
Machine Learning:
Lecture I

Michael Kagan

SLAC

University of Geneva
May 24, 2018

Lecture Structure
• Lecture I

– What is Machine Learning
– Linear Regression and Classification
– Fitting a model: Cost Functions, Regularization, Gradient Descent

• Lecture II
– Intro to Neural Networks, Deep Learning
– Decision Trees and ensemble methods
– Dimensionality reduction
– Clustering

• Many topics we won’t be able to cover in such a short time
– SVM
– Gaussian Processes
– Variational Inference
– Hidden Markov Models
– …

2

What is Machine Learning? 3

What is Machine Learning?

• Giving computers the ability to learn without
explicitly programming them (Arthur Samuel, 1959)

• Statistics + Algorithms

• Computer Science + Probability + Optimization
Techniques

• Fitting data with complex functions

• Mathematical models learnt from data that
characterize the patterns, regularities, and
relationships amongst variables in the system

4

Where is ML Used, an Incomplete List
• Natural Language Processing
• Speech and handwriting

recognition
• Object recognition and computer

vision
• Fraud detection
• Financial market analysis
• Search engines
• Spam and virus detection
• Medical diagnosis
• Robotics control
• Automation: energy usage,

systems control, video games,
self-driving cars

• Advertising
• Data Science
• …

5

http://www-wfau.roe.ac.uk/sss/

[ESL]

http://www-wfau.roe.ac.uk/sss/

Machine Learning Applied Widely in HEP
• In analysis:

– Classifying signal from background, especially in
complex final states

– Reconstructing heavy particles and improving the
energy / mass resolution

– …

• In reconstruction:
– Improving detector level inputs to reconstruction
– Particle identification tasks
– Energy / direction calibration
– …

• In the trigger:
– Quickly identifying complex final states
– …

• In computing:
– Estimating dataset popularity, and determining how

number and location of dataset replicas
– …

6

JHEP 01 (2016) 064

JINST 10 P08010 2015

arXiv:1512.05955

Machine Learning: Models

• Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

7

Machine Learning: Models

• Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

– Classification:

8

[Rogozhnikov]

Machine Learning: Models

• Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

– Regression:

9

x

y

Machine Learning: Models

• Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

– Clustering:

10

[Bishop]

Machine Learning: Models

• Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

– Dimensionality
reduction:

11

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

Machine Learning: Models

• Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

• Learning: estimate statistical model from data

• Prediction and Inference: using statistical model
to make predictions on new data points and infer
properties of system(s)

12

Parametric vs. Non-parametric Models
• Parametric Models: models that do

not grow in complexity with dataset
size. Fixed set of parameters to
learn
– Example: sum of Gaussians, each with

mean, variance, and normalization

• Non-Parametric Models: models
that do not have a fixed set of
parameters, often grow in
complexity with more data
– Example: model predictions of a new

data point using nearest known
datapoint. The more known
datapoints, the more complex is the
model

13

http://bdewilde.github.io/blog/blogger/2012/10/26
/classification-of-hand-written-digits-3/

http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/

Learning 14

[Ravikumar]

Learning 15

• Supervised Learning
– Classification
– Regression

• Unsupervised Learning
– Clustering
– Dimensionality reduction
– …

• Reinforcement learning
[Ravikumar]

Notation

• X Î Rmxn

• x Î Rn(x1)

• x Î R
• X
• {xi}1

m

• y Î I(k) / R(k)

16

Matrices in bold upper case:
Vectors in bold lower case
Scalars in lower case, non-bold

Sets are script
Sequence of vectors x1, …, xm

Labels represented as
- Integer for classes, often {0,1}. E.g. {Higgs, Z}
- Real number. E.g electron energy

• Variables = features = inputs
• Data point x = {x1, …, xn} has n-features

• Typically use affine coordinates:
y = wTx + w0 → wTx

→ w ={w0, w1, ... , wn}
→ x ={1, x1, ... , xn}

Probability Review

• Joint distribution of two variables: p(x,y)

• Marginal distribution: ! " = ∫! ", & '&

• Conditional distribution:

• Bayes theorem:

• Expected value:

• Normal distribution:
– x~N(µ, s) →

17

p(x) =

1p
2⇡�

exp

⇣
� 1

2

(x� µ)

2

�

2

⌘

2

E[f(x)] =

Z
f(x)p(x)dx

p(y|x) = p(x|y)p(y)
p(x)

p(y|x) = p(x, y)

p(x)

Supervised Learning

• Given N examples with features {xi Î X} and
targets {yi Î Y}, learn function mapping h(x)=y

– Classification: Y is a finite set of labels (i.e. classes)

Y = {0, 1} for binary classification,
encoding classes, e.g. Higgs vs Background

Y = {c1, c2, … cn} for multi-class classification

represent with “one-hot-vector”

→ yi = (0, 0,…, 1 ,…0)

were kth element is 1 and all others zero for class ck

18

Supervised Learning

• Given N examples with features {xi Î X} and
targets {yi Î Y}, learn function mapping h(x)=y

– Classification: Y is a finite set of labels (i.e. classes)

– Regression: Y = Real Numbers

19

Supervised Learning

• Given N examples with features {xi Î X} and
targets {yi Î Y}, learn function mapping h(x)=y

– Classification: Y is a finite set of labels (i.e. classes)

– Regression: Y = Real Numbers

• Often these are discriminative models, in which case we model:
h(x) = p(y|x)

• Sometimes use generative models, estimate joint distribution p(y, x)
– Could estimate class conditional density p(x|y) and prior p(y)
– Use Bayes theorem to then compute:

20

h(x) = p(y|x) / p(x|y)p(y)

Unsupervised Learning

• Given some data D={xi}, but no labels, find
structure in the data

– Clustering: partition the data into groups
D={D1 È D2 È D3 … È Dk}

– Dimensionality reduction: find a low dimensional
(less complex) representation of the data with a
mapping Z=h(X)

21

Reinforcement Learning

• Models for agents that take actions depending on
current state
• Actions incur rewards, and affect future states

(“feedback”)

• Learn to make the best sequence of decisions to
achieve a given goal when feedback is often delayed
until you reach the goal

22

[Ravikumar]

Deep Reinforcement Learning with AlphaGo 23

Nature 529, 484–489 (28 January 2016)

Supervised Learning: How does it work? 24

Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss

25

h(x; w)
Function with

adjustable
parameters

Loss
Function

Compare
prediction
with true

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

L(W,X)

Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss
– Use a labeled training-set to compute loss

– Adjust parameters to reduce loss function

– Repeat until parameters stabilize

• Estimate final performance on test-set

26

h(x; w)
Function with

adjustable
parameters

Loss
Function

Compare
prediction
with true

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

L(W,X)

Empirical Risk Minimization

• Framework to design learning algorithms
– L(…) is a loss function comparing prediction h(…) with

target y

– W(w) is a regularizer, penalizing certain values of w
• l controls how much we penalize, and is a hyperparameter that we

have to tune
• We will come back to this later

• Learning is cast as an optimization problem

27

Average expected loss Model regularization

argmin
w

1

N

NX

i=1

L(h(xi;w), yi) + �⌦(w)

Example Loss Functions

• Square Error Loss:
– Often used in regression

• Cross entropy:
– With y Î {0,1}
– Often used in classification

• Hinge Loss:
– With y Î {-1,1}

• Zero-One loss
– With h(x; w) predicting label

28

L(h(x;w), y) =
�
h(x;w)� y

�2

L(h(x;w), y) =� y log h(x;w)

� (1� y) log(1� h(x;w))

L(h(x;w), y) = max(0, 1� yh(x;w))

L(h(x;w), y) = 1y 6=h(x;w)

- Square Error
- Cross Entropy
- Hinge
- Zero-one

[Bishop]

Maximum Likelihood

• Describe a process behind the data
• Write down the likelihood of the observed data

• Where second equality holds if data is independent and
identically distributed

• Often minimize negative-log-likelihood for numerical
stability
– Same as maximizing likelihood since log is monotonic and

differentiable away from zero

29

L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)

Maximum Likelihood

• Describe a process behind the data
• Write down the likelihood of the observed data

• Select parameters that make data most likely
– General strategy for parameter estimation

30

L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)

w

⇤
= argmax

w
L(w) = argmin

w
� lnL(w) = argmin

w
�
X

i

ln p(yi|xi;w)

Linear Methods 31

Least Squares Linear Regression

• Set of input / output pairs D = {xi , yi}i=1…n

– xi Î Rm

– yi Î R

• Assume a linear model
h(x; w) = wTx

• Squared Loss function:

• Find w* = arg minw L(w)

32

L(w) =
1

2

X

i

�
yi � h(xi;w)

�2

Least Squares Linear Regression: Matrix Form

• Set of input / output pairs D = {xi , yi}i=1…n

– Design matrix X Î Rnxm

– Target vector y Î Rn

33

• Rewrite loss:

• Minimize w.r.t. w:

Least Squares Linear Regression: Matrix Form

• Set of input / output pairs D = {xi , yi}i=1…n

– Design matrix X Î Rnxm

– Target vector y Î Rn

34

L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)

• Rewrite loss:

• Minimize w.r.t. w:

• What if we have correlated variables? Multi-collinearity
– X is close to singular
– Inverse is highly sensitive to random errors

• Hint: Regularization can help!

Least Squares Linear Regression: Matrix Form

• Set of input / output pairs D = {xi , yi}i=1…n

– Design matrix X Î Rnxm

– Target vector y Î Rn

35

L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)

Linear Regression Example

• Reconstructed Jet energy vs. Number of primary vertices

36

Eur. Phys. J. C (2015) 75:17

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

37

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

• Then

38

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)
2

�

2

◆

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

• Then

• Likelihood function:

39

L(m) = p(y|X;m) =

Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)
2

�

2

◆

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

• Then

• Likelihood function:

40

Squared
loss function!

L(m) = p(y|X;m) =

Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)
2

�

2

◆

Why Take a Probabilistic Approach?

• Allows us to get calibrated estimates of p(y|x)

• Separates predictions from modeling

• A general framework for parameter estimation.
– Can use to fit other parameters of the model.

41

Basis Functions

• What if non-linear relationship between y and x?

42

Basis Functions

• What if non-linear relationship between y and x?

• Can choose basis functions f(x) to form new features

yi = wTf(xi)

– Polynomial basis f(x) ~ {1, x, x2, x3, …},
Gaussian basis, …

– Linear regression on new features f(x)

43

Basis Functions

• What if non-linear relationship between y and x?

• Can choose basis functions f(x) to form new features

yi = wTf(xi)

– Polynomial basis f(x) ~ {1, x, x2, x3, …},
Gaussian basis, …

– Linear regression on new features f(x)

• What basis functions to choose? Overfit with too much flexibility?

44

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways

45

http://scikit-learn.org/

http://scikit-learn.org/

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

46

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

• Simple models under-fit: will deviate from data (high
bias) but will not be influenced by peculiarities of data
(low variance).

47

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

• Simple models under-fit: will deviate from data (high
bias) but will not be influenced by peculiarities of data
(low variance).

• Complex models over-fit: will not deviate systematically
from data (low bias) but will be very sensitive to data
(high variance).

48

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

49

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

50

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

51

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

• The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

52

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

• The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

• More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

53

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

• The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

• More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.
– As dataset size grows, can reduce variance! Can use more complex model

Bias Variance Tradeoff 54

Regularization

• Can control the complexity of a model by placing
constraints on the model parameters
– Trading some bias to reduce model variance

• L2 norm:

– “Ridge regression”, enforcing weights not too large
– Equivalent to Gaussian prior over weights

• L1 norm:

– “Lasso regression”, enforcing sparse weights

• Elastic net → L1 + L2 constraints

55

⌦(w) = ||w||2 =
X

i

w2
i

⌦(w) = ||w|| =
X

i

|wi|

Regularized Linear Regression

• L2 keeps weights small, L1 keeps weights sparse!

• But how to choose hyperparameter a?

56

L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

http://scikit-learn.org/

Less regularization Less regularization

http://scikit-learn.org/

How to Measure Generalization Error?

• Split dataset into multiple parts

• Training set
– Used to fit model parameters

• Validation set
– Used to check performance on

independent data and tune
hyper parameters

• Test set
– final evaluation of performance

after all hyper-parameters fixed
– Needed since we tune, or “peek”,

performance with validation set

57

Training set Validation set Test set

[Murray]

How to Measure Generalization Error? 58

Validation Sample

Cross Validation

• Especially when dataset is small, split training set into K-folds
– Train on (K-1) folds, validate on 1 fold, then iterate
– Use average estimated performance on K-folds
– Allows for estimate of performance RMS

• Even when dataset not small, useful technique to estimate
variance of expected performance, and for comparing different
models / hyperparameters

59

Training set

Validation set

[Bishop]

Classification

• Learn a function to separate
different classes of data

• Avoid over-fitting:
– Learning too fined details about

your training sample that will
not generalize to unseen data

60

Linear discriminant Nonlinear discriminantRectangular cuts

y=0

y=1

x1

x2

x1

x2 y=0

y=1

x1

x2

y=0

y=1

x1

x2

y=0

y=1

[H. Voss]

Linear Decision Boundaries
• Separate two classes:
– xi Î Rm

– yi Î {-1,1}

• Linear discriminant model
h(x; w) = wTx

61

h(x)

h(x) < 0

h(x) = 0

h(x) > 0

[Bishop]

Linear Decision Boundaries
• Separate two classes:
– xi Î Rm

– yi Î {-1,1}

• Linear discriminant model
h(x; w) = wTx

62

h(x)

h(x) < 0

h(x) = 0

h(x) > 0

• Decision boundary defined by hyperplane

h(x; w) = wTx = 0

– Boundary is perpendicular to weight vector w

• Classifier Score(xi) = h(xi; w)

• Class predictions: Predict class -1 if h(xi ; w) < 0, else class 1

[Bishop]

Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?

63

L(w) =
1

2

X

i

(yi �w

T
xi)

2

[Bishop]

Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?
– Penalized even when predict class correctly
– Least squares is very sensitive to outliers

64

L(w) =
1

2

X

i

(yi �w

T
xi)

2

What you want

What you get

[Bishop]

Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?
– Penalized even when predict class correctly
– Least squares is very sensitive to outliers

• Use only class labels?
– Perceptron algorithm (not covered here)

• A probabilistic approach?

65

L(w) =
1

2

X

i

(yi �w

T
xi)

2

What you want

What you get

[Bishop]

Logistic Regression for Classification

• Set of input / output pairs D = {xi , yi}i=1…n
– xi Î Rm

– yi Î {0, 1}

• Linear discriminant: h(x; w) = wTx

66

Logistic Regression for Classification

• Set of input / output pairs D = {xi , yi}i=1…n
– xi Î Rm

– yi Î {0, 1}

• Linear discriminant: h(x; w) = wTx

• Model per example probability:

67

NOTE:
Not a random choice,
Natural choice for large
class of models

See backups for more info

Logistic Sigmoid
�(z) =

1

1 + e�z

p(y = 1|x) ⌘ pi =
1

1 + e�h(x;w)

=
1

1 + e�w

T
x

Logistic Regression for Classification

• Set of input / output pairs D = {xi , yi}i=1…n
– xi Î Rm

– yi Î {0, 1}

• Linear discriminant: h(x; w) = wTx

• Model per example probability:

– The farther from boundary wTx=0, the more certain about class

– Class decision rule: choose class 0 if pi<0.5, else choose class 1

68

p(y = 1|x) ⌘ pi =
1

1 + e�w

T
x

Logistic Regression for Classification

• Set of input / output pairs D = {xi , yi}i=1…n
– xi Î Rm

– yi Î {0, 1}

• Linear discriminant: h(x; w) = wTx

• Model per example probability:

– The farther from boundary wTx=0, the more certain about class

– Class decision rule: choose class 0 if pi<0.5, else choose class 1

• Concisely write p(y|x) as Bernoulli random variable:

69

P (yi = y|xi) = Bernoulli(pi) = (pi)
yi
(1� pi)

1�yi
=

pi if yi=1
1-pi if yi=0

p(y = 1|x) ⌘ pi =
1

1 + e�w

T
x

Logistic Regression

• Negative log-likelihood

70

� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)

Logistic Regression

• Negative log-likelihood

71

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)

Lo
ss

-log(pi)
-log(1-pi)

pi

Logistic Regression

• Negative log-likelihood

72

• No closed form solution to w* = arg minw -ln L

• How to solve for w?

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)

Gradient Descent

• Many methods to solve, lets use Gradient Descent

• Minimize loss by repeated gradient steps (when no closed
form)

– Compute gradient w.r.t. parameters:

– Update parameters

– h is called the learning rate, controls
how big of a gradient step to take

73

w0 w� ⌘
@L(w)

@w

@L(w)

@w

Stochastic Gradient Descent and Variants
• Gradient descent is computationally

costly (since we compute gradient
over full training set)

• Stochastic gradient descent
– Compute gradient on one event at a

time (in practice a small batch)
– Noisy estimates average out
– Stochastic behavior can allow “jumping”

out of bad critical points

– Scales well with dataset and model size
– But can have some convergence

difficulties

– Improvements include:
Momentum, RMSprop, AdaGrad, …

74

w2

w1

w2

w1http://danielnouri.org/notes/category/deep-learning/

http://danielnouri.org/notes/category/deep-learning/

Gradient Descent for Logistic Regression

• Derivative of sigmoid:

• Derivative of Loss:

• Update rule:

• Repeat until parameters stable

75

L(w) = � lnL(w) = �
X

i

yi ln(�(w
T
x)) + (1� yi) ln(1� �(wT

x))

@�(z)

@z
= �(z)(1� �(z))

@L(w)

@w
=

X

i

(�(wT
x)� yi)xi

w w� ⌘
@L(w)

@w
= w� ⌘

X

i

(�(wT
x)� yi)xi

Gradient Descent

• Loss is convex
– Single global minimum

• Iterations lower loss and move toward minimum

76

Lo
ss

L(w)

Lmin(w)

Iterationsw

Logistic Regression Example 77

p(y=1 | x)
0 1

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

Estimating a Classifier Performance 78

Confusion Matrix
Classifying tau decays

arXiv:1702.00414arXiv:1512.05955

Receiver Operating Characteristic (ROC) Curve
classifying quarks vs. gluons

Random Guessin
g

Better

Worse
(S

ig
na

l e
ffi

ci
en

cy
)

(Background efficiency)

Multiclass Classification? 79

• What if there is more than two classes?

Multiclass Classification?
• What if there is more than two classes?

• Softmax→ multi-class generalization of logistic loss
– Have N classes {c1, …, cN}
– Model target yk = (0, …, 1, …0)

– Gradient descent for each of the weights wk

80

kth element in vector

p(ck|x) =
exp(wkx)P
j exp(wjx)

Summary of Today
• Machine learning uses mathematical and statistical models

learned from data to characterize patterns and relations
between inputs, and use this for inference / prediction

• Machine learning comes in many forms, much of which
has probabilistic and statistical foundations and
interpretations (i.e. Statistical Machine Learning)

• Discussed linear models today
– Many forms of linear models, we only touched the surface!

• Next time, some nonlinear models and unsupervised
learning
– Decision trees and ensemble methods
– Neural network (intro)
– Clustering
– Dimensionality reduction

81

Recommended Materials

• Many excellent books (many available free online)
– Introduction to Statistical Learning
– Elements of Statistical Learning
– Pattern Recognition and Machine learning (Bishop)
– …

• Many excellent courses and documentation available online
– Andre Ng’s machine learning course on Coursera
– University course material online: Stanford CS229, Harvard CS181, …
– Lectures from Machine Learning Summer School (MLSS)
– Lectures from Yandex Machine learning in HEP summer schools
– Scikit Learn documentation
– …

• References:
– I used / borrowed from many of these references to make these lectures!

82

References

• http://scikit-learn.org/
• [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
• [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009
• [Murray] Introduction to machine learning, Murray

– http://videolectures.net/bootcamp2010_murray_iml/

• [Ravikumar] What is Machine Learning, Ravikumar and Stone
– http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-

Intro.pdf

• [Parkes] CS181, Parkes and Rush, Harvard University
– http://cs181.fas.harvard.edu

• [Ng] CS229, Ng, Stanford University
– http://cs229.stanford.edu/

• [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
– https://indico.cern.ch/event/497368/

83

http://scikit-learn.org/
http://videolectures.net/bootcamp2010_murray_iml/
http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf
http://cs181.fas.harvard.edu
http://cs229.stanford.edu/
https://indico.cern.ch/event/497368/

84

Bayesian vs. Frequentist Models

• Mathematical models in ML typically described via random
variables — in which case they are also called statistical
models

• Statistical models typically specified by unknown
parameters (to be learnt from data)

• Frequentist: there exist a “ground-truth” set of unknown
parameters that are constant (i.e. not random)

• Bayesian: model parameters are themselves random, and
typically specified by their own distribution/statistical
model, with their own unknown “hyperparameters”

85

Probabilistic Motivation

• Posterior probability:

• Log-probability ratio:

86

a(x) = ln
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0)

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)

=
1

1 + e�a(x)
= �(a(x))

• In a large class of models a(x) is linear

a(x) = wTx

– When class-conditional density p(x|y) is in the exponential family of
Generalized Linear Models,
• Includes Gaussian, Exponential, Poisson, Beta, …

• Have linear discriminant and estimate of per-class probability

• Even if p(x|y) unknown, motivation to model p(y|x) with logistic sigmoid

Logistic sigmoid

Regularization 87

L1 Contours L2 Contours

Loss

Support Vector Machines 88

Linear Separability 89

Decision Boundaries – Which is Best? 90

Maximum Margin Classifiers

• Many possible solutions to separating classes
– Depends on the loss function chosen

• Assuming classes are linearly separable, what if we wanted
to solution with the maximum distance between the
decision boundary and the nearest data point?

91

Maximum Margin Classifier

• Assume we have:
– x in Rd

– y in {-1, 1}

• Linear classifier: h(x; w) = wTx + w0

• Distance of data point, xi, to decision boundary

• Optimization problem:

– Can solve with gradient descent methods!

92

yi(wT
xi + w0)p
w

T
w

arg max

w, w0

⇢
1p
w

T
w

min

i
yi(w

T
xi + w0)

�
arg min

w,w0

1

2

w

T
w

s. t. yi(w
T
xi + w0) � 1 for all i

What if points not linearly separable? 93

• Add a smearing to the margin, x ≥0
– If x =0, example correctly classifier
– If 0< x <1, example correctly

classified, but in margin
– If x >1, example incorrectly classified

• Add regularizer to problem to constrain xi not too large
– C is the regularization hyperparameter that controls how much

“softening” of the boundary is allowed, thus how big is margin

arg min

w,w0

1

2

w

T
w + C

X

i

⇠i

s. t. yi(w
T
xi + w0) � 1� ⇠i for all i

and ⇠i � 0

What if points not linearly separable? 94

• Add a smearing to the margin, x ≥0

• Add regularizer to problem to
constrain xi not too large

• C is the regularization
hyperparameter
– Controls how much “softening” of the

boundary is allowed, thus how big is margin

arg min

w,w0

1

2

w

T
w + C

X

i

⇠i

s. t. yi(w
T
xi + w0) � 1� ⇠i for all i

and ⇠i � 0

Soft Margin Formulation 95

C=infinity, hard margin C=10, soft margin

Dual Formulation
• Use Lagrange multipliers (remember those!) to write a

loss function for hard margin:

96

L(w, w0,a) =
1

2
w

T
w �

X

i

ai{yi(wT
xi + w0)� 1}

s. t. {ai � 0}

– Where a are Lagrange multipliers
– Minimize L w.r.t. w and w0:

• Dual form of optimization
– Solve for a and w0 using gradient methods, or SMO algorithm

@L

@w
= 0,

@L

@w0
= 0

! w =
X

i

aiyixi

!
X

i

aiyi = 0

max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjx
t
ixj

s. t.
X

i

aiyi = 0

ai � 0 for all i

h(x;a, w0) =
X

i

aiyix
t
ix+ w0

Discriminant Function

Support Vector Machines

• Only examples on margin will have ai>0!
– Follows from KKT conditions of constrained optimization

• Sum is only over a small number of examples on margin,
the support vectors
– Note: also only depends on inner produce! More later

• Margin on data = 1/||w||
– At least one constraint will hold

97

h(x;a, w0) =
X

i

aiyix
t
ix+ w0

Support Vector Machines: Recap

• Maximum Margin Optimization:
– Dual formulation

98

max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjx
t
ixj

s. t.
X

i

aiyi = 0

ai � 0 for all i

• Discriminant function:

– Sum is only over a small
number of examples on
margin called

the support vectors

h(x;a, w0) =
X

i

aiyix
t
ix+ w0

Data always in
inner product

Basis Functions Revisited

• When data is not
linearly separable, can
use basis functions

99

• Where f is a map from Rm → Rk

• But if k>>m (or if k infinite), inner product
can be expensive to compute

• But we don’t need the mapping f, only inner
products…

h(x;a, w0) =
X

i

aiyi�(xi)
T�(x) + w0

Kernels and the Kernel Trick
• A kernel function K(x,x’)=f(x)f(x’) is an inner

product where f is a mapping Rm → Rk

• Kernelized discriminant and optimization problem

10
0

h(x;a, w0) =
X

i

aiyiK(xi,x) + w0 max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjK(xi,xj)

s. t.
X

i

aiyi = 0

ai � 0

• Kernel Trick: compute the Kernel K(x, x’) without
computing f(x)!
– So we just need to engineer the Kernel, not the exact

features or exact mapping

Kernels

• Linear Kernel: K(x,x’) = xTx’

• Polynomial Kernel: K(x,x’) = (1 + xTx’)q

• Gaussian Kernal: K(x,x’) =

• As long as the Kernel matrix Kij = f(xi) f(xj) is a
positive semi-definite matrix, it is a valid Kernel

10
1

exp

✓
� 1

2

(x� x

0
)

2

�2

◆

SVM 10
2

Gaussian Kernel with s=1 Gaussian Kernel with s=0.25

