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Reminders From Lecture I

Description Observable Likelihood

Counting n Poisson

Binned shape 
analysis

ni, i=1..Nbins Poisson product

Unbinned 
shape analysis

mi, i=1..nevts Extended Unbinned Likelihood

P(ni ;S , B)=∏
i=1

nbins

e−(S f i
sig
+ B f i

bkg
) (S f i

sig
+ B f i

bkg
)
n i

ni !

P(n;S , B)=e−(S + B) (S + B)
n

n!

P(mi ;S , B)=
e−(S + B)

nevts!
∏
i=1

nevts

S Psig(mi)+B Pbkg(mi)

Physics measurement data are produced through random processes,
Need to be described using a statistical model:

Model can include multiple categories, each with a separate description
Includes parameters of interest (POIs) but also nuisance parameters (NPs)
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Reminders From Lecture I
To estimate a parameter value, use the 
Maximum-likelihood estimate (MLE), 
a.k.a. Best-ft  alue of the parameter,

Today, further results:
• Discovery: we see an excess – 

is it a (new) signal, or a background 
fluctuation i

• Upper limits: we don’t see an excess – 
if there is a signal present, 
how small must it be i

• Parameter measurement: what is the 
allowed range (“confdence inter al”) 
for a model parameter i

→ The Statistical Model already contains all the 
     needed information – how to use it i
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Reminders from Lecture II: Hypothesis Testing
Hypothesis: assumption on model parameters, say  alue of S (e.g. H0 : S=0)
→ Goal : determine if H0 is true or false using a test based on the data

 Possible 
 outcomes:
 

Data disfavors H0 
(Discovery claim)

Data favors H0

(Nothing found)

H0 is false 
(New physics!) Discovery! 

Missed discovery
Type-II error
(1 - Power)

H0 is true 
(Nothing new)

False discovery claim
Type-I error 
(→ p-value, signifcance)

No new physics, 
none found

Stringent disco ery criteria 
 ⇒ lower Type-I errors, higher Type-II errors

→ Goal: test that minimizes Type-II 
errors for given level of Type-I error.

Background

Type-I error
p-value

Signal

Type-II Error
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Reminders from Lecture II: Discovery Signifcance
Gi en a statistical model P(data; μ), defne likelihood L(μ) = P(data; μ)

To estimate a parameter, use  alue μ ̂that maximizes L(μ).

To decide between hypotheses H0 and H1, use the likelihood ratio

To test for discovery, use

For large enough datasets (n > 5), 

For a Gaussian measurement,

For a Poisson measurement,

L(H 0)

L(H 1)

q0 = {
−2 log

L(S=0)

L( Ŝ)
Ŝ ≥ 0

+2 log
L(S=0)

L( Ŝ)
Ŝ < 0

Z = √ q0

Z =
Ŝ

√B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]
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H1H0

Reminders from Lecture II: Test Statistic for Limits
For upper limits, alternate is H1 : S < μ0 :
→ Ιf large signal obser ed (S  S≫ 0), does not fa or H1 o er H0

→ Only consider Ŝ < S0 for H1, and include Ŝ ≥ S0 in H0. 

Þ Set qS0 = 0 for  Ŝ > S0  – only small signals (S < S0) help lower the limit.
→ Also treat separately the case S < 0 
to a oid technical issues in -2logL fts.

Asymptotics:
qS0 ~ “½χ2” under H0(S=S0), same as q0, 
except for special treatment of S < 0.

H0

S=0 S0

H1

Discovery

Limit-Setting

~qS0
= {

0 Ŝ ≥ S0

−2 log
L(S=S0)

L ( Ŝ)
0 ≤ Ŝ ≤ S0

−2 log
L(S=S0)

L(S=0)
Ŝ < 0

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011
p0 = 1−Φ (√ qS0 )

https://arxiv.org/abs/1007.1727
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Reminders from Lecture II: Limit Inversion

Procedure
→ Consider H0 : H(S=S0) – alternati e H1 : H(S < S0)
→ Compute qS0, get exclusion p-value pS0.
→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotics: set target in terms of qS0 :

qS1 p-value 
for qS1

qS = 2.70 : p = 5% 

S1 : (too) strong exclusion 

CL Region

90% qS > 1.64

95% qS > 2.70

99% qS > 5.41

Asymptotics

√ qS0
= Φ

−1
(1− p0 )
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Reminders from Lecture II: Limit Inversion

Procedure
→ Consider H0 : H(S=S0) – alternati e H1 : H(S < S0)
→ Compute qS0, get exclusion p-value pS0.
→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotics: set target in terms of qS0 :

qS2
qS1 p-value 

for qS1

qS = 2.70 : p = 5% 

S1 : (too) strong exclusion S2 : no exclusion 

CL Region

90% qS > 1.64

95% qS > 2.70

99% qS > 5.41

Asymptotics

√ qS0
= Φ

−1
(1− p0 )
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Reminders from Lecture II: Limit Inversion

Procedure
→ Consider H0 : H(S=S0) – alternati e H1 : H(S < S0)
→ Compute qS0, get exclusion p-value pS0.
→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotics: set target in terms of qS0 :

qS2
qS1 p-value 

for qS1

qS = 2.70 : p = 5% 

qS3

S1 : (too) strong exclusion S2 : no exclusion S3 : 95% exclusion 

CL Region

90% qS > 1.64

95% qS > 2.70

99% qS > 5.41

Asymptotics

√ qS0
= Φ

−1
(1− p0 )
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Reminders from Lecture II: CLs

How to a oid negati e limits i in HEP, use : CLs.
→ Compute modifed p- alue 
• pS0 is the usual p- alue (5%)
• p0 is the p- alue computed under H(S=0).
 ⇒ Rescale exclusion at S0 by exclusion at S=0.

→ Somewhat ad-hoc, but good properties…

Good case : p0 ~ O(1)
pCLs ~ pS0 ~ 5%, no change.

Pathological case : p0  1≪
pCLs~ pS0/p0  5%≫

→ no exclusion  ⇒ worse limit, usually >0 as 
desired

Drawback: overcoverage 
→ limit is actually >95% CL for small p0.

p0pS0

S=0
μ0

S0

S=0

pCLs
=

pS0

p0

A. Read, J.Phys. G28 (2002) 2693-2704

σS = 1

http://inspirehep.net/record/599622?ln=en


Outline

Computing Statistical Results
Limits, continued
Confdence Intervals

Profling

Look-Elsewhere Efect

Bayesian methods

Statistical modeling in practice

BLUE 
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CLs : Gaussian Example

Usual Gaussian counting example with known B:

Reminder 
Best ft signal : Ŝ = n - B
CLs+b limit:  

CLs upper limit : still ha e 
so need to sol e

for S = 0,  

S+B

ÖB

n

λ (S) = ( n−(S+B)
σ S )

2

qS0
= ( S0− Ŝ

σ S )
2

(for S0 > S) 

Sup = Ŝ + 1.64σ S  at 95 % CL
S ~ G(S, GS) so
Under H0(S = S0) :

Under H0(S = 0) :
pCLs

=
pS0

p0

=
1−Φ(√ qS0

)

1−Φ(√ qS0
− S0 / σ S)

= 5%

Φ(0) = 0.5 ⇒ at 95% CL, CLs :  Sup = 1.96σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S  at 95 %  CL

pS0
= 1−Φ(√qS0

)

p0 = 1−Φ(√ qS0
−S0 / σ S)

√ qS0
∼ G (S0 / σ S ,1)

√ qS0
∼ G (0, 1)

CLs+b :  Sup = 1.64σ S
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CLS: Poisson Rule of Thumb
Same exercise, for the Poisson case
Exact computation : sum probabilities of cases “at least as extreme as data” (n)

For n = 0: 

 ⇒ Rule of thumb: when nobs=0, the 95% CLs limit is 3 events (for any B)

Asymptotics: as before, 

For n = 0,

 ⇒ Sup ~ 2, exact  alue depends on B 
 Asymptotics not  alid in this case (n=0) – need to use exact results, or toys⇒

qS0
= λ (S0) − λ ( Ŝ) = 2(S0 + B − n)−2n  log

S0+B

n

pS0
(n) =∑

0

n

e−(S0+B) (S0+B)
k

k !

pCLs
=

pSup
(0)

p0(0)
= e−Sup = 5% ⇒ Sup = log (20) = 2.996 ≈ 3

and one should sol e pCLs
=

pSup
(n)

p0(n)
= 5 %  for Sup

pCLs
=

pS0

p0

=
1−Φ(√ qS0

(n=0))

1−Φ(√ qS0
(n=0)−√ qS0

(n=B))
= 5%

qS0
(n=0) = 2(S0+B)
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Expected Limits: Toys
Expected results: median outcome under a gi en hypothesis
→ usually B-only by con ention, but other choices possible.

Two main ways to compute:
→ Pseudo-experiments (toys):
• Generate pseudo-data in B-only hypothesis
• Compute limit
• Repeat and histogram the results
• Central  alue = median, bands 

based on quantiles

Computed limit

95% of toys68% of toys

Repeat for each mass

Nu
m

be
r o

f T
oy

s

Eur.Phys.J.C71:1554,2011

Phys. Lett. B 775 (2017) 105

https://arxiv.org/abs/1007.1727
http://www.sciencedirect.com/science/article/pii/S0370269317308511?via=ihub
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Expected Limits: Asimov
Expected results: median outcome under a gi en hypothesis
→ usually B-only by con ention, but other choices possible.

Two main ways to compute:

→ Asimov Datasets
• Generate a “perfect dataset” – e.g. for binned

data, set bin contents carefully, no fluctuations.
• Gi es the median result immediately:

median(toy results)  result(median dataset) ↔
• Get bands from asymptotic formulas:

Band width

⊕ Much faster (1 “toy”)
⊖ Relies on Gaussian approximation

σ S0 , A
2

=
S0

2

qS0
(Asimov)

Strictly speaking, Asimo  dataset if
X̂ = X0 for all parameters X, 

where X0 is the generation  alue
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CLs : Gaussian Bands

Usual Gaussian counting example with known B:
95% CLs upper limit on S:

Compute expected bands for S=0:
→ Asimov dataset  Ŝ = 0⇔  : 
→ ± nσ bands:  

Sup,exp
0

= 1.96 σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S

Sup,exp
±n

= (±n + [ 1 − Φ
−1

( 0.05 Φ(∓n) ) ] ) σ S

S 

n Sexp
±n

  /√B

+2 3.66

+1 2.72

  0 1.96

-1 1.41

-2 1.05

CLs : 
● Positi e bands 
somewhat reduced,

● Negati e ones more so

σS = √B
with

Band width from
depends on S, for
non-Gaussian cases,diferent
 alues for each band...

σ S , A
2

=
S2

qS(Asimov)

Eur.Phys.J.C71:1554,2011

https://arxiv.org/abs/1007.1727


Outline

Computing Statistical Results
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Look-Elsewhere Efect
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Gaussian Inversion
If μ̂ ~ G(μ*, G), known quantiles : 

This is a probability for μ̂ , not μ* !
→ μ* is a fxed number, not a random variable

But we can in ert the relation:

→ This gi es the desired statement on μ* : if we repeat the experiment many 
times, [μ̂ - σ, μ̂ + σ] will contain the true value 68% of the time: μ̂ = μ* ± σ  
This is a statement on the interval [μ̂ - σ, μ̂ + σ] obtained for each experiment

Works in the same way for other inter al
sizes: [μ̂ - Zσ, μ̂ + Zσ] with

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*–σ     μ*    μ*+σ

Z 1 1.96 2
CL 0.68 0.95 0.955

P (μ
*
− σ < μ̂ < μ

*
+ σ) = 68 %

⇒ P (∣ μ̂ − μ
*
∣< σ) = 68 %

P (μ
*
− σ < μ̂ < μ

*
+ σ) = 68 %

⇒ P (μ̂ − σ < μ
*
< μ̂ + σ) = 68 %
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Neyman Construction
Tru

e 
va

lu
e

Observed value

General case: Build 1G inter als of obser ed  alues for each true  alue 
 ⇒ Confdence belt
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Inversion using the Confdence Belt
Tru

e 
va

lu
e 

μ* σμ
+

μ̂ 

σμ
-

μ̂ Observed value μ̂

General case: Intersect belt with gi en μ ̂, get 
→ Same as before for Gaussian, works also when P(μobs|μ)  aries with μ.

Gμ comes from the model, 
not the data
→ data only pro ides μ̂.

Gμ
+ from negative side of μ̂ inter als

Gμ
- from positive side of μ̂ inter als

Doesn’t generalize well to many NPs in 
realistic models

P (μ̂ − σμ

-
< μ

*
< μ̂ + σμ

+
) = 68%
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Likelihood Intervals
Confdence intervals from L:
• Test H(μ0) against alternati e using
• Two-sided test since true  alue can be 

higher or lower than obser ed

Asymptotics:
• tμ ~ χ2(NPOI) under H(μ0)
• √tμ ~ G(0,1) (Gaussian with d=NPOI)

In practice:
• Plot tμ  s. μ
• The minimum occurs at μ = μ̂
• Crossings with tμ= Z2 gi e the 

±Zσ uncertainties (for NPOI=1)

→ Gaussian case:  parabolic profle,
same result as Neyman construction, also robust against non-Gaussian efects.

H0
μ

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )
μ can be 
se eral POI!

ATLAS-CONF-2017-047 

H1
H1

tμ = ( μ−μ̂
σ )

2

⇒ μ± = μ̂ ± σ  at tμ = 1

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/
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2D Example: Higgs σVBF vs. σggF
ATLAS-CONF-2017-047 

By
 K
ris
hn

a 
ed

al
a 
- O

w
n 
w
or
k,
 C
C
 B
Y-
SA

 3
.0
, h

ttp
s:/

/c
om

m
on

s.w
iki
m
ed

ia
.o
rg
/w

/in
de

x.
ph

pi
cu

rid
=1

52
78

82
6tggF,VBF

ggF

VBF

CL 68% (1σ) 95% 95.5% (2σ)
1D Z2 1 3.84 4
2D Z2 2.30 5.99 6.18

Z2

 t < 2.30
t < 5.99

Gaussian case: elliptic 
paraboloid surface

t=−2 log
L(X0, Y 0)

L( X̂ , Ŷ )

∼ χ
2
(N dof=2)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/
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Reparameterization
Start with basic measurement in terms of e.g. σ´B
→ How to measure deri ed quantities (couplings, parameters in some theory 
model, etc.) i  → just reparameterize the likelihood:
e.g. Higgs couplings: GggF, GVBF sensiti e to Higgs coupling modifers κV, κF. 

L(σ ggF ,σVBF) L(σ ggF( κV ,κF) ,σVBF( κV ,κF)) ≡ L' ( κV ,κF)

σggF→σ ggF(κV , κF)

σVBF→σVBF (κV , κF)
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Reparameterization: Limits
CMS Run 2 Monophoton Search: measured 
NS in a counting experiment reparameterized  
according to  arious DM models

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-16-039/
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Takeaways
Limits : use LR-based test statistic:

→ Use CLs procedure to a oid negati e limits

Poisson regime, n=0 : Sup = 3 events
Gaussian regime, n=0 : Sup = 1.96 σGauss

Uncertainty bands: obtain from toys or from Asimo 

Confdence intervals: use

→ 1D: crossings with tμ0 = Z2 for ±ZG inter als

Gaussian regime: μ = μ̂ ± GGauss (1G inter al)

σ S , A
2

=
S2

qS(Asimov)

~qμ 0
= {

0 μ̂ ≥ μ0

−2 log
L (μ=μ 0)

L (μ̂ )
0 ≤ μ̂ ≤ μ0

−2 log
L (μ=μ 0)

L(μ=0)
μ̂ < 0

tμ0
=−2 log

L(μ=μ 0)

L(μ̂ )
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Historical Aside
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Classic Discoveries (1)

y Discovery 
Lo

g 
sc

al
e!

Z0 Discovery

Huge signal
S/B~50
Several 1000 events

(almost) no 
background

Logbo ok of J. Roh lf, 1983 -05-3 0
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Classic Discoveries (2) y' : discovered online 
by the (lucky) shifters

First hints of top at D0: 
O(10) signal events, 

a few bkg events, 2.4σ



30

And now ?
Short answer: The high-signal, low-background experiments ha e been done 
already (although a surprise would be welcome...)
e.g. at LHC:
• High background levels, need precise modeling
• Large systematics, need to be described accurately
• Small signals: need optimal use of a ailable information :

– Shape analyses instead of counting
– Categories to isolated signal-enriched regions

AT
LA

S-
C
O
N
F-
20
17

-0
45

JH
EP

 1
2 
(2
01

7)
 0
24

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/
https://link.springer.com/article/10.1007/JHEP12(2017)024
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Discoveries that weren't

 Phys. Re . Lett. 91, 252001 (2003)

UA1 Monojets (1984)

Pentaquarks (2003) BICEP2 B-mode Polarization (2014)

5.2σ

Avoid spurious discoveries!
→ Treatment of modeling uncertainties,
systematics in general

http://www.sciencedirect.com/science/article/pii/0370269384900467
https://inspirehep.net/record/622999
https://inspirehep.net/record/1286113
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Nuisances and Systematics
Likelihood typically includes
• Parameters of interest (POIs) : S, σ×B, mW, …
• Nuisance parameters (NPs) : other parameters 

needed to defne the model
→ Ideally, constrained by data like the POI

e.g. shape of H→μμ continuum bkg

What about systematics ?
= what we don’t know about the random processs
Þ Parameterize using additional NPs
→ By defnition, not constrained by the data

 ⇒ Cannot be free, or would spoil the measurement
(lumi free Þ no G×B measurement!) 
Þ Introduce a constraint in the likelihood:

L(μ ,θ ;data) = Lmeasurement(μ ,θ ;data) C (θ)

Phys. Re . Lett. 119 (2017) 051802

POI Systematics 
NP

Measurement
Likelihood

NP Constraint term 
 penalty for θ ≠ θ⇒ nominal

e−αmμ μ

"Systematic uncertainty is, in any 
statistical inference procedure, 
the uncertainty due to the 
incomplete knowledge of the 
probability distribution of the 
obser ables.
G. Punzi, What is systematics ?

http://inspirehep.net/record/1599399
https://www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps
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Frequentist Constraints
Prototype: NP measured in a separate auxiliary experiment 
e.g. luminosity measurement

→ Build the combined likelihood of the main+auxiliary measurements

Gaussian form often used by default:

In the combined likelihood, systematic NPs are constrained
→ now same as other NPs: all uncertainties statistical in nature

→ Often no clear setup for auxiliary measurements
e.g. theory uncertainties on missing HO terms from scale  ariations
→ Implemented in the same way nevertheless (“pseudo-measurement”)

L(μ ,θ ;data) = Lmain(μ ,θ ;main data) Laux(θ ;aux. data )

Laux(θ ;aux. data) = G (θ
obs ;θ ,σ syst)

Independent 
measurements: 
Þ just a product
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Likelihood, the full version (binned case)

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efciencies

Systematics

L(μ , {θ j } j=1. ..nNP
;{ni

(k )
}

i=1... ndata
( k)

k=1. ..ncat , {θ j
obs
} j=1. .nNP

)=

∏
k=1

ncat

P [ ni ;μ ϵi , k ( θ⃗ ) N S , i , k ( θ⃗ ) + Bi ,k ( θ⃗ ) ] ∏
j=1

nsyst

G(θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

× number of categories!
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Reminder: Wilks’ Theorem
→ Assume Gaussian regime for Ŝ (e.g. large ne ts) 
 ⇒ Central-limit theorem : 

  t0 is distributed as a χ2 under the hypothesis H0

In particular, signifcance:

Typically works well for for e ent counts O(5) 
and abo e (5 already “large”...)

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √ t0

f ( t0 ∣ H0 ) = f
χ

2
(ndof=1) ( t0 ) μ ~ 0

μ≫σμ

fχ2,ndof=1(t0) 

The 1-line “proof” : asymptotically L and S are Gaussian, so

t 0=−2 log
L(S=0)

L( Ŝ)

By defnition,
  t0 ~ χ2  √t⇒ 0 ~ G(0,1)

L(S) = exp [− 1
2

( S− Ŝ
σ )

2

] ⇒ t0= ( Ŝ
σ )

2

⇒ t0 ∼ χ
2
(ndof=1)  since Ŝ ∼ G (0,σ )

t0

https://arxiv.org/abs/1007.1727
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Wilks’ Theorem, the Full Version
The likelihood usually has NPs:
• Systematics
• Parameters ftted in data

→ What values to use when defning the hypotheses ? → H(S=0, θ=i)

Answer: let the data choose  Þ use the best-ft values (Profling)

Þ Profle Likelihood Ratio (PLR)

tμ 0
=−2 log

L(μ=μ0,

^̂
θμ0

)

L(μ̂ , θ̂)
θ̂ o erall best-ft  alue (unconditional MLE)

^̂
θμ0

best-ft  alue for μ=μ0  (conditional MLE)

Wilks’ Theorem: PLR also follows a χ2 ! 

→ Profling “builds in” the efect of the NPs
Þ Can treat the PLR as a function of the POI only

f ( tμ0
∣μ=μ0 ) = f

χ
2
(ndof=1) ( tμ0 )

also with NPs present
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Gaussian Profling
Counting exp. with background uncertainty: n =  S + θ :
→ Main measurement: n ~ G(S + θ, σstat)
→ Aux. measurement: θobs ~ G(θ, σsyst)

Then: 

PLR: 

σ S = √ σ stat
2
+ σ syst

2

L (S ,θ) = G (n ;S + θ ,σ stat) G (θ
obs ;θ ,σ syst)

Ŝ = n − θ
obs

θ̂ = θ
obs

^̂
θ (S) = θ

obs
+

σ syst
2

σ stat
2
+σ syst

2
( Ŝ − S)

λ (S ,θ) = ( n − (S + θ)
σ stat )

2

+ ( θ
obs

− θ
σ syst )

2

= λ(S0,

^̂
θ (S0)) − λ ( Ŝ , θ̂ ) =

(S0− Ŝ)2

σ stat
2

+ σ syst
2

Conditional MLE:

t S0
=−2 log

L (S=S0,

^̂
θS0

)

L( Ŝ , θ̂ )

MLEs:

For S = Ŝ, matches 
MLE as it should 

Stat uncertainty (on n) and syst (on θ) add in quadrature as expected

tS0
= ( S0− Ŝ

σ S )
2Recall: Gaussian 

counting, no syst: 
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Profling Example: ttH→bb
Analysis uses low-S/B categories to constrain backgrounds.
→ Reduction in large uncertainties on tt bkg
→ Propagates to the high-S/B categories through the
statistical modeling 
Þ Care needed in the propagation (e.g. diferent 
kinematic regimes)

ATLA
S- C

O
N
F- 2016-08

0

Fit
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Pull/Impact plots
Systematics are described by NPs 
included in the ft. Nominally:
• NP central value = 0 : corresponds to 

the pre-ft expectation (usually MC)
• NP uncertainty = 1 : since NPs 

normalized to the  alue of the syst. : 

Fit results pro ide information on 
impact of the systematic on the result:
• If central value ¹ 0: some data 

feature absorbed by nonzero  alue 
Þ Need in estigation if large pull

• If uncertainty < 1 : systematic is 
constrained by the data
 Þ Needs checking if this legitimate 
or a modeling issue

• Impact on result of ±1G shift of NP 

ATLAS-CONF-2016-058

N = N 0 (1 + σ syst θ) , θ ∼ G (0 , 1)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
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Pull/Impact plots
Systematics are described by NPs 
included in the ft. Nominally:
• NP central value = 0 : corresponds to 

the pre-ft expectation (usually MC)
• NP uncertainty = 1 : since NPs 

normalized to the  alue of the syst. : 

Fit results pro ide information on 
impact of the systematic on the result:
• If central value ¹ 0: some data 

feature absorbed by nonzero  alue 
Þ Need in estigation if large pull

• If uncertainty < 1 : systematic is 
constrained by the data
 Þ Needs checking if this legitimate 
or a modeling issue

• Impact on result of ±1G shift of NP 

ATLAS-CONF-2016-05813 TeV single-t XS (arXi :1612.07231)

N = N 0 (1 + σ syst θ) , θ ∼ G (0 , 1)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
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Profling Takeaways
Systematic = NP with an external constraint (auxiliary measurement).
→ No special treatment, treated like any other NP: statistical and systematic 
uncertainties represented in the same way.

When testing a hypothesis, use the best-ft  alues
of the nuisance parameters: Profle Likelihood Ratio.

Wilks’ Theorem: the PLR has the same asymptotic properties as the LR without 
systematics: can profle out NPs and just deal with POIs. 

Profling systematics includes their efect into the total uncertainty. Gaussian:

Guaranteed to work only as long as e erything is Gaussian, but typically
robust against non-Gaussian beha ior.

L(μ=μ0,

^̂
θμ 0

)

L(μ̂ , θ̂)

σ total = √σ stat
2

+ σ syst
2

Profling can have unintended efects – need to carefully check behavior 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
https://arxiv.org/abs/1612.07231
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Beyond Asymptotics: Toys
Asymptotics usually work well, but break down in 
some cases – e.g. small event counts.

Solution: generate pseudo data (toys) using the PDF, 
under the tested hypothesis
→ Also randomize the obser able 
(θobs) of each auxiliary experiment:
→ Samples the true distribution of the PLR

 ⇒ Integrate abo e obser ed PLR to get the p- alue
→ Precision limited by number of generated toys, 
Small p-values (5G : p~10-7!) Þ large toy samples 

p(data|x)

PDF

Pseudo data

CMS-PAS-HIG-11-022

q0

Repeat Ntoys times

G (θ
obs ;θ ,σ syst)
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Toys: Example  arXi :1708.00212

ATLAS X→Zγ Search: co ers 200 GeV < mX < 2.5 TeV
→ for mX > 1.6 TeV, low e ent counts Þ deri e results from toys

Asymptotic results (in gray) gi e optimistic result compared to toys (in blue) 

http://cds.cern.ch/record/1376643
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Summary of Statistical Results Computation
Methods pro ide:

→ Optimal use of information from the data under general hypotheses

→ Arbitrarily complex/realistic models (up to computing constraints...)

→ No Gaussian assumptions in the measurements
Still often assume Gaussian beha ior of PLR – but weaker assumption and 
can be lifted with toys
Systematics treated as auxiliary measurements – modeling can be tailored 
as needed

→ Single PLR-based framework for all usual classes of measurements
Disco ery testing
Upper limits on signal yields
Parameter estimation

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-14/
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Look-Elsewhere Efect
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Look-Elsewhere efect
Sometimes, unknown parameters in signal 
model 
e.g. p- alues as a function of mX

Þ Efecti ely performing multiple, simultaneous 
searches
→ If e.g. small resolution and large 
scan range, many independent experiments

→ More likely to fnd an excess 
anywhere in the range, rather 
than in a predefned location

 ⇒ Look-elsewhere efect (LEE)

Testing the same H0, but against 
diferent alternati es
 diferent p- alues⇒
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Global Signifcance
Probability for a fluctuation anywhere in the range → Global p- alue.

 at a gi en location       → Local p- alue

→ pglobal > plocal  Þ  Zglobal < Zlocal – global fluctuation more likely  less signifcant⇒

Trials factor : naively = # of independent inter als:
Howe er this is usually wrong – more on this later

For searches o er a parameter range, pglobal is the relevant p-value
→ Depends on the scanned parameter ranges
e.g. X→γγ : 200 < mX< 2000 GeV, 0 < ΓX < 10% mX.
→ Howe er what comes out of the usual 
asymptotic formulas is plocal.

How to compute pglobal ? → Toys (brute force) or asymptotic formulas.

pglobal = 1 − (1−plocal)
N
≈ N plocal

Trials factor 

Global 
p- alue

Local 
p- alue

N trials

??
= N indep =

scan range
peak width
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Global Signifcance from Toys

Principle: repeat the analysis in toy data:
→ generate pseudo-dataset
→ perform the search, scanning o er parameters
     as in the data
→ report the largest signifcance found
→ repeat many times 

 ⇒ The frequency at which a gi en Z0 is found is the global p- alue

e.g. X→γγ Search: Zlocal = 3.9σ (  p⇒ local ~ 5 10-5), 
scanning 200 < mX< 2000 GeV and  0 < ΓX < 10% mX 

→ In toys, fnd such an excess 2% of the time 
 p⇒ global ~ 2 10-2, Zglobal = 2.1σ Less exciting...

 ⊕ Exact treatment
 CPU-intensive⊖  especially for large Z (need ~O(100)/pglobal toys)

Local 3.9G
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Global Signifcance from Asymptotics
Principle: approximate the global p- alue in the asymptotic limit
→ reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

→ Trials factor is not just Nindep, 
     also depends on Zlocal ! 
Why ?
→ slice scan range into Nindep regions 
     of size ~ peak width
→ search for a peak in each region

 ⇒ Indeed gi es Ntrials=Nindep.

Howe er this misses peaks sitting on 
edges between regions 

 true N⇒ trials is > Nindep!

N trials = 1 + √
π
2

N indep Zlocal

N indep =
scan range
peak width
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Global Signifcance from Asymptotics
Principle: approximate the global p- alue in the asymptotic limit
→ reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

→ Trials factor is not just Nindep, 
     also depends on Zlocal ! 
Why ?
→ slice scan range into Nindep regions 
     of size ~ peak width
→ search for a peak in each region

 ⇒ Indeed gi es Ntrials=Nindep.

Howe er this misses peaks sitting on 
edges between regions 

 true N⇒ trials is > Nindep!

N trials = 1 + √
π
2

N indep Zlocal

N indep =
scan range
peak width



54

Illustrative Example
Test on a simple example: generate toys with
→ flat background (100 e ents/bin)
→ count e ents in a fxed-size sliding window, look for excesses
Two confgurations:
1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as abo e, anywhere in the spectrum

Predefned
Slices

Largest excess in predefned slices

Example toy

Largest excess anywhere
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Illustrative Example (2)
Very diferent results if the excess is near a boundary :

1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as abo e, anywhere in the spectrum
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Illustrative Example (3)

Zlocal

pglobal(Zlocal)

Normalized 
Zlocal distribution

No LE
E

Search in predefned 
bins: Ntrials = 10

Search 
everywhere:

Searching everywhere gives the 
extra Zlocal dependence

N tr
ia

ls
≈

1
+ √

π
2

N in
de

p
Z lo

ca
l

Search in predefned bins

Search everywhere
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ZGlobal Asymptotics Extrapolation
Asymptotic trials factor (1 POI):

How to get Nindep i Usually work with a slightly diferent formula:

 ⇒ calibrate for small Ztest, apply result to higher Zlocal.

Can choose arbitrarily small Ztest 
 ⇒many excesses
 ⇒ can measure Nup in data (1 “toy”)

Can also measure <Nup> in multiple toys
if large stat uncertainty from
too few excesses

N trials = 1 + √
π
2

N indep Zlocal

Number of excesses with Z > Ztest 

Ztest

Zlocal

Nup ~ 20

N trials = 1 +
1

plocal
⟨ Nup(Ztest)⟩ e

Ztest
2
−Z local

2

2
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In 2D O. Vitells and E. Gross, Astropart. Phys. 35 (2011) 230

Generalization to 2D scans: consider
sections at a fxed Ztest, compute its
Euler characteristic φ, and use

→ Generalizes 1D 
bump counting

Now need to determine
2 constants N1 and N2,
from Euler φ measurements
at 2 diferent Ztest  alues.

1 – 1 = 0

5

1 – 4
= -3

φ = 2



Outline

Computing Statistical Results
Limits, continued
Confdence Inter als

Profling

Look-Elsewhere Efect

Bayesian methods

Statistical modeling in practice

BLUE 

https://arxiv.org/abs/1105.4355
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Frequentist vs. Bayesian
All methods described so far are frequentist
• Probabilities (p- alues) refer to outcomes 

if the experiment were repeated identically
many times

• Parameters  alue are fxed but unknown

• Probabilities apply to measurements:
→ “mH = 125.09 ± 0.24 GeV” :

→ i.e. [125.09 – 0.24 ; 125.09 + 0.24 ] GeV has p=68% to contain the true mH.
→ if we repeated the experiment many times, we would get diferent 
inter als, 68% of which would contain the true mH.

→ “5σ Higgs discovery”
• if there is really no Higgs, such fluctuations obser ed in 3.10-7 of experiments

Not exactly the crucial question – what we would really like to know is
What is the probability that the excess we see is a fuctuation
→ we want P(no Higgs |data) – but all we ha e is P(data | no Higgs)

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*–σ     μ*    μ*+σ
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Frequentist vs. Bayesian
Can use Bayes’ theorem to address this:

Can compute P(μ|data), if we provide P(μ)
→ Implicitly, we ha e now made μ into a random  ariable

– Is mH, or the presence of H(125), randomly chosen i
– In fact, diferent defnition of p: degree of belief, not from frequencies.
– P(μ) Prior degree of belief – critical ingredient in the computation

Compared to frequentist PLR:
⊕ answers the “right” question
⊖ answer depends on the prior

P (μ∣data) =
P (data∣μ)

P (data)
P (μ)

“Bayesians address the questions 
e eryone is interested in by using 
assumptions that no one belie es. 
Frequentist use impeccable logic to 
deal with an issue that is of no 
interest to anyone.”  - Louis Lyons

same as in the frequentist 
formalism (=likelihood)

irrelevant normalization factor

Prior Probability
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Bayesian methods
Probability distribution (= likelihood) : same form as frequentist case, but
P(θ) constraints now priors for the systematics NPs, P(θ) 
                                    not auxiliary measurements P(θmes; θ)

 ⊕ Simply integrate them out, no need for profling:
→ Use probability distribution P(μ) directly for limits, credibility inter als
e.g. defne 68% CL (“Credibility Le el”) inter al [A, B] by: 

 ⊖ No simple way to test for disco ery
⊖ Integration o er NPs can be CPU-intensi e

Priors : most analyses still using flat priors in the analysis  ariable(s)
Þ Parameterization-dependent: if flat in G´B , then not flat in κ…
→ Can use the Jefreys’ or reference priors, but difcult in practice

Frequentist-Bayesian Hybrid methods (“Cousins-Highland”)
• Integrate out NPs as in Bayesian measurements
• Once only POIs left, Use P(data|μ) in a frequentist way

→ “Bayesian NPs, frequentist POIs”
• Some use in Run 1, now phased out in fa or of frequentist PLR.

P (μ) =∫ P (μ ,θ) dθ

∫
A

B

P (μ ) dμ = 68 %
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Bayesian methods and CLs: CLs computation

L(n ; S ,θ) = G (n ;S+B+σ systθ ,σ stat) G(θobs=0 ;θ ,1)

Conditional MLE: ^̂θ(μ) =
σ syst

σ stat
2

+σ syst
2

(n − S−B)
PLR : λ(μ) = (

S+B − n

√ σ stat
2

+σ syst
2 )

2

Gaussian  from pre ious studies, CL⇒ s limit is

CLs :    Sup
CLs = n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2
+σ syst

2 ) ) ] √σ stat
2

+σ syst
2

MLE: Ŝ = n−B

Gaussian counting with systematic on background: n = S + B + σsystθ
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Bayesian methods and CLs: Bayesian case

P (n ∣ S ,θ) = G (n ;S+B+σ syst θ ,σ stat) G (θ ∣ 0, 1)

Gaussian counting with systematic on background: n = S + B + σsystθ

Bayesian: G(θ) is actually a prior on θ  perform integral (⇒ marginalization)

P (n ∣ S) = G (S ; n−B , √σ stat
2

+σ syst
2

)

∫
Sup

∞

P (S∣ n)dS = 5 % = [ 1−Φ (
Sup−(n−B)

√σ stat
2

+σ syst
2 ) ] [ Φ (

n−B

√σ stat
2

+σ syst
2 ) ]

−1

P (S ∣ n) = G (S ;n−B ,√σ stat
2

+σ syst
2

) [ Φ (
n−B

√σ stat
2

+σ syst
2 ) ]

−1

same result as CLs!

same efect as profling!

Need P(S|n)  a prior for S – take flat PDF o er S > 0⇒

 Truncate Gaussian at S=0: ⇒ P (S ∣ n) = P (n ∣ S) P (S)

Bayesian Limit:

Sup
Bayes

= n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2

+σ syst
2 ) ) ] √σ stat

2
+σ syst

2
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Example: W’→lν Search
• POI: W’ σ´B → use flat prior over [0, +¥[.
• NPs: syst on signal ε (6 NPs), bkg (6), lumi (1) → integrate o er Gaussian priors

arXi :1706.04786 
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Why 5σ ?
One-sided disco ery:  5σ  p⇔ 0 = 3 10-7   1 chance in 3.5M⇔

→ O erly conser ati e i
→ Do we e en know the sampling distributions so far out i

Reasons for sticking with 5σ (from Louis Lyons):
• LEE : searches typically co er multiple 

independent regions 
 Global p- alue is the  rele ant one⇒

Ntrials ~ 1000 : local 5σ   O(10⇔ -4) more reasonable
• Mismodeled systematics: factor 2 error in 

syst-dominated analysis  factor 2 error on Z…⇒
• History: 3G and 4G excesses do occur regularly,

for the reasons abo e
• “Subconscious Bayes Factor” : p- alue should be

at least as small as the subjecti e p(S):

Extraordinary claims require extraodinary evidence
 ⇒ Stay with 5σ...

Local 3.9G, p0 = 5E-5
Global 2.1G, p0 = 2E-2

P( fluct) =
P ( fluct∣B)P (B)

P( fluct∣S)P(S) + P ( fluct∣B)P (B)

file:///home/nberger/Data/Applications/analysisDoc/PDF/1706.04786.pdf
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https://arxiv.org/abs/1409.1903
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Statistical Modeling: in Practice
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Bulding statistical models

So far focus has been on concepts, but building a statistical model also 
requires numerical inputs:
• Data PDFs for all model components
• Constraint PDFs for all sources systematics
• Impact of each systematic uncertainty on all rele ant model parameters

→ Statistical methods are only as accurate (and/or optimal) as the description 
provided by the model!

Technically, MC simulation pro ides most of these inputs. Howe er 2 
problematic issues:
• Potential MC/data diferences
• Limited MC statistics 

Which need to be addressed with (yet more) systematics.
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Statistical Modeling:
I. Component PDFs



71

PDFs : Binned likelihood 
Binned case:
→ PDF usually just a normalized histogram, from 
• MC sample or 
• Data control region (CR)

 ⇒ Statistical uncertainties on the prediction:
• Data CR: counts as statistical uncertainty
• MC sample: uncertainty can be reduced without collecting more data 

(just need more CPU!)  Counted as ⇒ systematic

Independent counts in each bin 
 a separate ⇒ MC statistics NP in each bin

→ Poisson constraints Pois(Ni
MC; Ni

true)

Total uncertainty ~ 

 ⇒ need enough MC to a oid spoiling the sensiti ity! 

Eur. Phys. J. C (2012) 72: 2241

JHEP 12 (2017) 024

√σ data stats
2

+σMC stats
2

+  ...



72

MC Statistics Requirements
e.g. Discovery: Total uncertainty:

 ⇒ need 

By how much i 

In the presence of a signal (e.g. limit-setting,
Nsig measurement), rele ant uncertainty is √(S+B).
 ⇒ S/B also matters:

• low S/B : same problem as for disco ery
• high S/B : no issue, dominated by uncertainty

        on signal itself.

Eur. Phys. J. C (2012) 72: 2241

σ S
2
∼ √σ data stats

2
+σMC stats

2
+ ...

σMC stats≪σ data stats BMC/Bdata

(α)
 σMC stats/σdata stats

(1/√α)
σdata+MC stats/σdata stats

[ √(1+α-1) )

1 1 1.41
4 0.5 1.12
25 0.2 1.02

BMC≫Bdata

σ S

S
∼ √ 1 +

S
B

+
Bdata

BMC

1
1+S /B

http://link.springer.com/article/10.1140/epjc/s10052-012-2241-5
https://link.springer.com/article/10.1007/JHEP12(2017)024
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PDF shapes: Unbinned likelihood
Smooth backgrounds : Describe distribution using appropriate function 
 ⇒ Unbinned likelihood. Describes sideband + signal region in one ft.

Crystal Ball
Function

Gaussians

Exp

Phys. Re . Lett. 118 (2017), 191801

BDT > 0.9

S. Oggero Ph. D. Thesi
s

Phys. Lett. B241 (1990) 278-282

ARGUS function

√ 1−
M2

E2

exp[−a ( 1−
M2

E2 ) ]

Functions help 
smooth MC stats 
fluctuations

http://link.springer.com/article/10.1140/epjc/s10052-012-2241-5
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PDF Shapes: Unbinned likelihood
Widely used in HEP for smooth backgrounds (→ no resonances or threshold)

exp(-a.m + b.m2)
(Gaussian )

X→ jj Search
Phys.Lett. B754 (2016) 302-322

a ( 1−
M
E )

b

(
M
E )

c

H→ γγ Measurements

https://inspirehep.net/record/1517782
http://www.nikhef.nl/pub/services/biblio/theses_pdf/thesis_S_Oggero.pdf
http://www.nikhef.nl/pub/services/biblio/theses_pdf/thesis_S_Oggero.pdf
http://inspirehep.net/record/294600
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Signal Bias in Unbinned likelihoods
Function usually ad-hoc (no closed form expression for (theory  detector ⊗
efects), or usually e en theory by itself…)
→ may not accurately describe the data

 ⇒ Introduce free parameters, ft in sidebands
→ Biases may still remain due to 
     functional form itself

Problematic especially for low S/B
→ small mismodelings of B can be large
    compared to S.

→ χ2 test in sideband may not help: e en 
a large bias on the scale of S (  B) may ≪
remain within stat errors in the sideband!

Situation doesn’t impro e with more luminosity:
→ Reduced statistical uncertainties in sideband, but
→ Also reduced GS, in the same proportion

2.5σ

exponential

Jan 2012 Higgs search paper
(4.9 fb-1 of 2011 data)

http://inspirehep.net/record/1408292
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Signal Bias in Unbinned likelihoods
Function usually ad-hoc (no closed form expression for (theory  detector ⊗
efects), or usually e en theory by itself…)
→ may not accurately describe the data

 ⇒ Introduce free parameters, ft in sidebands
→ Biases may still remain due to 
     functional form itself

Problematic especially for low S/B
→ small mismodelings of B can be large
    compared to S.

→ χ2 test in sideband may not help: e en 
a large bias on the scale of S (  B) may ≪
remain within stat errors in the sideband!

Situation doesn’t impro e with more luminosity:
→ Reduced statistical uncertainties in sideband, but
→ Also reduced GS, in the same proportion

polynomial

3.0σ

Jan 2012 Higgs search paper
(4.9 fb-1 of 2011 data)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-02/
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Signal Bias in Unbinned likelihoods
If data cannot fx B shape, use MC
→ Measure signal bias NSS on “credible”
shapes taken from MC (Spurious signal)
→ take the maximum bias as systematic

Works well if the true distribution is somewhere 
in the space of MC distributions scanned…

Also Impose:

NSS < 20% σstat (small contribution to Gtotal)
OR 

NSS < 10% Sexp (small bias on measured S)

Second criterion more stringent at higher S/√B.

If criteria are not met, mo e to more complex 
functions (→ more free parameters)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-02/
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Signal Bias in Unbinned likelihoods
Problem: for small MC stats, measured bias dominated by fluctuations
→ again, need high MC stats (BMC > 25 Bdata) when S/B is low.

→ Can compromise on criterion le el
     (50% instead of 20% i)

→ As before, better situation at at high S/B 

BMC/Bdata

(α)
 σMC stats/σdata stats

(1/√α)
σdata+MC stats/σdata stats

[ √(1+α-1) )

1 100% 1.41
4 50% 1.12
25 20% 1.02

Phys. Re . Lett. 118, 182001 (2017)

NSS < 20% σstat
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Usual Functions
Polynomials:  arious basis choices (Chebyshe , Bernstein,…)

Bernstein basis:

→ Positive coefcients  positive polynomial  ⇒
everywhere, useful to a oid numerical issues 
in -2 log(PDF) computation

Exponential family : exp(polynomial)
Power laws : xα, xα(1-x)β, …

Gaussians
Crystal Ball Functions

→ Sums of the above
→ Convolutions (resolution  Breit-Wigner, ...)⊗

Comm. Soc. Math. Kharko  13, 1-2, 1912. 

Bk , n(x)=( kn ) xk
(1− x)n−k  for 0≤x≤1

JINST 10 (2015) no.04, P04015

https://inspirehep.net/record/1608879
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Discrete Profling
Idea: treat the type of function and 
number of parameters as discrete 
NPs, profled in data
→ Let data choose the best shape
→ Similar principle as other NPs,
except for discrete nature
→ Need a penalty on Npars to a oid
     always choosing functions with high Npars 

→ Used in the CMS H→γγ analysis,
works well in this context.

Caveats:
→ for N categories and M functional forms, MN

 possibilities to check in principle – difcult in practice
→ Need a well-chosen pool of sensible functions for
the method to work
→ Large MC samples for selection and checks

JINST 10 (2015) no.04, P04015

Take lower envelope of all 
functions when profling

https://inspirehep.net/record/1312971
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Gaussian Processes: 1-slide Summary

Image Credits: 
K. Cranmer 

http://inspirehep.net/record/1304454
https://inspirehep.net/record/1312971
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Gaussian Processes: Longer 1-slide Summary
• Describe background distribution through the correlations between values 

at diferent points.
• More flexible than a functional form
• Correlation function (Kernel) can be

– Defned using a length scale, to ignore narrow peaks
– Obtained from frst principles (e.g. from known JES/PDF efects)

 ⊕ More flexible than functional form, degrees of freedom less ad-hoc
 ⊖ Still need large MC samples to check for signal bias
 ⊖ Mainly for Gaussian processes, not well-adapted to Poisson regime

arXi :17 09.056 81

K (x1 , x2)=exp [−(x1− x2)
2

2 L2 ]
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Statistical Modeling:
II. Systematics

https://inspirehep.net/record/1624168
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Systematics NPs
Each systematics NP represent an independent source of uncertainty
 ⇒ Usually constrained by a single 1-D PDF (Gaussian, etc.)

Sometimes multiple parameters conjointly constrained by an n-dim. PDF.
→ multiple measurements constraining multiple NPs 
Assume n-dim Gaussian PDF: then can diagonalize the covariance matrix C 
and re-express the uncertainties in basis of eigen ector NPs  ⇒ n 1-dim PDFs

Can also diagonalize to prune irrele ant uncertainties: keep NPs with large 
eigen alues, combine in quadrature the others 

Phys.Re . D96 (2017) no.7, 072002

80 NPs
19 NPs vs 80 3 NPs vs. 80
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Systematics : Impact on Model
The efect of each NP θi should be propagated
 to all the rele ant model parameters Xj. 

→ Propagation through MC: 
1. Apply ±1G systematic  ariations in MC, 
     ⇒ obtain shifted  alues Xj

± = Xj
0 (1 ± Δij).

    → Possibly smooth out MC stats efects

2. Implement systematic in model, e.g. replace
    or morph shapes:

→ can afect e ent yields, shapes, etc.
Assumes Gaussian uncertainties and linear impact on model parameters

X j → X j
0
(1 + Δ ijθi)

θ=0θ=-1 θ=+1

Constrained by unit Gaussian

http://inspirehep.net/record/1519834
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Systematics : Constraints
Ideally, constraint = likelihood of auxiliary measurement 
  e.g. Poisson for constraint from counting in a low-stat CR.⇒

Sometimes no clear auxiliary measurement
 Semi-arbitrary “pseudo-measurement” moti ated by Central Limit Theorem:⇒

• Gaussian for additi e corrections
• Log-normal for multiplicati e corrections

Gaussian: 
• represent impact as  

→ or similar morphing for distributions

Can include asymmetric  ariations Δ+, Δ-:

Howe er discontinuity in deri ati e at 0, so use smooth interpolation instead,
e.g. implementation in RooStats::HistFactory::FlexibleInterpVar.

X j → X j
0
(1 + Δ ijθi)

X j → X j
0 ( 1 + {

Δ ij
+
θ i θ i > 0

Δ ij
−
θ i θ i < 0 } )

Constrained by unit Gaussian
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Systematics : Log-normal Constraint
Log-normal: x ~ log-normal if log(x) is normal
→ always > 0, useful to a oid numerical issues
→ PDF:

Howe er usually simpler to implement as :
X j → X j

0 exp(κ ijθi)

P (s ; X0,κ)=
1

x κ √2π
exp (− 1

2
( log (x)−X0

κ )
2

)

log
n
√ (X0 k1) (X0 k2) ...(X0 kn) =

1
n∑i=1

n

log(X0 ki) ∼
n→∞

G ( log X0 ,
RMS( log (k ))

√ n
=κ)

where θi is constrained by a unit Gaussian as usual
→ Correct form for a multiplicati e uncertainty:

Similarly to Gaussian → represent X = X0 eκθ ~ G(log X0, κ) if  θ ~ G(0,1)
Which κ to use ? κ = RMS(X) only at frst order. For larger uncertainties,
 e.g. Match ±1σ variations: Xj(θ=±1) = Xj

± ⇒ κ± =± log (X j
±
/ X j

0
)

Implemented in RooStats::HistFactory::FlexibleInterpVar.
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Systematics : Theory Constraints
Missing high-order terms in perturbative calculations: e aluate from scale
      ariations – but no underlying random process. Possible constraint shapes:

• Gaussians (ATLAS/CMS Higgs analyses, see Yellow Report 4, I.4.1.d)
→ Usually se eral independent “sources” of 
uncertainty(QCD/EW/resummation) 
 ⇒ o erall uncertainty may be rather Gaussian

→ Numerically well-beha ed
→ Uncertainties add in quadrature as usual

• Flat constraints : “100% confdence” inter als
→ no preference for any  alue in the range
→ Need regularization to a oid numerical
     issues
→ uncertainties add linearly

→ For Higgs cross-sections, rather similar results for both cases
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Constraints : Two-point systematics
Sometimes diferences between 2 discrete cases → e.g. Pythia  s. Herwig
Solutions:
• Results for one case only
• Full results for both cases 
• Single result with an uncertainty that co ers the diference

→ Two-point uncertainty

Usually implemented as 1D linear interpolations between the two cases
→ Howe er cannot guarantee this co ers the space of 
     possible confgurations

 ⇒ This is not even a pseudo-measurement...

Ideally, need to defne proper uncertainties within
a single model, which would co er the other cases
→ e.g. showering uncertainties within Pythia,
             co ering Herwig
→ Usually a difcult task

W. Verkerke, SOS 2014

https://inspirehep.net/record/1494411
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Profling Issues
Too simple modeling can ha e unintended efects
→ e.g. single Jet E scale parameter:  
Þ Low-E jets calibrate high-E jets – intended i

Two-point uncertainties: 
→ Interpolation may not co er full confguration
space, can lead to too-strong constraints

Jet E

JE
S

θJES Pre-ft

Post-ft

Pre -ft constraint Post -ft constraint

W. Verkerke, SOS 2014

NP central values and uncertainties in pull/impact plots
provide important “debugging” information for profling

https://indico.in2p3.fr/event/9742/contribution/16/material/1/0.pdf


Outline

Profling

Look-Elsewhere Efect

Bayesian methods

Statistical modeling in practice
Building binned likelihoods
Choosing PDFs in unbinned likelihoods
Implementing systematics

BLUE 

https://indico.in2p3.fr/event/9742/contribution/16/material/1/0.pdf
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BLUE
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BLUE
Commonly-used ansatz for combination
of measurements:
1. Build a χ2: (same as -2logL 

  for Gaussian L)

2. Estimate combined X from minimum of χ2(X)

• In the Gaussian case, equi alent to ML solution 
 inherits good properties:⇒

– Unbiased : <X̂> = X*
– Optimal: minimizes the combined uncertainty

• Solution is a linear combination of the inputs:

Þ  “Best Linear Unbiased Estimator” (BLUE)

χ
2
(X )=∑

i
( X i

obs
−X ) C ij

−1 ( X j
obs
−X )

Cij : covariance matrix of 
measurements:

C=[
σ1

2
ρσ1σ2 ⋯

ρσ1σ2 σ2
2

⋯

⋮ ⋮ ⋱
]

ρ: correlation coefcients 

X̂ =∑
i

λ i X
obs , i

λi = combination weight 
of measurement i

λ =
C−1 J

JT C−1 J
, J=(

1
1
⋮

)
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BLUE Example
Example: World mtop combination

ATLAS-CONF-2014-008

Limitation: relies on Gaussian assumptions (satisfed in this case!)
Negati e weights possible! (for large correlations, see Eur. Phy. J. C 74 (2014), 2717)
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BLUE and PLR
X1 = X + Δ1θ ∼ G (X* ,σ 1)

X2 = X + Δ2θ ∼ G (X* ,σ 2)

θ ∼ G (0, 1)

σ1 , tot
2

= σ1
2
+ Δ1

2

PLR Computation:    2 measurements 
+ 1 auxiliary measurement

Single measurement: λ(X ,θ) =
1

σ1
2 (X + Δ1θ−X1

obs
)

2
+ (θ−θ

obs
)

2

Combination: λ(X ,θ) =
1

σ1
2 (X + Δ1θ−X1

obs
)

2
+

1

σ2
2 (X + Δ2θ−X 2

obs
)
2
+ (θ−θ

obs
)

2

X̂ = λ 1 X1
obs

+ λ 2 X2
obs

+ λθθ
obs λ 1(2) =

σ 2(1) , tot
2

− Δ 1Δ 2

σ 1 , tot
2

+ σ2 , tot
2

− 2Δ1Δ 2

σ X , tot
2

=
σ1 , tot

2
σ 2 , tot

2
−Δ1

2
Δ 2

2

σ 1 , tot
2

+ σ2 , tot
2

− 2Δ 1Δ2

λ (X ) =
(X− X̂ )

2

σ X , tot
2

X̂ = X1
obs

− Δ 1θ
obs

θ̂ = θ
obs

λ (X ) =
(X− X̂ )

2

σ1, tot
2

MLEs:

PLR:

MLE:

PLR:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-008/
https://inspirehep.net/record/1242645
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BLUE and PLR
BLUE computation: measurements X1 and X2 with uncorrelated 
statistical uncertainties G1 and G2, correlated systematics Δ1 and Δ2. 

Single measurement: stat uncertainty σ1 , systematic Δ1

- Uncorrelated uncertainties
- Assume e erything is Gaussian
 ⇒ Uncertainties add 

    in quadrature:

C = [
σ1, tot

2
ρσ1, totσ 2, tot

ρσ 1, totσ 2, tot σ2, tot
2 ] ρ =

Δ1Δ 2

σ 1 , totσ 2 , tot

Eur. Phys. J. C, 74 (2014) 2717

σ1 , tot
2

= σ1
2
+ Δ1

2

Combination:

BLUE weights X̂ = λ 1 X1
obs

+ λ 2 X 2
obs λ 1(2) =

σ 2(1) , tot
2

− ρσ 1 , totσ 2 , tot

σ 1 , tot
2

+ σ2 , tot
2

− 2ρσ 1 , totσ 2 , tot

σ X , tot
2

=
σ1 , tot

2
σ 2 , tot

2
(1 − ρ

2
)

σ 1 , tot
2

+ σ2 , tot
2

− 2ρσ1 , totσ 2 , tot
Propagate uncertainties from C:
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Negative BLUE Weights

λ 2 =
σ 1 , tot(σ 1 , tot−ρσ2 , tot)

σ 1 , tot
2

+ σ 2 , tot
2

− 2ρσ 1 , tot σ 2 , tot

< 0  for  ρ >
σ1 , tot

σ 2 , tot

Occasionally, negati e BLUE weights:
Can happen if ρ ~ 1: 

Not intuiti e! (Can also ha e λ2 = 0 for G1,tot = ρ G2,tot…)
Can be explained in the PLR picture:

Without correlated systematics (Δ = 0):
X1

obs X2
obsX̂

λ 1(2) =
σ 2(1)

2

σ 1
2
+ σ2

2
> 0

X1 = X + Δ θ

X2 = X + 2Δ θ

X1
obs X2

obsX̂
λ1 < 0

Δ

Δθ̂ 

ρ ~ 1  θ measurement is important  possibly  ery diferent MLE than X⇒ ⇒ 1⊕X2...

With large correlated systematics (Δ  σ≫ 1,2)

X
1

X
2

Δθ̂

θ̂  alue makes X1 and X2 
match obser ations, 
small pull on θ if Δ is large

https://inspirehep.net/record/1242645
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Uncertainty Decomposition
Often useful to break down uncertainties into components (stat + syst, etc.)

PLR approach: perform measurement twice
1. With all uncertainties included 

→ nominal uncertainty σtotal.
2. Remo ing some uncertainties 

(e.g. all syst uncertainties) → σno-syst

Þ Subtract in quadrature: 

BLUE-based approach: 
1. Propagate each source of uncertainty (stat & syst) to the obser ables
2. Propagate through to the measurement using

the BLUE weights

The two methods are not completely equivalent (recently disco ered!)
→ In the BLUE case, weights still computed including systematics efects 

X̂ =∑
i

λ i X
obs , i

σ syst=√σ total
2

−σno-syst
2
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Presentation of Results
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Presentation of Results
Measurements often recast to constrain a particular theory model. 
→ Ideally, by reparameterizing the likelihood and repeating the measurement

Þ Done by experiments for selected benchmark models
→ Howe er, often too complex to implement widely:
• Full likelihood typically not published
• theorists typically do not want to deal with 4000 NPs...

→ Other approaches: e.g. reimplementing the analysis in a public fast-
simulation framework (e.g. SUSY searches). Howe er clear accuracy limitations



101

Presentation of Results
→ Current solution: publish co ariance matrices in HEPData, together with the 
indi idual measurements

→ Only valid in the Gaussian approximation
→ To go further, need some form of simplifed likelihoods
• Profle likelihood – function of POI only (NPs profled out)
• Additional terms for non-Gaussian efects
→ Signifcantly more complex (many dimensions!)
→ Will be needed e entually as measurements become syst-dominated
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Conclusion
• Signifcant e olution in the statistical methods used in HEP

• Variety of methods, adapted to  arious situations and target results

• Allow to
– model the statistical process with high precision in difcult situations 

(large systematics, small signals)
– make optimal use of a ailable information

• Implemented in standard RooFit/RooStat toolkits within the ROOT 
framework, as well as other tools (BAT)

• Impro ement and uniformization eforts are still ongoing

• Still many open questions and areas that could use impro ement
→ e.g. how to present results with all a ailable information to the “outside”

https://hepdata.net/
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Extra Slides
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Uncertainty decomposition
All systematics NPs fxed to 0 : statistical uncertainty only

1σ intervals

exp. syst. NPs fxed to 0 : stat+theory uncertainty

σ syst = √σ total
2

− σ stat
2

σ theo = √σ stat+theo
2

− σ stat
2

Subtraction in quadrature

μ = 0.99 ± 0.12 (stat) ± 0.06 (syst) ± 0.06 ( theo)
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Gaussian Profling

μ

θ

L(μ ,θ ;μ̂ , θ̂) = exp [− 1
2 (

μ−μ̂

θ−θ̂ )
T

C−1 (
μ−μ̂

θ−θ̂ ) ]

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ (μ−μ̂)
2
+ 2 Fμ θ(μ−μ̂ )(θ−θ̂) + Fθ θ(θ−θ̂)

2

“data”
C = [ σ μ

2
γ σμσ θ

γ σμ σθ σθ
2 ]

Gaussian measurement with 1 POI μ and 1 NP θ:

→ λ(μ, θ) defnes an ellipse:

σμ σ θ

Uncertainty on μ:
● From C, with θ 

included: σμ

F ≡ C−1

(μ̂ , θ̂ )

= [ Fμ μ Fμ θ

Fμ θ Fθθ ]
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Gaussian Profling

^̂
θ (μ

)

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ (μ−μ̂)
2
+2 Fμ θ(μ−μ̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

Profle likelihood ratio:

Uncertainty on μ:

● From C:
● From PLR:

λ(μ ,
^̂
θ(μ) ;μ̂ , θ̂ ) = ( Fμμ−Fμ θ Fθ θ

−1 Fθμ ) (μ−μ̂)
2
= Cμμ

−1
(μ−μ̂)

2
= ( μ−μ̂

σμ )
2

Proof of Wilks’ theorem...

μ

θ

^̂
θ(μ) = θ̂ − Fθθ

−1 Fθ μ(μ − μ̂)

Profled θ (minimize λ at fxed μ) :

σμ

σμ

Profled θ crosses ellipse at 
vertical tangents by 
defnition (L is lower at other 
points on the tangent)

Fμμ ≠ Cμμ

−1  !!

C = [ σμ

2
γ σμσ θ

γ σμσθ σθ

2 ]

(μ̂ , θ̂ )

F = [
Fμμ Fμ θ

Fμ θ Fθθ ]



107

Gaussian Profling

λ(μ ,θ = θ̂ ;μ̂ , θ̂) = Fμμ(μ−μ̂)
2
= (

μ−μ̂

σμ √ 1−γ
2 )

2

F ≡ C−1
=

1

1−γ
2 [

1

σ μ

2

γ
σμ σ θ

γ
σμ σθ

1

σ θ
2 ]→ For fxed θ = θ̂, λ(μ) defnes an inter al:

σμ √ 1 − γ
2

μ

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ(μ−μ̂)
2
+2 Fμ θ(μ−μ̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

θUncertainty on μ:

● From C:
● From PLR:

● From λ(μ):

σμ

σμ √1 − γ
2

σμ

(μ̂ , θ̂ )
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Gaussian Profling

λ(μ ,θ = θ̂ ;μ̂ , θ̂) = Fμμ(μ−μ̂)
2
= (

μ−μ̂

σμ √ 1−γ
2 )

2

F ≡ C−1
=

1

1−γ
2 [

1

σ μ

2

γ
σμ σ θ

γ
σμ σθ

1

σ θ
2 ]→ For fxed θ = θ̂, λ(μ) defnes an inter al:

σμ √ 1 − γ
2

μ

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ(μ−μ̂)
2
+2 Fμ θ(μ−μ̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

θ

Total uncertainty

Uncertainty on μ:

● From C:
● From PLR:

● From λ(μ):

σμ

σμ √1 − γ
2

σμ

σμ = √ ( √1 − γ
2
σμ )

2
+ ( γ σμ )

2

Stat uncertainty Syst uncertainty
(μ̂ , θ̂ )
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Comparison with LEP/TeVatron defnitions
Likelihood ratios are not a new idea:
• LEP: Simple LR with NPs from MC

– Compare μ=0 and μ=1
• Tevatron: PLR with profled NPs

Both compare to μ=1 instead of best-ft μ ̂

→ Asymptotically:
• LEP/Tevaton: q linear in μ Þ ~Gaussian
• LHC: q quadratic in μ Þ  ~χ2 

→ Still use TeVatron-style for discrete cases

H0
H1

μ=1
H1

H0

qLEP=−2 log
L(μ=0,~θ)

L(μ=1,~θ)

qTevatron=−2 log
L(μ=0, ^̂θ0)

L(μ=1, ^̂θ1)

LEP/Te atron

LHC

μ=0

A
ndrey Koryto , EPS 20 11
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Spin/Parity Measurements
Phys. Re . D 92 (2015) 012004 
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