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Lecture Structure
• Lecture I

– What is Machine Learning
– Linear Regression and Classification
– Fitting a model: Cost Functions, Regularization, Gradient Descent

• Lecture II
– Intro to Neural Networks, Deep Learning
– Decision Trees and ensemble methods
– Dimensionality reduction
– Clustering

• Many topics we won’t be able to cover in such a short time
– SVM
– Gaussian Processes
– Variational Inference
– Hidden Markov Models
– …
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What is Machine Learning? 3



What is Machine Learning?

• Giving computers the ability to learn without 
explicitly programming them (Arthur Samuel, 1959)

• Statistics + Algorithms

• Computer Science + Probability + Optimization 
Techniques

• Fitting data with complex functions

• Mathematical models learnt from data that 
characterize the patterns, regularities, and 
relationships amongst variables in the system 

4



Where is ML Used, an Incomplete List
• Natural Language Processing
• Speech and handwriting 

recognition
• Object recognition and computer 

vision
• Fraud detection
• Financial market analysis
• Search engines
• Spam and virus detection
• Medical diagnosis
• Robotics control
• Automation: energy usage, 

systems control, video games, 
self-driving cars

• Advertising
• Data Science 
• …
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Machine Learning Applied Widely in HEP
• In analysis:

– Classifying signal from background, especially in 
complex final states

– Reconstructing heavy particles and improving the 
energy / mass resolution

– …

• In reconstruction:
– Improving detector level inputs to reconstruction 
– Particle identification tasks
– Energy / direction calibration
– …

• In the trigger:
– Quickly identifying complex final states
– …

• In computing:
– Estimating dataset popularity, and determining how 

number and location of  dataset replicas
– …
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Machine Learning: Models

• Key element in machine learning is a mathematical 
model

– A mathematical characterization of  system(s) of  
interest, typically via random variables

– Chosen model depends on the task / available data
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Machine Learning: Models

• Key element in machine learning is a mathematical 
model

– A mathematical characterization of  system(s) of  
interest, typically via random variables

– Chosen model depends on the task / available data

– Classification:
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Machine Learning: Models

• Key element in machine learning is a mathematical 
model

– A mathematical characterization of  system(s) of  
interest, typically via random variables

– Chosen model depends on the task / available data

– Regression:
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Machine Learning: Models

• Key element in machine learning is a mathematical 
model

– A mathematical characterization of  system(s) of  
interest, typically via random variables

– Chosen model depends on the task / available data

– Clustering:
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Machine Learning: Models

• Key element in machine learning is a mathematical 
model

– A mathematical characterization of  system(s) of  
interest, typically via random variables

– Chosen model depends on the task / available data

– Dimensionality 
reduction:
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Machine Learning: Models

• Key element in machine learning is a mathematical 
model

– A mathematical characterization of  system(s) of  
interest, typically via random variables

– Chosen model depends on the task / available data

• Learning: estimate statistical model from data

• Prediction and Inference: using statistical model 
to make predictions on new data points and infer 
properties of  system(s) 
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Parametric vs. Non-parametric Models
• Parametric Models: models that do 

not grow in complexity with dataset 
size.  Fixed set of  parameters to 
learn
– Example: sum of  Gaussians, each with 

mean, variance, and normalization

• Non-Parametric Models: models 
that do not have a fixed set of  
parameters, often grow in 
complexity with more data
– Example: model predictions of  a new 

data point using nearest known 
datapoint.  The more known 
datapoints, the more complex is the 
model
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Learning 15

• Supervised Learning
– Classification
– Regression

• Unsupervised Learning
– Clustering
– Dimensionality reduction
– …

• Reinforcement learning
[Ravikumar] 



Notation

• X Î Rmxn

• x Î Rn(x1)

• x Î R
• X
• {xi}1

m

• y Î I(k) / R(k)
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Matrices in bold upper case:
Vectors in bold lower case
Scalars in lower case, non-bold

Sets are script
Sequence of  vectors x1, …, xm

Labels represented as
- Integer for classes, often {0,1}.  E.g. {Higgs, Z}
- Real number. E.g electron energy

• Variables = features = inputs
• Data point x = {x1, …, xn} has n-features

• Typically use affine coordinates: 
y = wTx + w0 → wTx

→ w ={w0, w1, ... , wn}
→ x  ={1,   x1, ... ,  xn}



Probability Review

• Joint distribution of  two variables:    p(x,y)

• Marginal distribution:     ! " = ∫! ", & '&

• Conditional distribution: 

• Bayes theorem:

• Expected value:

• Normal distribution:
– x~N(µ, s)    →
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Supervised Learning

• Given N examples with features {xi Î X} and 
targets {yi Î Y}, learn function mapping h(x)=y

– Classification: Y is a finite set of  labels (i.e. classes)

Y = {0, 1}  for binary classification, 
encoding classes, e.g. Higgs vs Background

Y = {c1, c2, … cn} for multi-class classification

represent with “one-hot-vector”  

→ yi = (0, 0,…, 1 ,…0) 

were kth element is 1 and all others zero for class ck
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Supervised Learning

• Given N examples with features {xi Î X} and 
targets {yi Î Y}, learn function mapping h(x)=y

– Classification: Y is a finite set of  labels (i.e. classes)

– Regression:    Y = Real Numbers 
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Supervised Learning

• Given N examples with features {xi Î X} and 
targets {yi Î Y}, learn function mapping h(x)=y

– Classification: Y is a finite set of  labels (i.e. classes)

– Regression:    Y = Real Numbers 

• Often these are discriminative models, in which case we model:
h(x) = p(y|x)

• Sometimes use generative models, estimate joint distribution p(y, x)
– Could estimate class conditional density p(x|y) and prior p(y)
– Use Bayes theorem to then compute: 
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h(x) = p(y|x) / p(x|y)p(y)



Unsupervised Learning

• Given some data D={xi}, but no labels, find 
structure in the data

– Clustering: partition the data into groups 
D={D1 È D2 È D3 … È Dk}

– Dimensionality reduction: find a low dimensional 
(less complex) representation of  the data with a 
mapping Z=h(X)
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Reinforcement Learning

• Models for agents that take actions depending on 
current state
• Actions incur rewards, and affect future states 

(“feedback”) 

• Learn to make the best sequence of  decisions to 
achieve a given goal when feedback is often delayed 
until you reach the goal
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Deep Reinforcement Learning with AlphaGo 23

Nature 529, 484–489 (28 January 2016)



Supervised Learning: How does it work? 24



Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss
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h(x; w)
Function with 

adjustable 
parameters

Loss 
Function

Compare 
prediction 
with true 

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

L(W,X)



Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss
– Use a labeled training-set to compute loss

– Adjust parameters to reduce loss function

– Repeat until parameters stabilize

• Estimate final performance on test-set
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h(x; w)
Function with 

adjustable 
parameters

Loss 
Function

Compare 
prediction 
with true 

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

L(W,X)



Empirical Risk Minimization

• Framework to design learning algorithms
– L(…) is a loss function comparing prediction h(…) with 

target y

– W(w) is a regularizer, penalizing certain values of  w
• l controls how much we penalize, and is a hyperparameter that we 

have to tune
• We will come back to this later

• Learning is cast as an optimization problem
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Average expected loss Model regularization

argmin
w

1

N

NX

i=1

L(h(xi;w), yi) + �⌦(w)



Example Loss Functions

• Square Error Loss: 
– Often used in regression

• Cross entropy:
– With y Î {0,1}
– Often used in classification

• Hinge Loss: 
– With y Î {-1,1}

• Zero-One loss
– With h(x; w) predicting label
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L(h(x;w), y) =
�
h(x;w)� y

�2

L(h(x;w), y) =� y log h(x;w)

� (1� y) log(1� h(x;w))

L(h(x;w), y) = max(0, 1� yh(x;w))

L(h(x;w), y) = 1y 6=h(x;w)

- Square Error
- Cross Entropy
- Hinge
- Zero-one

[Bishop] 



Maximum Likelihood

• Describe a process behind the data
• Write down the likelihood of  the observed data

• Where second equality holds if  data is independent and 
identically distributed

• Often minimize negative-log-likelihood for numerical 
stability
– Same as maximizing likelihood since log is monotonic and 

differentiable away from zero

29

L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)



Maximum Likelihood

• Describe a process behind the data
• Write down the likelihood of  the observed data

• Select parameters that make data most likely
– General strategy for parameter estimation
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L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)

w
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= argmax

w
L(w) = argmin

w
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Least Squares Linear Regression

• Set of  input / output pairs D = {xi , yi}i=1…n

– xi Î Rm

– yi Î R

• Assume a linear model      
h(x; w) = wTx

• Squared Loss function:

• Find w* = arg minw L(w)  

32

L(w) =
1

2
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Least Squares Linear Regression: Matrix Form

• Set of  input / output pairs D = {xi , yi}i=1…n

– Design matrix X Î Rnxm

– Target vector y Î Rn

33



• Rewrite loss:

• Minimize w.r.t. w:

Least Squares Linear Regression: Matrix Form

• Set of  input / output pairs D = {xi , yi}i=1…n

– Design matrix X Î Rnxm

– Target vector y Î Rn

34

L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)



• Rewrite loss:

• Minimize w.r.t. w:

• What if  we have correlated variables?  Multi-collinearity
– X is close to singular
– Inverse is highly sensitive to random errors

• Hint: Regularization can help!

Least Squares Linear Regression: Matrix Form

• Set of  input / output pairs D = {xi , yi}i=1…n

– Design matrix X Î Rnxm

– Target vector y Î Rn
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L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)



Linear Regression Example

• Reconstructed Jet energy vs. Number of  primary vertices

36

Eur. Phys. J. C (2015) 75:17



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

37

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

• Then 
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ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)
2

�

2

◆



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

• Then 

• Likelihood function:
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L(m) = p(y|X;m) =
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Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

• Then 

• Likelihood function:

40

Squared
loss function!

L(m) = p(y|X;m) =

Y

i
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Why Take a Probabilistic Approach?

• Allows us to get calibrated estimates of  p(y|x)

• Separates predictions from modeling

• A general framework for parameter estimation.
– Can use to fit other parameters of  the model. 
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Basis Functions

• What if  non-linear relationship between y and x?
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Basis Functions

• What if  non-linear relationship between y and x?

• Can choose basis functions f(x) to form new features

yi = wTf(xi)

– Polynomial basis f(x) ~ {1, x, x2, x3, …}, 
Gaussian basis, …

– Linear regression on new features f(x) 
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Basis Functions

• What if  non-linear relationship between y and x?

• Can choose basis functions f(x) to form new features

yi = wTf(xi)

– Polynomial basis f(x) ~ {1, x, x2, x3, …}, 
Gaussian basis, …

– Linear regression on new features f(x) 

• What basis functions to choose? Overfit with too much flexibility?
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What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways
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Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of  prediction
(bias) (variance)
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Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of  prediction
(bias) (variance)

• Simple models under-fit: will deviate from data (high 
bias) but will not be influenced by peculiarities of  data 
(low variance). 
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Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of  prediction
(bias) (variance)

• Simple models under-fit: will deviate from data (high 
bias) but will not be influenced by peculiarities of  data 
(low variance). 

• Complex models over-fit: will not deviate systematically 
from data (low bias) but will be very sensitive to data 
(high variance). 
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Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

49

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

50

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

51

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

• The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be. 



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

52

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

• The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be. 

• More Complexity will make the model "move" more to capture the 
data points, and hence its variance will be larger.



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y
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E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

• The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be. 

• More Complexity will make the model "move" more to capture the 
data points, and hence its variance will be larger.
– As dataset size grows, can reduce variance! Can use more complex model
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Regularization

• Can control the complexity of  a model by placing 
constraints on the model parameters
– Trading some bias to reduce model variance

• L2 norm:

– “Ridge regression”, enforcing weights not too large
– Equivalent to Gaussian prior over weights

• L1 norm:

– “Lasso regression”, enforcing sparse weights

• Elastic net → L1 + L2 constraints
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⌦(w) = ||w||2 =
X

i

w2
i

⌦(w) = ||w|| =
X
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Regularized Linear Regression

• L2 keeps weights small,  L1 keeps weights sparse!

• But how to choose hyperparameter a? 
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L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

http://scikit-learn.org/

Less regularization Less regularization

http://scikit-learn.org/


How to Measure Generalization Error?

• Split dataset into multiple parts

• Training set
– Used to fit model parameters

• Validation set
– Used to check performance on 

independent data and tune 
hyper parameters

• Test set
– final evaluation of  performance 

after all hyper-parameters fixed
– Needed since we tune, or “peek”, 

performance with validation set

57

Training set Validation set Test set

[Murray] 



How to Measure Generalization Error? 58

Validation Sample



Cross Validation

• Especially when dataset is small, split training set into K-folds
– Train on (K-1) folds, validate on 1 fold, then iterate
– Use average estimated performance on K-folds
– Allows for estimate of  performance RMS

• Even when dataset not small, useful technique to estimate 
variance of  expected performance, and for comparing different 
models / hyperparameters

59

Training set

Validation set

[Bishop]



Classification

• Learn a function to separate 
different classes of  data

• Avoid over-fitting:
– Learning too fined details about 

your training sample that will 
not generalize to unseen data

60

Linear discriminant Nonlinear discriminantRectangular cuts

y=0

y=1

x1

x2

x1

x2 y=0

y=1

x1

x2

y=0

y=1

x1

x2

y=0

y=1

[H. Voss]



Linear Decision Boundaries
• Separate two classes:
– xi Î Rm

– yi Î {-1,1}

• Linear discriminant model
h(x; w) = wTx

61

h(x)

h(x) < 0

h(x) = 0

h(x) > 0

[Bishop]



Linear Decision Boundaries
• Separate two classes:
– xi Î Rm

– yi Î {-1,1}

• Linear discriminant model
h(x; w) = wTx

62

h(x)

h(x) < 0

h(x) = 0

h(x) > 0

• Decision boundary defined by hyperplane

h(x; w) = wTx = 0

– Boundary is perpendicular to weight vector w

• Classifier Score(xi) = h(xi; w)

• Class predictions: Predict class -1 if  h(xi ; w) < 0, else class 1

[Bishop]



Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?

63

L(w) =
1

2

X

i

(yi �w

T
xi)

2

[Bishop]



Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?
– Penalized even when predict class correctly
– Least squares is very sensitive to outliers

64

L(w) =
1

2

X

i

(yi �w

T
xi)

2

What you want

What you get

[Bishop]



Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?
– Penalized even when predict class correctly
– Least squares is very sensitive to outliers

• Use only class labels?
– Perceptron algorithm (not covered here)

• A probabilistic approach?

65

L(w) =
1

2

X

i

(yi �w

T
xi)

2

What you want

What you get

[Bishop]



Logistic Regression for Classification

• Set of  input / output pairs D = {xi , yi}i=1…n
– xi Î Rm

– yi Î {0, 1}

• Linear discriminant: h(x; w) = wTx

66



Logistic Regression for Classification

• Set of  input / output pairs D = {xi , yi}i=1…n
– xi Î Rm

– yi Î {0, 1}

• Linear discriminant: h(x; w) = wTx

• Model per example probability: 

67

NOTE:
Not a random choice,
Natural choice for large
class of models

See backups for more info

Logistic Sigmoid
�(z) =

1

1 + e�z

p(y = 1|x) ⌘ pi =
1

1 + e�h(x;w)

=
1

1 + e�w

T
x



Logistic Regression for Classification

• Set of  input / output pairs D = {xi , yi}i=1…n
– xi Î Rm

– yi Î {0, 1}

• Linear discriminant: h(x; w) = wTx

• Model per example probability: 

– The farther from boundary wTx=0, the more certain about class

– Class decision rule: choose class 0 if  pi<0.5, else choose class 1

68

p(y = 1|x) ⌘ pi =
1

1 + e�w

T
x



Logistic Regression for Classification

• Set of  input / output pairs D = {xi , yi}i=1…n
– xi Î Rm

– yi Î {0, 1}

• Linear discriminant: h(x; w) = wTx

• Model per example probability: 

– The farther from boundary wTx=0, the more certain about class

– Class decision rule: choose class 0 if  pi<0.5, else choose class 1

• Concisely write p(y|x) as Bernoulli random variable:

69

P (yi = y|xi) = Bernoulli(pi) = (pi)
yi
(1� pi)

1�yi
=

pi if  yi=1
1-pi if  yi=0

p(y = 1|x) ⌘ pi =
1

1 + e�w

T
x



Logistic Regression

• Negative log-likelihood

70

� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)



Logistic Regression

• Negative log-likelihood

71

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)

Lo
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-log(pi)
-log(1-pi)

pi



Logistic Regression

• Negative log-likelihood

72

• No closed form solution to w* = arg minw -ln L

• How to solve for w?

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)



Gradient Descent

• Many methods to solve, lets use Gradient Descent

• Minimize loss by repeated gradient steps (when no closed 
form)

– Compute gradient w.r.t. parameters:

– Update parameters

– h is called the learning rate, controls
how big of  a gradient step to take
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w0  w� ⌘
@L(w)

@w

@L(w)

@w



Stochastic Gradient Descent and Variants 
• Gradient descent is computationally 

costly (since we compute gradient 
over full training set)

• Stochastic gradient descent
– Compute gradient on one event at a 

time (in practice a small batch)
– Noisy estimates average out
– Stochastic behavior can allow “jumping” 

out of  bad critical points

– Scales well with dataset and model size
– But can have some convergence 

difficulties

– Improvements include:
Momentum, RMSprop, AdaGrad, …
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Gradient Descent for Logistic Regression

• Derivative of  sigmoid:

• Derivative of  Loss:

• Update rule:

• Repeat until parameters stable
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L(w) = � lnL(w) = �
X

i

yi ln(�(w
T
x)) + (1� yi) ln(1� �(wT

x))

@�(z)

@z
= �(z)(1� �(z))

@L(w)

@w
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(�(wT
x)� yi)xi

w w� ⌘
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Gradient Descent

• Loss is convex
– Single global minimum

• Iterations lower loss and move toward minimum
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Logistic Regression Example 77

p(y=1 | x)
0 1

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/


Estimating a Classifier Performance 78

Confusion Matrix
Classifying tau decays

arXiv:1702.00414arXiv:1512.05955

Receiver Operating Characteristic (ROC) Curve
classifying quarks vs. gluons 

Random Guessin
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(Background efficiency)



Multiclass Classification? 79

• What if  there is more than two classes?



Multiclass Classification?
• What if  there is more than two classes?

• Softmax→ multi-class generalization of  logistic loss
– Have N classes {c1, …, cN}
– Model target yk = (0, …, 1, …0)

– Gradient descent for each of  the weights wk
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kth element in vector

p(ck|x) =
exp(wkx)P
j exp(wjx)



Summary of  Today
• Machine learning uses mathematical and statistical models 

learned from data to characterize patterns and relations 
between inputs, and use this for inference / prediction

• Machine learning comes in many forms, much of  which 
has probabilistic and statistical foundations and 
interpretations (i.e. Statistical Machine Learning)

• Discussed linear models today
– Many forms of  linear models, we only touched the surface!

• Next time, some nonlinear models and unsupervised 
learning
– Decision trees and ensemble methods
– Neural network (intro)
– Clustering
– Dimensionality reduction
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Recommended Materials

• Many excellent books (many available free online)
– Introduction to Statistical Learning
– Elements of  Statistical Learning
– Pattern Recognition and Machine learning (Bishop)
– …

• Many excellent courses and documentation available online
– Andre Ng’s machine learning course on Coursera
– University course material online: Stanford CS229, Harvard CS181, …
– Lectures from Machine Learning Summer School (MLSS)
– Lectures from Yandex Machine learning in HEP summer schools
– Scikit Learn documentation
– …

• References:
– I used / borrowed from many of  these references to make these lectures!
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Bayesian vs. Frequentist Models

• Mathematical models in ML typically described via random 
variables — in which case they are also called statistical 
models 

• Statistical models typically specified by unknown 
parameters (to be learnt from data) 

• Frequentist: there exist a “ground-truth” set of  unknown 
parameters that are constant (i.e. not random) 

• Bayesian: model parameters are themselves random, and 
typically specified by their own distribution/statistical 
model, with their own unknown “hyperparameters” 
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Probabilistic Motivation

• Posterior probability:

• Log-probability ratio:
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a(x) = ln
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0)

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)

=
1

1 + e�a(x)
= �(a(x))

• In a large class of  models a(x) is linear

a(x) = wTx

– When class-conditional density p(x|y) is in the exponential family of  
Generalized Linear Models,
• Includes Gaussian, Exponential, Poisson, Beta, …

• Have linear discriminant and estimate of  per-class probability

• Even if  p(x|y) unknown, motivation to model p(y|x) with logistic sigmoid

Logistic sigmoid
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L1 Contours L2 Contours

Loss



Support Vector Machines 88



Linear Separability 89



Decision Boundaries – Which is Best? 90



Maximum Margin Classifiers

• Many possible solutions to separating classes
– Depends on the loss function chosen

• Assuming classes are linearly separable, what if  we wanted 
to solution with the maximum distance between the 
decision boundary and the nearest data point?
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Maximum Margin Classifier

• Assume we have:
– x in Rd

– y in {-1, 1}

• Linear classifier: h(x; w) = wTx + w0

• Distance of  data point, xi, to decision boundary

• Optimization problem:

– Can solve with gradient descent methods!

92

yi(wT
xi + w0)p
w

T
w

arg max

w, w0

⇢
1p
w

T
w

min

i
yi(w

T
xi + w0)

�
arg min

w,w0

1

2

w

T
w

s. t. yi(w
T
xi + w0) � 1 for all i



What if  points not linearly separable? 93

• Add a smearing to the margin, x ≥0
– If  x =0, example correctly classifier
– If  0< x <1, example correctly 

classified, but in margin
– If  x >1, example incorrectly classified

• Add regularizer to problem to constrain xi not too large
– C is the regularization hyperparameter that controls how much 

“softening” of  the boundary is allowed, thus how big is margin

arg min

w,w0

1

2

w

T
w + C

X

i

⇠i

s. t. yi(w
T
xi + w0) � 1� ⇠i for all i

and ⇠i � 0



What if  points not linearly separable? 94

• Add a smearing to the margin, x ≥0

• Add regularizer to problem to 
constrain xi not too large

• C is the regularization 
hyperparameter
– Controls how much “softening” of  the 

boundary is allowed, thus how big is margin

arg min

w,w0

1

2

w

T
w + C

X

i

⇠i

s. t. yi(w
T
xi + w0) � 1� ⇠i for all i

and ⇠i � 0



Soft Margin Formulation 95

C=infinity, hard margin C=10, soft margin



Dual Formulation
• Use Lagrange multipliers (remember those!) to write a 

loss function for hard margin:
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L(w, w0,a) =
1

2
w

T
w �

X

i

ai{yi(wT
xi + w0)� 1}

s. t. {ai � 0}

– Where a are Lagrange multipliers
– Minimize L w.r.t. w and w0:

• Dual form of  optimization
– Solve for a and w0 using gradient methods, or SMO algorithm

@L

@w
= 0,

@L

@w0
= 0

! w =
X

i

aiyixi

!
X

i

aiyi = 0

max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjx
t
ixj

s. t.
X

i

aiyi = 0

ai � 0 for all i

h(x;a, w0) =
X

i

aiyix
t
ix+ w0

Discriminant Function



Support Vector Machines

• Only examples on margin will have ai>0! 
– Follows from KKT conditions of  constrained optimization

• Sum is only over a small number of  examples on margin, 
the support vectors
– Note: also only depends on inner produce! More later

• Margin on data = 1/||w||
– At least one constraint will hold
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h(x;a, w0) =
X

i

aiyix
t
ix+ w0



Support Vector Machines: Recap

• Maximum Margin Optimization:
– Dual formulation
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max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjx
t
ixj

s. t.
X

i

aiyi = 0

ai � 0 for all i

• Discriminant function:

– Sum is only over a small 
number of  examples on
margin called 

the support vectors

h(x;a, w0) =
X

i

aiyix
t
ix+ w0

Data always in
inner product



Basis Functions Revisited

• When data is not 
linearly separable, can 
use basis functions

99

• Where f is a map from Rm → Rk

• But if  k>>m   (or if  k infinite), inner product 
can be expensive to compute

• But we don’t need the mapping f, only inner 
products…

h(x;a, w0) =
X

i

aiyi�(xi)
T�(x) + w0



Kernels and the Kernel Trick
• A kernel function K(x,x’)=f(x)f(x’) is an inner 

product where f is a mapping Rm → Rk

• Kernelized discriminant and optimization problem

10
0

h(x;a, w0) =
X

i

aiyiK(xi,x) + w0 max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjK(xi,xj)

s. t.
X

i

aiyi = 0

ai � 0

• Kernel Trick: compute the Kernel K(x, x’) without 
computing f(x)! 
– So we just need to engineer the Kernel, not the exact 

features or exact mapping



Kernels

• Linear Kernel: K(x,x’) = xTx’

• Polynomial Kernel:  K(x,x’) = (1 + xTx’)q

• Gaussian Kernal: K(x,x’) = 

• As long as the Kernel matrix Kij = f(xi) f(xj) is a 
positive semi-definite matrix, it is a valid Kernel

10
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exp
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SVM 10
2

Gaussian Kernel with s=1 Gaussian Kernel with s=0.25


