and can be lifted with toys

Systematics treated as auxiliary measurements – modeling can be tailored as needed

\rightarrow Single PLR-based framework for all usual classes of measurements

- Discovery testing
- Upper limits on signal yields
- Parameter estimation

Outline

Computing Statistical Results Limits, continued Confidence Intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

BLUE

Look-Elsewhere Effect

Look-Elsewhere effect

Sometimes, unknown parameters in signal model

e.g. p-values as a function of $\rm m_{\rm x}$

 \Rightarrow Effectively performing **multiple**, **simultaneous** searches

→ If e.g. small resolution and large scan range, **many independent experiments**

→ More likely to find an excess anywhere in the range, rather than in a predefined location \Rightarrow Look-elsewhere effect (LEE)

Testing the same H₀, but against different alternatives ⇒ different p-values

Global Significance

Probability for a fluctuation **anywhere** in the range \rightarrow **Global** p-value. at a given location \rightarrow **Local** p-value

Global
p-value
$$p_{global} = 1 - (1 - p_{local})^N \approx N p_{local}$$

Local
p-value p_{local}

 $\rightarrow \mathbf{p}_{global} > \mathbf{p}_{local} \Rightarrow \mathbf{Z}_{global} < \mathbf{Z}_{local} - global fluctuation more likely \Rightarrow less significant$ $\frac{??}{Irials \ factor} : \mathbf{naively} = \# \ of \ independent \ intervals:$ $N_{trials} = N_{indep} = \frac{scan \ range}{peak \ width}$

For searches over a parameter range, p_{global} is the relevant p-value

 \rightarrow Depends on the scanned parameter ranges e.g. X $\rightarrow \gamma\gamma$: 200 < m_x< 2000 GeV, 0 < Γ_x < 10% m_x^.

 \rightarrow However what comes out of the usual asymptotic formulas is p_{local}

How to compute p_{global} ? \rightarrow Toys (brute force) or asymptotic formulas.

Global Significance from Toys

- **Principle**: repeat the analysis in toy data:
- \rightarrow generate pseudo-dataset
- → perform the search, scanning over parameters as in the data
- \rightarrow report the largest significance found
- \rightarrow repeat many times

 \Rightarrow The frequency at which a given Z₀ is found **is** the global p-value

e.g. X \rightarrow yy Search: Z_{local} = 3.9 σ (\Rightarrow p_{local} ~ 5 10⁻⁵), scanning 200 < m_x< 2000 GeV and 0 < Γ_x < 10% m_x

→ In toys, find such an excess 2% of the time ⇒ $p_{global} \sim 2 \ 10^{-2}$, $Z_{global} = 2.1 \sigma$ Less exciting...

Exact treatment

 Θ CPU-intensive especially for large Z (need ~O(100)/p_{global} toys)

Global Significance from Asymptotics

Principle: approximate the global p-value in the asymptotic limit \rightarrow reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

→ Trials factor is **not just N**_{indep}, also depends on Z_{local} !

Why?

- \rightarrow slice scan range into $\rm N_{indep}$ regions of size ~ peak width
- \rightarrow search for a peak in each region
- \Rightarrow Indeed gives N_{trials}=N_{indep}.

However this misses peaks sitting on edges between regions

 \Rightarrow true N_{trials} is > N_{indep}!

Global Significance from Asymptotics

Principle: approximate the global p-value in the asymptotic limit \rightarrow reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

→ Trials factor is **not just N**_{indep}, also depends on Z_{local} !

Why?

- \rightarrow slice scan range into $\rm N_{indep}$ regions of size ~ peak width
- \rightarrow search for a peak in each region
- \Rightarrow Indeed gives N_{trials}=N_{indep}.

However this misses peaks sitting on edges between regions

 \Rightarrow true N_{trials} is > N_{indep}!

Illustrative Example

Test on a simple example: generate toys with

- \rightarrow flat background (100 events/bin)
- \rightarrow count events in a fixed-size sliding window, look for excesses

Two configurations:

- 1. Look only in 10 slices of the full spectrum
- 2. Look in any window of same size as above, anywhere in the spectrum

Illustrative Example (2)

Very different results if the excess is **near a boundary :**

1. Look only in 10 slices of the full spectrum

2. Look in any window of same size as above, anywhere in the spectrum

Illustrative Example (3)

Z_{Global} Asymptotics Extrapolation

Asymptotic trials factor (1 POI): $N_{\text{trials}} = 1 + \sqrt{\frac{\pi}{2}} N_{\text{indep}} Z_{\text{local}}$

How to get \mathbf{N}_{indep} ? Usually work with a slightly different formula:

$$N_{trials} = 1 + \frac{1}{p_{local}} \langle N_{up}(Z_{test}) \rangle e^{\frac{Z_{test} - Z_{local}}{2}}$$

Number of excesses with Z > Z_{test}

 \Rightarrow calibrate for small Z_{test}, apply result to higher Z_{local}.

Can choose arbitrarily small Z_{test}

⇒ many excesses

 \Rightarrow can measure N_{up} in data (1 "toy")

Can also measure $\langle N_{uv} \rangle$ in multiple toys

if large stat uncertainty from too few excesses

In 2D

Generalization to 2D scans: consider sections at a fixed Z_{test} , compute its **Euler characteristic** φ , and use $p_{global} \approx E[\phi(A_u)] = p_{local} + e^{-u/2}(N_1 + \sqrt{u}N_2)$

→ Generalizes 1D bump counting

Now need to determine 2 constants N_1 and N_2 , from Euler ϕ measurements at 2 different Z_{test} values.

 \sqrt{s} = 13 TeV, 3.2 fb⁻¹ Spin-2 Selection ATLAS [™]0.3 [<u>0</u>] Ь -ocal significance 3.5 = 0 $\omega = 2$ Λ 0.25 3 0.2 2.5 5 2 0.15 1.5 0.1 0.05 0.5 800 2000 600 1000 1200 1400 600 1800 1 m_{G*} [GeV]

Outline

Computing Statistical Results Limits, continued Confidence Intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

BLUE

Frequentist vs. Bayesian

All methods described so far are frequentist

- Probabilities (p-values) refer to outcomes if the experiment were repeated identically many times
- Parameters value are fixed but unknown
- Probabilities apply to measurements:
- \rightarrow "m_H = 125.09 ± 0.24 GeV" :

 \rightarrow i.e. [125.09 - 0.24 ; 125.09 + 0.24] GeV has p=68% to contain **the** true m_H.

 \rightarrow if we repeated the experiment many times, we would get different intervals, 68% of which would contain the true $\rm m_{\rm H^{-}}$

\rightarrow "5 σ Higgs discovery"

• if there is really no Higgs, such fluctuations observed in 3.10⁻⁷ of experiments

Not exactly the crucial question – what we would really like to know is What is the probability that the excess we see is a fluctuation → we want P(no Higgs | data) – but all we have is P(data | no Higgs)

Frequentist vs. Bayesian

Can compute $P(\mu \mid data)$, if we provide $P(\mu)$

- \rightarrow Implicitly, we have now made μ into a random variable
 - Is m_{μ} , or the presence of H(125), randomly chosen ?
 - In fact, different definition of p: *degree of belief*, not from frequencies.
 - $P(\mu)$ **Prior degree of belief** critical ingredient in the computation

Compared to frequentist PLR: ⊕ answers the "right" question ⊖ answer depends on the prior "Bayesians address the questions everyone is interested in by using assumptions that no one believes. Frequentist use impeccable logic to deal with an issue that is of no interest to anyone." - **Louis Lyons**

Bayesian methods

Probability distribution (= likelihood) : same form as frequentist case, but P(θ) constraints now priors for the systematics NPs, P(θ) not auxiliary measurements P(θ^{mes} ; θ) P Simply integrate them out, no need for profiling: $P(\mu) = \int P(\mu, \theta) d\theta$ \rightarrow Use probability distribution P(μ) directly for limits, credibility intervals e.g. define 68% CL ("Credibility Level") interval (A, B) by: $\int_{A}^{B} P(\mu) d\mu = 68 \%$ P Integration over NPs can be CPU-intensive

Priors : most analyses still using flat priors in the analysis variable(s)

- \Rightarrow **Parameterization-dependent**: if flat in $\sigma \times B$, then not flat in $\kappa ...$
- \rightarrow Can use the Jeffreys' or reference priors, but difficult in practice

Frequentist-Bayesian Hybrid methods ("Cousins-Highland")

- Integrate out NPs as in Bayesian measurements
- Once only POIs left, Use P(data | μ) in a frequentist way

→ "Bayesian NPs, frequentist POIs"

• Some use in Run 1, now phased out in favor of frequentist PLR.

Bayesian methods and CL_s: CL_s computation

Gaussian counting with systematic on background: $\mathbf{n} = \mathbf{S} + \mathbf{B} + \sigma_{syst} \mathbf{\theta}$ $L(n; S, \mathbf{\theta}) = G(n; S + B + \sigma_{syst} \mathbf{\theta}, \sigma_{stat}) G(\mathbf{\theta}_{obs} = \mathbf{0}; \mathbf{\theta}, \mathbf{1})$

MLE:
$$\hat{S} = n - B$$

Conditional MLE: $\hat{\hat{\theta}}(\mu) = \frac{\sigma_{\text{syst}}}{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2} (n - S - B)$

$$PLR: \lambda(\mu) = \left(\frac{S + B - n}{\sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}}\right)^2$$

Gaussian \Rightarrow from previous studies, CL_s limit is

$$\mathbf{CL}_{s}: \quad S_{up}^{\mathrm{CL}_{s}} = n - B + \left[\Phi^{-1} \left(1 - 0.05 \Phi \left(\frac{n - B}{\sqrt{\sigma_{stat}^{2} + \sigma_{syst}^{2}}} \right) \right) \right] \sqrt{\sigma_{stat}^{2} + \sigma_{syst}^{2}} \right]$$

Bayesian methods and CL_s: Bayesian case

Gaussian counting with systematic on background: $n = S + B + \sigma_{syst}\theta$ $P(n \mid S, \theta) = G(n; S + B + \sigma_{svst} \theta, \sigma_{stat}) G(\theta \mid 0, 1)$

Bayesian: $G(\theta)$ is actually a *prior* on $\theta \Rightarrow$ perform integral (*marginalization*)

$$P(n \mid S) = G(S; n-B, \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2})$$
 some effect as profiling!

Bayesian Limit:

$$\int_{P} P(S \mid n) dS = 5\% = \left[1 - \Phi \left(\frac{S_{up} - (n - B)}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}} \right) \right] \left[\Phi \left(\frac{n - B}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}} \right) \right]^{-1}$$

$$S_{up}^{Bayes} = n - B + \left[\Phi^{-1} \left[1 - 0.05 \Phi \left(\frac{n - B}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}} \right) \right] \right] \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2} \text{ same result as } CL_s!$$

64

Example: W'→Iv Search

- POI: W' $\sigma \times B \rightarrow \text{use}$ flat prior over $[0, +\infty[$.
- NPs: syst on signal ϵ (6 NPs), bkg (6), lumi (1) \rightarrow integrate over Gaussian priors

Why 5*o* ?

 \Rightarrow Stay with 5 σ ...

One-sided discovery: $5\sigma \Leftrightarrow p_0 = 3\ 10-7 \Leftrightarrow 1\ chance\ in\ 3.5M$

- \rightarrow Overly conservative ?
- \rightarrow Do we even know the sampling distributions so far out ?

Reasons for sticking with 50 (from Louis Lyons):

 LEE : searches typically cover multiple independent regions
 ⇒ Global p-value is the relevant one

 $N_{trials} \sim 1000 : local 5\sigma \Leftrightarrow O(10^{-4})$ more reasonable

- Mismodeled systematics: factor 2 error in syst-dominated analysis ⇒ factor 2 error on Z...
- History: 3o and 4o excesses do occur regularly, for the reasons above
- "Subconscious Bayes Factor" : p-value should be at least as small as the subjective p(S): $P(\text{fluct}) = \frac{P(\text{fluct}|B)P(B)}{P(\text{fluct}|S)P(S) + P(\text{fluct}|B)P(B)}$

Extraordinary claims require extraodinary evidence

Local 3.9 σ , p₀ = 5E-5

Outline

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

Building binned likelihoods Choosing PDFs in unbinned likelihoods Implementing systematics

BLUE

Statistical Modeling: in Practice

Bulding statistical models

So far focus has been on concepts, but building a statistical model also requires **numerical** inputs:

- **Data PDFs** for all model components
- **Constraint PDFs** for all sources systematics
- **Impact** of each systematic uncertainty on all relevant model parameters

→ Statistical methods are only as accurate (and/or optimal) as the description provided by the model!

Technically, MC simulation provides most of these inputs. However 2 problematic issues:

- Potential MC/data differences
- Limited MC statistics

Which need to be addressed with (yet more) systematics.

Statistical Modeling: I. Component PDFs

PDFs : Binned likelihood

Binned case:

- \rightarrow PDF usually just a normalized histogram, from
- MC sample or
- Data control region (CR)
- \Rightarrow **Statistical uncertainties** on the prediction:
- Data CR: counts as statistical uncertainty

- p,¹ [
- MC sample: uncertainty can be reduced without collecting more data (just need more CPU!) ⇒ Counted as systematic
 JHEP 12 (2017) 024

Independent counts in each bin ⇒ a separate *MC statistics* NP in each bin

 \rightarrow Poisson constraints **Pois**(N_i^{MC} ; N_i^{true})

Total uncertainty ~
$$\sqrt{\sigma_{data \ stats}^2 + \sigma_{MC \ stats}^2 + ...}$$

 \Rightarrow need enough MC to avoid spoiling the sensitivity!

MC Statistics Requirements

e.g. **Discovery**: Total uncertainty:
$$\sigma_s^2 \sim \sqrt{\sigma_{data \ stats}^2 + \sigma_{MC \ stats}^2 + \dots}$$

 \Rightarrow need $\sigma_{\rm MC \, stats} \ll \sigma_{\rm data \, stats}$ $B_{\rm MC} \gg B_{\rm data}$

By how much?

B _{MC} /B _{data} (α)	$\sigma_{_{\rm MC \ stats}}/\sigma_{_{ m data \ stats}}$ (1/ $\sqrt{\alpha}$)	$\sigma_{data+MC stats} / \sigma_{data stats}$ ($\sqrt{(1+\alpha^{-1})}$)
1	1	1.41
4	0.5	1.12
25	0.2	1.02

In the presence of a signal (e.g. limit-setting, N_{sig} measurement), relevant uncertainty is $\sqrt{(S+B)} \cong S/B$ also matters:

$$\frac{\sigma_s}{S} \sim \sqrt{1 + \frac{S}{B} + \frac{B_{\text{data}}}{B_{\text{MC}}} \frac{1}{1 + S/B}}$$

- Iow S/B : same problem as for discovery
- high S/B : no issue, dominated by uncertainty on signal itself.

PDF shapes: Unbinned likelihood

Smooth backgrounds : Describe distribution using appropriate **function** ⇒ Unbinned likelihood. Describes sideband + signal region in one fit.

At the $\Upsilon(4S)$; the curve shows the result of the maximum likelihood fit described in the text. (b) After subtraction of the continuum contribution. The gaussian curve represents the 90% CL upper limit on the signal from the above fit (see table 1).

S. Oggero Ph. D. Thesi
PDF Shapes: Unbinned likelihood

Widely used in HEP for smooth backgrounds (\rightarrow no resonances or threshold)

H→ yy Measurements

X→ jj Search

Function usually ad-hoc (no closed form expression for (theory \otimes detector effects), or usually even theory by itself...)

 \rightarrow may not accurately describe the data

- \Rightarrow Introduce free parameters, fit in sidebands
- → Biases may still remain due to functional form itself

Problematic especially for **low S/B**

 \rightarrow small mismodelings of B can be large compared to S.

 $\rightarrow \chi^2$ test in sideband may not help: even a large bias on the scale of S (\ll B) may remain within stat errors in the sideband!

Situation doesn't improve with more luminosity:

- \rightarrow Reduced statistical uncertainties in sideband, but
- \rightarrow Also reduced $\sigma_{s'}$ in the same proportion

Jan 2012 Higgs search paper (4.9 fb⁻¹ of 2011 data)

exponential

Function usually ad-hoc (no closed form expression for (theory \otimes detector effects), or usually even theory by itself...)

 \rightarrow may not accurately describe the data

- \Rightarrow Introduce free parameters, fit in sidebands
- → Biases may still remain due to functional form itself
- Problematic especially for **low S/B**
- \rightarrow small mismodelings of B can be large compared to S.
- $\rightarrow \chi^2$ test in sideband may not help: even a large bias on the scale of S (\ll B) may remain within stat errors in the sideband!

Situation doesn't improve with more luminosity:

- \rightarrow Reduced statistical uncertainties in sideband, but
- \rightarrow Also reduced $\sigma_{_{S'}}$ in the same proportion

Jan 2012 Higgs search paper (4.9 fb⁻¹ of 2011 data)

polynomial

If data cannot fix B shape, **use MC** \rightarrow Measure signal bias N_{ss} on "credible" shapes taken from MC (*Spurious signal*) \rightarrow take the maximum bias as systematic

Works well if the true distribution is somewhere in the space of MC distributions scanned...

Also **Impose**:

N_{ss} < 20% σ_{stat} (small contribution to σ_{total}) OR N_{ss} < 10% S_{exp} (small bias on measured S)

Second criterion more stringent at higher S/ \sqrt{B} .

If criteria are not met, move to more complex functions (\rightarrow more free parameters)

Problem: for small MC stats, measured bias dominated by fluctuations \rightarrow again, need high MC stats (B_{MC} > 25 B_{data}) when S/B is low.

B _{MC} /B _{data} (α)	σ _{MC stats} /σ _{data stats} (1/√α)	$\sigma_{data+MC stats}/\sigma_{data stats}$ ($\sqrt{(1+\alpha^{-1})}$)
1	100%	1.41
4	50%	1.12
25	20%	1.02

- → Can compromise on criterion level (50% instead of 20% ?)
- \rightarrow As before, better situation at at high S/B

Phys. Rev. Lett. 118, 182001 (2017)

Usual Functions

Polynomials: various basis choices (Chebyshev, Bernstein,...) **Bernstein basis**: $B_{k,n}(x) = {k \choose n} x^k (1-x)^{n-k}$ for $0 \le x \le 1$

 $t = (m_{\gamma\gamma} - \mu_{\rm CB})/\sigma_{\rm CB}$

if $-\alpha_{\text{low}} \le t \le \alpha_{\text{high}}$

if $t < -\alpha_{low}$

if $t > \alpha_{\text{high}}$,

→ Positive coefficients ⇒ positive polynomial everywhere, useful to avoid numerical issues in -2 log(PDF) computation
 Exponential family : exp(polynomial)
 Power laws : x^α, x^α(1-x)^β, ...

Gaussians

Crystal Ball Functions

$$N \cdot \begin{cases} e^{-0.5t^2} \\ e^{-0.5\alpha_{low}^2} \left[\frac{\alpha_{low}}{n_{low}} \left(\frac{n_{low}}{\alpha_{low}} - \alpha_{low} - t \right) \right]^{-n_{low}} \\ e^{-0.5\alpha_{high}^2} \left[\frac{\alpha_{high}}{n_{high}} \left(\frac{n_{high}}{\alpha_{high}} - \alpha_{high} + t \right) \right]^{-n_{high}} \end{cases}$$

\rightarrow Sums of the above

 \rightarrow **Convolutions** (resolution \otimes Breit-Wigner, ...)

JINST 10 (2015) no.04, P04015

r olynoiniai (zpais)
Polynomial (3pars)
Polynomial (4pars)
Polynomial (5pars)
Polynomial (6pars)
Exponential Sum (2pars)
Exponential Sum (4pars)
Exponential Sum (6pars)
Power Law Sum (2pars)
Power Law Sum (4pars)
Power Law Sum (6pars)
Laurent Series (2pars)
Laurent Series (3pars)
Laurent Series (4pars)
Laurent Series (5pars)
Laurent Series (6pars)

Polynomial (2pare)

JINST 10 (2015) no.04, P04015

Discrete Profiling

Idea: treat the **type of function** and **number of parameters** as discrete NPs, profiled in data

- \rightarrow Let data choose the best shape \rightarrow Similar principle as other NPs, except for discrete nature
- \rightarrow Need a **penalty on N**_{pars} to avoid always choosing functions with high N_{pars}
- \rightarrow Used in the CMS H $\rightarrow\gamma\gamma$ analysis, works well in this context.

Caveats:

- \rightarrow for N categories and M functional forms, M^{N} possibilities to check in principle difficult in practice
- \rightarrow Need a well-chosen pool of sensible functions for the method to work
- \rightarrow Large MC samples for selection and checks

 Polynomial (2pars)
 Polynomial (3pars)
 Polynomial (4pars)
 Polynomial (5pars)
 Polynomial (6pars)
 Exponential Sum (2pars)
 Exponential Sum (4pars)
 Exponential Sum (6pars)
 Power Law Sum (2pars)
 Power Law Sum (4pars)
 Power Law Sum (6pars)
 Laurent Series (2pars)
 Laurent Series (3pars)
 Laurent Series (4pars)
 Laurent Series (5pars)
 Laurent Series (6nars)

Take lower envelope of all functions when profiling

Gaussian Processes: 1-slide Summary

* the dimension is the number of data points.

Image Credits: K. Cranmer

Gaussian Processes: Longer 1-slide Summary

- Describe background distribution through the correlations between values at different points.
- More flexible than a functional form
- Correlation function (Kernel) can be

$$K(x_1, x_2) = \exp \left[-\frac{(x_1 - x_2)^2}{2L^2}\right]$$

- Defined using a length scale, to ignore narrow peaks
- Obtained from first principles (e.g. from known JES/PDF effects)

⊕ More flexible than functional form, degrees of freedom less ad-hoc
 ⊖ Still need large MC samples to check for signal bias
 ⊖ Mainly for Gaussian processes, not well-adapted to Poisson regime

Statistical Modeling: II. Systematics

Systematics NPs

Each systematics NP represent **an independent source of uncertainty** → Usually constrained by a single 1-D PDF (Gaussian, etc.)

Sometimes multiple parameters **conjointly constrained** by an n-dim. PDF. \rightarrow multiple measurements constraining multiple NPs

Assume n-dim Gaussian PDF: then can diagonalize the covariance matrix C and re-express the uncertainties in basis of eigenvector NPs \Rightarrow n 1-dim PDFs

Can also diagonalize to **prune** irrelevant uncertainties: keep NPs with large eigenvalues, combine in quadrature the others

Systematics : Impact on Model

The effect of each NP θ_i should be propagated to all the relevant **model parameters X**_i.

\rightarrow Propagation through MC:

- 1. Apply $\pm 1\sigma$ systematic variations in MC, \Rightarrow obtain shifted values $X_i^{\pm} = X_i^0$ (1 $\pm \Delta_{ii}$). \rightarrow Possibly smooth out MC stats effects
- 2. Implement systematic in model, e.g. replace or morph shapes:

Constrained by unit Gaussian

 \rightarrow can affect event yields, shapes, etc.

Assumes Gaussian uncertainties and linear impact on model parameters

Systematics : Constraints

- Ideally, constraint = likelihood of auxiliary measurement
- \Rightarrow e.g. Poisson for constraint from counting in a low-stat CR.

Sometimes no clear auxiliary measurement

- ⇒ Semi-arbitrary "pseudo-measurement" motivated by Central Limit Theorem:
- Gaussian for additive corrections
- Log-normal for multiplicative corrections

Gaussian:

Constrained by unit Gaussian

• represent impact as $X_j \rightarrow X_j^0 (1 + \Delta_{ij} \theta_i)$ \rightarrow or similar morphing for distributions

Can include asymmetric variations Δ^+ , Δ^- : $X_j \rightarrow X_j^0 \left[1 + \left[\begin{array}{cc} \Delta_{ij}^+ \theta_i & \theta_i > 0 \\ \Delta_{ij}^- \theta_i & \theta_i < 0 \end{array} \right] \right]$

However discontinuity in derivative at 0, so use smooth interpolation instead, e.g. implementation in RooStats::HistFactory::FlexibleInterpVar.

Systematics : Log-normal Constraint

Log-normal: $x \sim \log$ -normal if $\log(x)$ is normal \rightarrow always > 0, useful to avoid numerical issues \rightarrow PDF:

$$P(s; X_{0,\kappa}) = \frac{1}{x \kappa \sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{\log(x) - X_0}{\kappa}\right)^2\right)$$

However usually simpler to implement as : $X_i \rightarrow X_i^0 \exp(\kappa_{ii}\theta_i)$

where θ_i is constrained by a unit Gaussian as usual

 \rightarrow Correct form for a multiplicative uncertainty:

$$\log \sqrt[n]{(X_0k_1)(X_0k_2)...(X_0k_n)} = \frac{1}{n} \sum_{i=1}^n \log (X_0k_i) \stackrel{n \to \infty}{\sim} G(\log X_0, \frac{RMS(\log(k))}{\sqrt{n}} = \kappa)$$

Similarly to Gaussian \rightarrow represent $\mathbf{X} = \mathbf{X}_0 \mathbf{e}^{\kappa \theta} \sim G(\log X_0, \kappa)$ if $\theta \sim G(0,1)$ Which κ to use ? $\kappa = RMS(X)$ only at first order. For larger uncertainties, e.g. Match ±1\sigma variations: $X_j(\theta=\pm 1) = X_j^{\pm} \Rightarrow \kappa_{\pm} = \pm \log(X_j^{\pm}/X_j^{\theta})$

Implemented in RooStats::HistFactory::FlexibleInterpVar.

Systematics : Theory Constraints

Missing high-order terms in perturbative calculations: evaluate from scale variations – but no underlying random process. Possible constraint shapes:

• Gaussians (ATLAS/CMS Higgs analyses, see Yellow Report 4, I.4.1.d)

→ Usually several independent "sources" of uncertainty(QCD/EW/resummation)

- \Rightarrow overall uncertainty may be rather Gaussian
- \rightarrow Numerically well-behaved
- \rightarrow Uncertainties add in quadrature as usual
- Flat constraints : "100% confidence" intervals \rightarrow no preference for any value in the range
 - → Need regularization to avoid numerical issues
 - \rightarrow uncertainties add linearly

 \rightarrow For Higgs cross-sections, rather similar results for both cases

Constraints : Two-point systematics

Sometimes differences between 2 discrete cases \rightarrow e.g. Pythia vs. Herwig Solutions:

- Results for one case only
- Full results for both cases
- Single result with an uncertainty that covers the difference
 → *Two-point* uncertainty
- Usually implemented as 1D linear interpolations between the two cases
- → However cannot guarantee this covers the space of possible configurations
- \Rightarrow This is not even a pseudo-measurement...

Ideally, need to define proper uncertainties within

a single model, which would cover the other cases Next

- \rightarrow e.g. showering uncertainties within Pythia, covering Herwig
- \rightarrow Usually a difficult task

Profiling Issues

Too simple modeling can have unintended effects

 \rightarrow e.g. single Jet E scale parameter: \Rightarrow Low-E jets calibrate high-E jets – intended ?

Two-point uncertainties:

 \rightarrow Interpolation may not cover full configuration space, can lead to too-strong constraints

NP central values and uncertainties in pull/impact plots provide important "debugging" information for profiling

Outline

Profiling

Look-Elsewhere Effect

Bayesian methods

Statistical modeling in practice

Building binned likelihoods Choosing PDFs in unbinned likelihoods Implementing systematics

BLUE

BLUE

2.

Commonly-used ansatz for combination of measurements:

1. **Build a x²:** (same as -2logL for Gaussian L)

$$\chi^{2}(X) = \sum_{i} \left(X_{i}^{\text{obs}} - X \right) C_{ij}^{-1} \left(X_{j}^{\text{obs}} - X \right)$$

Estimate combined X from minimum of
$$\chi^2(X)$$

- In the Gaussian case, equivalent to ML solution
 ⇒ inherits good properties:
 - Unbiased : $\langle \hat{X} \rangle = X^*$
 - Optimal: minimizes the combined uncertainty
- Solution is a linear combination of the inputs:

⇒ "Best Linear Unbiased Estimator" (BLUE)

$$\boldsymbol{\lambda} = \frac{C^{-1}\boldsymbol{J}}{\boldsymbol{J}^{T}C^{-1}\boldsymbol{J}}, \ \boldsymbol{J} = \begin{bmatrix} 1\\ 1\\ \vdots \end{bmatrix}$$

C_{ii} : covariance matrix of

 $\begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 & \cdots \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 & \cdots \end{bmatrix}$

measurements:

C =

$$\lambda_i$$
 = combination weight
of measurement i

$$\hat{X} = \sum_{i} \lambda_{i} X^{obs, i}$$

BLUE Example

ATLAS-CONF-2014-008

ATLAS + CDF + CMS + D0 Preliminary

CDF RunII, I+jets 34.6 $L_{int} = 8.7 \text{ fb}^{-1}$ CDF Runll, di-lepton -4.2 $L_{int} = 5.6 \text{ fb}^{-1}$ CDF RunII, all jets 5.5 $L_{int} = 5.8 \text{ fb}^{-1}$ CDF RunII, E^{miss}+jets 6.3 $L_{int} = 8.7 \text{ fb}^{-1}$ D0 RunII. I+iets 10.3 $L_{int} = 3.6 \text{ fb}^{-1}$ D0 RunII. di-lepton 0.3 $L_{int} = 5.3 \text{ fb}^{-1}$ ATLAS 2011, I+jets 15.8 $L_{int} = 4.7 \text{ fb}^{-1}$ ATLAS 2011, di-lepton -7.1 $L_{int} = 4.7 \text{ fb}^{-1}$ CMS 2011, I+jets 27.7 $L_{int} = 4.9 \text{ fb}^{-1}$ CMS 2011, di-lepton 3.1 $L_{int} = 4.9 \text{ fb}^{-1}$ CMS 2011, all jets 7.5 $L_{int} = 3.5 \text{ fb}^{-1}$ Tevatron + LHC m_{ton} comb. March 2014 -100 0 100 **BLUE** Combination Coefficient [%]

Limitation: relies on Gaussian assumptions (satisfied in this case!)

Negative weights possible! (for large correlations, see Eur. Phy. J. C 74 (2014), 2717)

BLUE and PLR

PLR Computation: 2 measurements + 1 auxiliary measurement

$$X_{1} = X + \Delta_{1} \theta \sim G(X^{*}, \sigma_{1})$$
$$X_{2} = X + \Delta_{2} \theta \sim G(X^{*}, \sigma_{2})$$
$$\theta \sim G(0, 1)$$

Single measurement:
$$\lambda(X,\theta) = \frac{1}{\sigma_1^2} (X + \Delta_1 \theta - X_1^{\text{obs}})^2 + (\theta - \theta^{\text{obs}})^2$$
$$\mathsf{MLEs:} \begin{cases} \hat{\theta} = \theta^{\text{obs}} \\ \hat{x} = X_1^{\text{obs}} - \Delta_1 \theta^{\text{obs}} \\ \hat{X} = X_1^{\text{obs}} - \Delta_1 \theta^{\text{obs}} \end{cases}$$
$$\mathsf{PLR:} \quad \lambda(X) = \frac{(X - \hat{X})^2}{\sigma_{1,\text{tot}}^2} \qquad \sigma_{1,\text{tot}}^2 = \sigma_1^2 + \Delta_1^2$$
$$\mathsf{Combination:} \quad \lambda(X,\theta) = \frac{1}{\sigma_1^2} (X + \Delta_1 \theta - X_1^{\text{obs}})^2 + \frac{1}{\sigma_2^2} (X + \Delta_2 \theta - X_2^{\text{obs}})^2 + (\theta - \theta^{\text{obs}})^2$$

MLE:
$$\hat{X} = \lambda_1 X_1^{\text{obs}} + \lambda_2 X_2^{\text{obs}} + \lambda_{\theta} \theta^{\text{obs}}$$
 $\lambda_{1(2)} = \frac{\sigma_{2(1), \text{tot}}^2 - \Delta_1 \Delta_2}{\sigma_{1, \text{tot}}^2 + \sigma_{2, \text{tot}}^2 - 2\Delta_1 \Delta_2}$

PLR:
$$\lambda(X) = \frac{(X - \hat{X})^2}{\sigma_{X, \text{tot}}^2}$$
 $\sigma_{X, \text{tot}}^2 = \frac{\sigma_{1, \text{tot}}^2 \sigma_{2, \text{tot}}^2 - \Delta_1^2 \Delta_2^2}{\sigma_{1, \text{tot}}^2 + \sigma_{2, \text{tot}}^2 - 2\Delta_1 \Delta_2}$

BLUE and PLR

statistical uncertainties σ_1 and σ_2 , correlated systematics Δ_1 and Δ_2 . Single measurement: stat uncertainty σ_1 , systematic Δ_1 - Uncorrelated uncertainties - Assume everything is Gaussian ⇒ Uncertainties add $\sigma_{1 \text{ tot}}^2 = \sigma_1^2 + \Delta_1^2$ in quadrature: $C = \begin{bmatrix} \sigma_{1, \text{ tot}}^2 & \rho \sigma_{1, \text{ tot}} \sigma_{2, \text{ tot}} \\ \rho \sigma_{1, \text{ tot}} \sigma_{2, \text{ tot}} & \sigma_{2, \text{ tot}}^2 \end{bmatrix} \quad \rho = \frac{\Delta_1 \Delta_2}{\sigma_{1, \text{ tot}} \sigma_{2, \text{ tot}}}$ **Combination**: $\lambda_{1(2)} = \frac{\sigma_{2(1), \text{tot}}^2 - \rho \sigma_{1, \text{tot}} \sigma_{2, \text{tot}}}{\sigma_{1}^2 + \sigma_{2}^2 - 2\rho \sigma_{1, \text{tot}} \sigma_{2, \text{tot}}}$ **BLUE** weights $\hat{X} = \lambda_1 X_1^{obs} + \lambda_2 X_2^{obs}$ Propagate uncertainties from C: $\sigma_{X, \text{tot}}^2 = \frac{\sigma_{1, \text{tot}}^2 \sigma_{2, \text{tot}}^2 (1 - \rho^2)}{\sigma_{1, \text{tot}}^2 + \sigma_{2, \text{tot}}^2 - 2\rho\sigma_{1, \text{tot}}\sigma_{2, \text{tot}}^2}$

BLUE computation: measurements X_1 and X_2 with uncorrelated

Negative BLUE Weights

Occasionally, negative BLUE weights: Can happen if $\rho \sim 1$:

$$\lambda_{2} = \frac{\sigma_{1, \text{tot}}(\sigma_{1, \text{tot}} - \rho \sigma_{2, \text{tot}})}{\sigma_{1, \text{tot}}^{2} + \sigma_{2, \text{tot}}^{2} - 2\rho \sigma_{1, \text{tot}} \sigma_{2, \text{tot}}} < 0 \text{ for } \rho > \frac{\sigma_{1, \text{tot}}}{\sigma_{2, \text{tot}}}$$

Not intuitive! (Can also have $\lambda_2 = 0$ for $\sigma_{1,tot} = \rho \sigma 2,tot...$) Can be explained in the PLR picture: $X_1 = X + \Delta \theta$

ATLAS + CDF + CMS + D0 Preliminary

 $X_2 = X + 2\Delta\theta$

 $\rho \sim 1 \Rightarrow \theta$ measurement is important \Rightarrow possibly very different MLE than $X_1 \oplus X_2 \oplus q_7$

Uncertainty Decomposition

Often useful to break down uncertainties into components (stat + syst, etc.)

PLR approach: perform measurement twice

- 1. With all uncertainties included \rightarrow **nominal uncertainty** σ_{total} .
- 2. Removing some uncertainties (e.g. all syst uncertainties) $\rightarrow \sigma_{no-syst}$
- \Rightarrow Subtract in quadrature:

$$\sigma_{\rm syst} = \sqrt{\sigma_{\rm total}^2 - \sigma_{\rm no-syst}^2}$$

BLUE-based approach:

- 1. Propagate each source of uncertainty (stat & syst) to the observables
- 2. Propagate through to the measurement using the BLUE weights

 $\hat{X} = \sum_{i} \lambda_{i} X^{obs, i}$

The two methods are not completely equivalent (recently discovered!)

 \rightarrow In the BLUE case, weights still computed including systematics effects

Presentation of Results

Presentation of Results

Measurements often recast to constrain a particular theory model.

 \rightarrow Ideally, by **reparameterizing the likelihood** and repeating the measurement

- \Rightarrow Done by experiments for selected benchmark models
- → However, often too complex to implement widely:
- Full likelihood typically not published
- theorists typically do not want to deal with 4000 NPs...

 \rightarrow **Other approaches:** e.g. reimplementing the analysis in a public fast-simulation framework (e.g. SUSY searches). However clear accuracy limitations

Presentation of Results

 \rightarrow **Current solution**: publish covariance matrices in HEPData, together with the individual measurements

101

\rightarrow Only valid in the Gaussian approximation

- \rightarrow To go further, need some form of **simplified likelihoods**
- Profile likelihood function of POI only (NPs profiled out)
- Additional terms for non-Gaussian effects
- \rightarrow Significantly more complex (many dimensions!)
- \rightarrow Will be needed eventually as measurements become syst-dominated

Conclusion

- Significant evolution in the statistical methods used in HEP
- Variety of methods, adapted to various situations and target results
- Allow to
 - model the statistical process with high precision in difficult situations (large systematics, small signals)
 - make optimal use of available information
- Implemented in standard RooFit/RooStat toolkits within the ROOT framework, as well as other tools (BAT)
- Improvement and uniformization efforts are still ongoing
- Still many open questions and areas that could use improvement \rightarrow e.g. how to present results with all available information to the "outside"

Extra Slides

Uncertainty decomposition

Gaussian measurement with 1 POI μ and 1 NP θ :

$$L(\mu, \theta; \hat{\mu}, \hat{\theta}) = \exp\left[-\frac{1}{2} \begin{pmatrix} \mu - \hat{\mu} \\ \theta - \hat{\theta} \end{pmatrix}^T C^{-1} \begin{pmatrix} \mu - \hat{\mu} \\ \theta - \hat{\theta} \end{pmatrix}\right] \qquad C = \begin{bmatrix} \sigma_{\mu}^2 & \gamma \sigma_{\mu} \sigma_{\theta} \\ \gamma \sigma_{\mu} \sigma_{\theta} & \sigma_{\theta}^2 \end{bmatrix}$$

"data"

 $C = \begin{vmatrix} \sigma_{\mu}^{2} & \gamma \sigma_{\mu} \sigma_{\theta} \\ \gamma \sigma_{\mu} \sigma_{\theta} & \sigma_{\theta}^{2} \end{vmatrix}$ $\lambda(\boldsymbol{\mu},\boldsymbol{\theta};\boldsymbol{\hat{\mu}},\boldsymbol{\hat{\theta}}) = \boldsymbol{F}_{\mu\mu}(\boldsymbol{\mu}-\boldsymbol{\hat{\mu}})^2 + 2\boldsymbol{F}_{\mu\theta}(\boldsymbol{\mu}-\boldsymbol{\hat{\mu}})(\boldsymbol{\theta}-\boldsymbol{\hat{\theta}}) + \boldsymbol{F}_{\theta\theta}(\boldsymbol{\theta}-\boldsymbol{\hat{\theta}})^2 \qquad F = \begin{bmatrix} F_{\mu\mu} & F_{\mu\theta} \\ F_{\mu\theta} & F_{\theta\theta} \end{bmatrix}$ Profiled θ (minimize λ at fixed μ) : $\mathbf{\hat{\theta}}(\mathbf{\mu}) = \mathbf{\hat{\theta}} - \mathbf{F}_{\theta\theta}^{-1} \mathbf{F}_{\theta\mu}(\mathbf{\mu} - \mathbf{\hat{\mu}})$ Profile likelihood ratio: $\lambda(\boldsymbol{\mu}, \hat{\boldsymbol{\theta}}(\boldsymbol{\mu}); \boldsymbol{\hat{\mu}}, \boldsymbol{\hat{\theta}}) = \left(\boldsymbol{F}_{\boldsymbol{\mu}\boldsymbol{\mu}} - \boldsymbol{F}_{\boldsymbol{\mu}\boldsymbol{\theta}} \boldsymbol{F}_{\boldsymbol{\theta}\boldsymbol{\theta}}^{-1} \boldsymbol{F}_{\boldsymbol{\theta}\boldsymbol{\mu}}\right) (\boldsymbol{\mu} - \hat{\boldsymbol{\mu}})^2 = \boldsymbol{C}_{\boldsymbol{\mu}\boldsymbol{\mu}}^{-1} (\boldsymbol{\mu} - \boldsymbol{\hat{\mu}})^2 = \left(\frac{\boldsymbol{\mu} - \boldsymbol{\hat{\mu}}}{\boldsymbol{\sigma}_{\boldsymbol{\mu}}}\right)^2$ Proof of Wilks' theorem... $F_{uu} \neq C_{uu}^{-1} !!$ 3.5⊏ **θ** 3Ē Uncertainty on μ : 2.5 2 σ_{μ} • From C: 1.5⊢ σ_{μ} From PLR: $(\hat{\mu}, \hat{\theta})$ 0.5 Profiled θ crosses ellipse at 0 vertical tangents by -0.5 definition (L is lower at other _**1**F U points on the tangent) -1.5^L₁ 0.5 1.5 36 2 2.5

$$\lambda(\mu, \theta; \hat{\mu}, \hat{\theta}) = F_{\mu\mu}(\mu - \hat{\mu})^2 + 2F_{\mu\theta}(\mu - \hat{\mu})(\theta - \hat{\theta}) + F_{\theta\theta}(\theta - \hat{\theta})^2$$

$$F = C^{-1} = \frac{1}{1 - \gamma^2} \begin{bmatrix} \frac{1}{\sigma_{\mu}^2} & \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} \\ \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} & \frac{1}{\sigma_{\theta}^2} \end{bmatrix}$$

$$F = C^{-1} = \frac{1}{1 - \gamma^2} \begin{bmatrix} \frac{1}{\sigma_{\mu}^2} & \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} \\ \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} & \frac{1}{\sigma_{\theta}^2} \end{bmatrix}$$

$$\lambda(\mu, \theta = \hat{\theta}; \hat{\mu}, \hat{\theta}) = F_{\mu\mu}(\mu - \hat{\mu})^2 = \begin{pmatrix} \frac{\mu - \hat{\mu}}{\sigma_{\mu}\sqrt{1 - \gamma^2}} \end{pmatrix}^2$$
Uncertainty on μ :
$$\begin{cases} \theta & 3 \\ 2.5 \\ 0 \\ 3.5 \\ 0 \\ 1.5 \\ 0 \\ 0.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5$$

$$\lambda(\mu, \theta; \hat{\mu}, \hat{\theta}) = F_{\mu\mu}(\mu - \hat{\mu})^{2} + 2F_{\mu\theta}(\mu - \hat{\mu})(\theta - \hat{\theta}) + F_{\theta\theta}(\theta - \hat{\theta})^{2}$$

$$F = C^{-1} = \frac{1}{1 - \gamma^{2}} \begin{bmatrix} \frac{1}{\sigma_{\mu}^{2}} & \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} \\ \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} & \frac{1}{\sigma_{\theta}^{2}} \end{bmatrix}$$

$$\lambda(\mu, \theta = \hat{\theta}; \hat{\mu}, \hat{\theta}) = F_{\mu\mu}(\mu - \hat{\mu})^{2} = \begin{pmatrix} \mu - \hat{\mu} \\ \sigma_{\mu}\sqrt{1 - \gamma^{2}} \end{pmatrix}^{2}$$
Uncertainty on μ :
$$2.5$$

$$From C: \sigma_{\mu}$$

$$From PLR: \sigma_{\mu}$$

$$Total undertainty$$

$$\sigma_{\mu} = \sqrt{-1 + \frac{\gamma}{\sigma_{\mu}} + \frac$$

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC
 - Compare μ =0 and μ =1
- Tevatron: PLR with profiled NPs

Both compare to $\mu=1$ instead of best-fit $\hat{\mu}$

 \rightarrow Asymptotically:

- **LEP/Tevaton**: q linear in $\mu \Rightarrow \text{-Gaussian}$
- LHC: q quadratic in $\mu \Rightarrow ~\chi 2$

 \rightarrow Still use TeVatron-style for discrete cases

$$q_{LEP} = -2\log\frac{L(\mu=0,\widetilde{\theta})}{L(\mu=1,\widetilde{\theta})}$$
$$q_{Tevatron} = -2\log\frac{L(\mu=0,\hat{\theta}_0)}{L(\mu=1,\hat{\theta}_1)}$$

109
Spin/Parity Measurements

Phys. Rev. D 92 (2015) 012004

