Machine Learning: Lecture I

Michael Kagan

SLAC

University of Geneva May 24, 2018

Lecture Structure

- Lecture I
 - What is Machine Learning
 - Linear Regression and Classification
 - Fitting a model: Cost Functions, Regularization, Gradient Descent
- Lecture II
 - Intro to Neural Networks, Deep Learning
 - Decision Trees and ensemble methods
 - Dimensionality reduction
 - Clustering
- Many topics we won't be able to cover in such a short time SVM
 - SVM
 - Gaussian Processes
 - Variational Inference
 - Hidden Markov Models

What is Machine Learning?

What is Machine Learning?

- Giving computers the ability to learn without explicitly programming them (Arthur Samuel, 1959)
- Statistics + Algorithms
- Computer Science + Probability + Optimization Techniques
- Fitting data with complex functions
- Mathematical models <u>learnt from data</u> that characterize the patterns, regularities, and relationships amongst variables in the system

Where is ML Used, an Incomplete List

- Natural Language Processing
- Speech and handwriting recognition
- Object recognition and computer vision
- Fraud detection
- Financial market analysis
- Search engines
- Spam and virus detection
- Medical diagnosis
- Robotics control
- Automation: energy usage, systems control, video games, self-driving cars
- Advertising
- Data Science

Minor elliptical axis (y) against Major elliptical axis (x) for stars (red) and galaxies (blue). (Amos Storkey) http://www-wfau.roe.ac.uk/sss/

5

Machine Learning Applied Widely in HEP

- In analysis:
 - Classifying signal from background, especially in complex final states
 - Reconstructing heavy particles and improving the energy / mass resolution
- In reconstruction:
 - Improving detector level inputs to reconstruction
 - Particle identification tasks
 - Energy / direction calibration
- In the trigger:
 - Quickly identifying complex final states
 - ...
- In computing:
 - Estimating dataset popularity, and determining how number and location of dataset replicas

Machine Learning: Models

- Key element in machine learning is a mathematical model
 - A mathematical characterization of system(s) of interest, typically via random variables
 - Chosen model depends on the task / available data

- Key element in machine learning is a mathematical model
 - A mathematical characterization of system(s) of interest, typically via random variables
 - Chosen model depends on the task / available data
 - Classification:

- Key element in machine learning is a mathematical model
 - A mathematical characterization of system(s) of interest, typically via random variables
 - Chosen model depends on the task / available data

Х

- Key element in machine learning is a mathematical model
 - A mathematical characterization of system(s) of interest, typically via random variables
 - Chosen model depends on the task / available data
 - Clustering:

[Bishop]

- Key element in machine learning is a mathematical model
 - A mathematical characterization of system(s) of interest, typically via random variables
 - Chosen model depends on the task / available data
 - Dimensionality reduction:

11

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

- Key element in machine learning is a mathematical model
 - A mathematical characterization of system(s) of interest, typically via random variables
 - Chosen model depends on the task / available data
- Learning: estimate statistical model from data
- **Prediction and Inference:** using statistical model to make predictions on new data points and infer properties of system(s)

Parametric vs. Non-parametric Models

- **Parametric Models**: models that do not grow in complexity with dataset size. Fixed set of parameters to learn
 - Example: sum of Gaussians, each with mean, variance, and normalization
- Non-Parametric Models: models that do not have a fixed set of parameters, often grow in complexity with more data
 - Example: model predictions of a new data point using nearest known datapoint. The more known datapoints, the more complex is the model

http://bdewilde.github.io/blog/blogger/2012/10/26 /classification-of-hand-written-digits-3/ Learning

[Ravikumar]

Notation

16

- $\mathbf{X} \in \mathbb{R}^{mxn}$
- $\mathbf{x} \in \mathbb{R}^{n(x1)}$
- $\mathbf{X} \in \mathbb{R}$
- X
- $\{\mathbf{x}_i\}_1^m$
- $y \in \mathbb{I}^{(k)} / \mathbb{R}^{(k)}$

Matrices in bold upper case: Vectors in bold lower case Scalars in lower case, non-bold Sets are script Sequence of vectors $\mathbf{x}_1, \ldots, \mathbf{x}_m$ Labels represented as - Integer for classes, often $\{0,1\}$. E.g. $\{Higgs, Z\}$ - Real number. E.g electron energy

- Variables = features = inputs
- Data point $\mathbf{x} = \{x_1, ..., x_n\}$ has n-features
- Typically use affine coordinates: $y = \mathbf{w}^{T}\mathbf{x} + \mathbf{w}_{0} \rightarrow \mathbf{w}^{T}\mathbf{x}$ $\rightarrow \mathbf{w} = \{\mathbf{w}_{0}, \mathbf{w}_{1}, \dots, \mathbf{w}_{n}\}$ $\rightarrow \mathbf{x} = \{1, \mathbf{x}_{1}, \dots, \mathbf{x}_{n}\}$

Probability Review

- Joint distribution of two variables: p(x,y)
- Marginal distribution: $p(x) = \int p(x, y) dy$
- Conditional distribution:

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

• Bayes theorem:
$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

- Expected value: $\mathbf{E}[f(x)] = \int f(x)p(x)dx$
- Normal distribution: $-x \sim N(\mu, \sigma) \rightarrow p(x) = \frac{1}{\sqrt{2\pi\sigma_2}} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right)$

Supervised Learning

- Given N examples with features $\{x_i \in X\}$ and **targets** $\{y_i \in Y\}$, learn function mapping h(x)=y
 - Classification: \mathcal{Y} is a finite set of labels (i.e. classes)

 $\mathcal{Y} = \{0, 1\}$ for **binary classification**, encoding classes, e.g. Higgs vs Background

 $\mathcal{Y} = \{c_1, c_2, \dots c_n\}$ for multi-class classification

represent with "one-hot-vector"

$$\rightarrow$$
 y_i = (0, 0, ..., 1, ...0)

were k^{th} element is 1 and all others zero for class c_k

Supervised Learning

- Given N examples with features {x_i ∈ X} and targets {y_i ∈ Y}, learn function mapping h(x)=y
 - Classification: *Y* is a finite set of labels (i.e. classes)

- **Regression**: \mathcal{Y} = Real Numbers

Supervised Learning

- Given N examples with features $\{x_i \in X\}$ and **targets** $\{y_i \in Y\}$, learn function mapping h(x)=y
 - **Classification**: \mathcal{Y} is a finite set of **labels** (i.e. classes)

- **Regression**: \mathcal{Y} = Real Numbers

- Often these are **discriminative models**, in which case we model: $h(x) = p(y \mid x)$
- Sometimes use **generative models**, estimate joint distribution p(y, x)
 - Could estimate class conditional density p(x | y) and prior p(y)
 - Use Bayes theorem to then compute:

$$h(\mathbf{x}) = p(y|\mathbf{x}) \propto p(\mathbf{x}|y)p(y)$$

- Given some data D={x_i}, but no labels, find structure in the data
 - Clustering: partition the data into groups $D = \{D_1 \cup D_2 \cup D_3 \dots \cup D_k\}$
 - Dimensionality reduction: find a low dimensional (less complex) representation of the data with a mapping Z=h(X)

Reinforcement Learning

- Models for agents that take actions depending on current state
 - Actions incur rewards, and affect future states ("feedback")
- Learn to make the best sequence of decisions to achieve a given goal when feedback is often delayed until you reach the goal

Deep Reinforcement Learning with AlphaGo

Nature 529, 484-489 (28 January 2016)

Supervised Learning: How does it work?

Supervised Learning: How does it work?

- Design a Loss function
- Find best parameters which minimize loss

Y. Le Cun

25

Supervised Learning: How does it work?

- Design function with adjustable parameters
- Design a Loss function
- Find best parameters which minimize loss
 - Use a labeled *training-set* to compute loss
 - Adjust parameters to reduce loss function
 - Repeat until parameters stabilize
- Estimate final performance on *test-set*

26

Y. Le Cun

Empirical Risk Minimization

- Framework to design learning algorithms
 - L(...) is a loss function comparing prediction h(...) with target y
 - $-\Omega(\mathbf{w})$ is a regularizer, penalizing certain values of \mathbf{w}
 - λ controls how much we penalize, and is a hyperparameter that we have to tune
 - We will come back to this later
- Learning is cast as an optimization problem

Example Loss Functions

- With
$$y \in \{0,1\}$$

- Often used in classification
- Hinge Loss: - With $y \in \{-1, 1\}$ $L(h(\mathbf{x}; \mathbf{w}), y) = \max(0, 1 - yh(\mathbf{x}; \mathbf{w}))$
- Zero-One loss
 - With $h(\mathbf{x}; \mathbf{w})$ predicting label $L(h(\mathbf{x};\mathbf{w}),y) = 1_{y \neq h(\mathbf{x};\mathbf{w})}$

$$\mathcal{L}(h(\mathbf{x};\mathbf{w}),y) = (h(\mathbf{x};\mathbf{w}) - y)^2$$

$$L(h(\mathbf{x}; \mathbf{w}), y) = -y \log h(\mathbf{x}; \mathbf{w}) - (1-y) \log(1 - h(\mathbf{x}; \mathbf{w}))$$

Maximum Likelihood

- Describe a process behind the data
- Write down the likelihood of the observed data

$$\mathcal{L}(\mathbf{w}) = p(\mathbf{y}|\mathbf{X};\mathbf{w}) = \prod_{i} p(y_i|\mathbf{x}_i;\mathbf{w})$$

- Where second equality holds if data is independent and identically distributed
- Often minimize negative-log-likelihood for numerical stability
 - Same as maximizing likelihood since log is monotonic and differentiable away from zero

Maximum Likelihood

- Describe a process behind the data
- Write down the likelihood of the observed data

$$\mathcal{L}(\mathbf{w}) = p(\mathbf{y}|\mathbf{X};\mathbf{w}) = \prod_{i} p(y_i|\mathbf{x}_i;\mathbf{w})$$

Select parameters that make data most likely

 General strategy for parameter estimation

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \arg \min_{\mathbf{w}} - \ln \mathcal{L}(\mathbf{w}) = \arg \min_{\mathbf{w}} - \sum_{i} \ln p(y_i | \mathbf{x}_i; \mathbf{w})$$

Linear Methods

Least Squares Linear Regression

• Set of input / output pairs $D=\{x_i\,,\,y_i\}_{i=1\ldots n}$ – $x_i\,\in\mathbb{R}^m$

$$-y_i \in \mathbb{R}$$

- Assume a linear model $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T}\mathbf{x}$
- Squared Loss function:

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i} \left(y_i - h(\mathbf{x}_i; \mathbf{w}) \right)^2$$

• Find $\mathbf{w}^* = \arg \min_{\mathbf{w}} L(\mathbf{w})$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D = \{ \textbf{x}_i \text{ , } y_i \}_{i=1 \ldots n}$
 - Design matrix $\mathbf{X} \in \mathbb{R}^{nxm}$
 - Target vector $\mathbf{y} \in \mathbb{R}^n$

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,m} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D = {x_i, y_i}_{i=1...n}$
 - Design matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$
 - Target vector $\mathbf{y} \in \mathbb{R}^{n}$
- 1 • Rewrite loss:
- Minimize w.r.t. w:

$$L(\mathbf{w}) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \arg\min_{\mathbf{w}} L(\mathbf{w})$$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D = \{ \mathbf{x}_i \text{ , } y_i \}_{i=1 \ldots n}$
 - Design matrix $\mathbf{X} \in \mathbb{R}^{nxm}$
 - Target vector $\mathbf{y} \in \mathbb{R}^n$
- Rewrite loss: $L(\mathbf{w}) = \frac{1}{2}(\mathbf{y} \mathbf{X}\mathbf{w})^T(\mathbf{y} \mathbf{X}\mathbf{w})$
- Minimize w.r.t. w: $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \arg \min_{\mathbf{w}} L(\mathbf{w})$
- What if we have correlated variables? *Multi-collinearity*
 - **– X** is close to singular
 - Inverse is highly sensitive to random errors
- Hint: Regularization can help!

Linear Regression Example

• Reconstructed Jet energy vs. Number of primary vertices

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

38

• Then $y_i \sim \mathcal{N}(mx_i, \sigma) \rightarrow p(y_i | x_i; m) \propto \exp\left(\frac{1}{2} \frac{(y_i - mx_i)^2}{\sigma^2}\right)$

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

• Then
$$y_i \sim \mathcal{N}(mx_i, \sigma) \rightarrow p(y_i | x_i; m) \propto \exp\left(\frac{1}{2} \frac{(y_i - mx_i)^2}{\sigma^2}\right)$$

• Likelihood function:

$$L(m) = p(\mathbf{y}|\mathbf{X};m) = \prod_{i} p(y_i|x_i;m)$$
$$\rightarrow -\log L(m) \sim \sum_{i} (y_i - mx_i)^2$$

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

• Then
$$y_i \sim \mathcal{N}(mx_i, \sigma) \rightarrow p(y_i | x_i; m) \propto \exp\left(\frac{1}{2} \frac{(y_i - mx_i)^2}{\sigma^2}\right)$$

• Likelihood function:

$$L(m) = p(\mathbf{y}|\mathbf{X};m) = \prod_{i} p(y_i|x_i;m)$$

$$\rightarrow -\log L(m) \sim \sum_{i} (y_i - mx_i)^2$$
Squared
loss function!

• Allows us to get calibrated estimates of p(y | x)

• Separates predictions from modeling

A general framework for parameter estimation.
– Can use to fit other parameters of the model.

Basis Functions

• What if non-linear relationship between **y** and **x**?

Basis Functions

• What if non-linear relationship between **y** and **x**?

• Can choose basis functions $\phi(x)$ to form new features

$$\mathbf{y}_{i} = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_{i})$$

- Polynomial basis $\phi(x) \sim \{1, x, x^2, x^3, ...\},$ Gaussian basis, ...
- Linear regression on new features $\phi(x)$

43

Basis Functions

• What if non-linear relationship between **y** and **x**?

• Can choose basis functions $\phi(x)$ to form new features

$$\mathbf{y}_{i} = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_{i})$$

- Polynomial basis $\phi(x) \sim \{1, x, x^2, x^3, ...\},$ Gaussian basis, ...
- Linear regression on new features $\phi(x)$
- What basis functions to choose? *Overfit* with too much flexibility?

What is Overfitting


```
http://scikit-learn.org/
```

- What models allow us to do is **generalize** from data
- Different models generalize in different ways

 generalization error = systematic error + sensitivity of prediction (bias) (variance)

- generalization error = systematic error + sensitivity of prediction (bias) (variance)
- Simple models <u>under-fit</u>: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).

- generalization error = systematic error + sensitivity of prediction (bias) (variance)
- Simple models <u>under-fit</u>: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).
- Complex models <u>over-fit</u>: will not deviate systematically from data (low bias) but will be very sensitive to data (high variance).

- Model h(x), defined over dataset, modeling random variable output y $E[y]=\bar{y}$ $E[h(x)]=\bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = E[(y - \bar{y})^{2}] + (\bar{y} - \bar{h}(x))^{2} + E[(h(x) - \bar{h}(x))^{2}]$$

= noise + (bias)² + variance

- Model h(x), defined over dataset, modeling random variable output y $E[y]=\bar{y}\\E[h(x)]=\bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = noise \end{bmatrix} + (\bar{y} - \bar{h}(x))^{2} + E[(h(x) - \bar{h}(x))^{2}] \\ + (bias)^{2} + variance$$
Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise

- Model h(x), defined over dataset, modeling random variable output y $E[y]=\bar{y}$ $E[h(x)]=\bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = \text{noise} \end{bmatrix} + \begin{bmatrix} (\bar{y} - \bar{h}(x))^{2} \\ (\text{bias})^{2} \end{bmatrix} + \begin{bmatrix} E[(h(x) - \bar{h}(x))^{2}] \\ + \text{variance} \end{bmatrix}$$

• The **more complex the model** h(x) is, the more data points it will capture, and **the lower the bias** will be.

- Model h(x), defined over dataset, modeling random variable output y $E[y]=\bar{y}$ $E[h(x)]=\bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = \text{noise} \end{bmatrix} + \begin{bmatrix} (\bar{y} - \bar{h}(x))^{2} \\ (\text{bias})^{2} \end{bmatrix} + \begin{bmatrix} E[(h(x) - \bar{h}(x))^{2}] \\ + \text{variance} \end{bmatrix}$$

- The **more complex the model** h(x) is, the more data points it will capture, and **the lower the bias** will be.
- More Complexity will make the model "move" more to capture the data points, and hence its variance will be larger.

- Model h(x), defined over dataset, modeling random variable output y $E[y]=\bar{y}$ $E[h(x)]=\bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = \text{noise} \end{bmatrix} + \begin{bmatrix} (\bar{y} - \bar{h}(x))^{2} \\ (\text{bias})^{2} \end{bmatrix} + \begin{bmatrix} E[(h(x) - \bar{h}(x))^{2}] \\ + \text{variance} \end{bmatrix}$$

- The **more complex the model** h(x) is, the more data points it will capture, and **the lower the bias** will be.
- More Complexity will make the model "move" more to capture the data points, and hence its variance will be larger.
 - As dataset size grows, can reduce variance! Can use more complex model

Model Complexity

Regularization

- Can control the complexity of a model by placing **constraints on the model parameters**
 - Trading some bias to reduce model variance

• **L2 norm**:
$$\Omega(\mathbf{w}) = ||\mathbf{w}||^2 = \sum_i w_i^2$$

- "Ridge regression", enforcing weights not too large– Equivalent to Gaussian prior over weights
- L1 norm: $\Omega(\mathbf{w}) = ||\mathbf{w}|| = \sum_{i} |w_i|$ - "Lasso regression", enforcing sparse weights
- Elastic net \rightarrow L1 + L2 constraints

Regularized Linear Regression

$$L(\mathbf{w}) = \frac{1}{2}(\mathbf{y} - \mathbf{X}\mathbf{w})^2 + \alpha \Omega(\mathbf{w})$$

$$L2: \quad \Omega(\mathbf{w}) = ||\mathbf{w}||^2$$

- L2 keeps weights small, L1 keeps weights sparse!
- But how to choose hyperparameter α ?

http://scikit-learn.org/

 $L1: \quad \Omega(\mathbf{w}) = ||\mathbf{w}||$

How to Measure Generalization Error?

- Split dataset into multiple parts
- Training set
 - Used to fit model parameters

Validation set

 Used to check performance on independent data and tune hyper parameters

• Test set

- final evaluation of performance after all hyper-parameters fixed
- Needed since we tune, or "peek", performance with validation set

57

Prediction Error

Model Complexity

- Especially when dataset is small, split training set into K-folds
 - Train on (K-1) folds, validate on 1 fold, then iterate
 - Use average estimated performance on K-folds
 - Allows for estimate of performance RMS
- Even when dataset not small, useful technique to estimate variance of expected performance, and for comparing different models / hyperparameters

Classification

- Learn a function to separate different classes of data
- Avoid over-fitting:
 - Learning too fined details about your training sample that will not generalize to unseen data

Linear Decision Boundaries

• Separate two classes:

$$-\mathbf{x}_{i} \in \mathbb{R}^{m}$$
$$-\mathbf{y}_{i} \in \{-1,1\}$$

• Linear discriminant model $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T}\mathbf{x}$

[Bishop]

Linear Decision Boundaries

• Separate two classes:

 $- \mathbf{x}_i \in \mathbb{R}^m$ $-y_i \in \{-1,1\}$

- Linear discriminant model $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T} \mathbf{x}$
- **Decision boundary** defined by hyperplane

 $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T} \mathbf{x} = 0$

- Boundary is perpendicular to weight vector w

- Classifier Score(\mathbf{x}_i) = h(\mathbf{x}_i ; \mathbf{w})
- Class predictions: Predict class -1 if $h(\mathbf{x}_i; \mathbf{w}) < 0$, else class 1

62

[Bishop]

Linear Classifier with Least Squares?

Why not use least squares loss with binary targets?

Linear Classifier with Least Squares?

- Why not use least squares loss with binary targets?
 - Penalized even when predict class correctly
 - Least squares is very sensitive to outliers

Linear Classifier with Least Squares?

- Why not use least squares loss with binary targets?
 - Penalized even when predict class correctly
 - Least squares is very sensitive to outliers
- Use only class labels?

- Perceptron algorithm (not covered here)

• A probabilistic approach?

- Set of input / output pairs $D = \{x_i, y_i\}_{i=1...n}$ $x_i \in \mathbb{R}^m$
 - $-y_i \in \{0, 1\}$
- Linear discriminant: $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T} \mathbf{x}$

- Set of input / output pairs $D = \{x_i, y_i\}_{i=1...n}$ - $x_i \in \mathbb{R}^m$ - $y_i \in \{0, 1\}$
- Linear discriminant: $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T}\mathbf{x}$
- Model per example probability: $p(y = 1 | \mathbf{x}) \equiv p_i = \frac{1}{1 + e^{-h(\mathbf{x}; \mathbf{w})}}$

 $=\frac{1}{1+e^{-\mathbf{w}^T\mathbf{x}}}$

NOTE:

Not a random choice, Natural choice for large class of models

See backups for more info

- Set of input / output pairs $D = \{x_i, y_i\}_{i=1...n}$ - $x_i \in \mathbb{R}^m$ - $y_i \in \{0, 1\}$
- Linear discriminant: $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T} \mathbf{x}$
- Model per example probability: $p(y = 1 | \mathbf{x}) \equiv p_i = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$
 - The farther from boundary $\mathbf{w}^{\mathrm{T}}\mathbf{x}=0$, the more certain about class
 - Class decision rule: choose class 0 if $p_i < 0.5$, else choose class 1

- Set of input / output pairs $D = \{x_i, y_i\}_{i=1...n}$ - $x_i \in \mathbb{R}^m$ - $y_i \in \{0, 1\}$
- Linear discriminant: $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T} \mathbf{x}$
- Model per example probability: $p(y = 1 | \mathbf{x}) \equiv p_i = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$
 - The farther from boundary $\mathbf{w}^{\mathrm{T}}\mathbf{x}=0$, the more certain about class
 - Class decision rule: choose class 0 if $p_i < 0.5$, else choose class 1
- Concisely write $p(y | \mathbf{x})$ as Bernoulli random variable:

 $P(y_i = y | x_i) = \text{Bernoulli}(p_i) = (p_i)^{y_i} (1 - p_i)^{1 - y_i} = -\begin{bmatrix} p_i & \text{if } y_i = 1\\ 1 - p_i & \text{if } y_i = 0 \end{bmatrix}$

Logistic Regression

• Negative log-likelihood

$$-\ln \mathcal{L} = -\ln \prod_{i} (p_i)^{y_i} (1 - p_i)^{1 - y_i}$$

Logistic Regression

71

• Negative log-likelihood

Logistic Regression

72

• Negative log-likelihood

$$-\ln \mathcal{L} = -\ln \prod_{i} (p_i)^{y_i} (1 - p_i)^{1 - y_i}$$

$$= -\sum_{i} y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i)$$

$$= \sum_{i} y_i \ln(1 + e^{-\mathbf{w}^T \mathbf{x}}) + (1 - y_i) \ln(1 + e^{\mathbf{w}^T \mathbf{x}})$$

- No closed form solution to $\mathbf{w}^* = \arg \min_{\mathbf{w}} -\ln \mathbf{L}$
- How to solve for **w**?

Gradient Descent

- Many methods to solve, lets use **Gradient Descent**
- Minimize loss by repeated gradient steps (when no closed form)

 $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$

- Compute gradient w.r.t. parameters:

- Update parameters
$$\mathbf{w}' \leftarrow \mathbf{w} - \eta \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$$

 $- \eta \text{ is called the learning rate, controls} \\ \text{how big of a gradient step to take}$

Stochastic Gradient Descent and Variants

- Gradient descent is computationally costly (since we compute gradient over full training set)
- Stochastic gradient descent.
 - Compute gradient on one event at a time (in practice a small batch)
 - Noisy estimates average out
 - Stochastic behavior can allow "jumping" out of bad critical points
 - Scales well with dataset and model size
 - But can have some convergence difficulties
 - Improvements include: Momentum, RMSprop, AdaGrad, ...

http://danielnouri.org/notes/category/deep-learning/

0

-1

 W_1

4

momentum

adadelta

rmsprop

nag adagrad

3

Gradient Descent for Logistic Regression

$$L(\mathbf{w}) = -\ln \mathcal{L}(\mathbf{w}) = -\sum_{i} y_{i} \ln(\sigma(\mathbf{w}^{T}\mathbf{x})) + (1 - y_{i}) \ln(1 - \sigma(\mathbf{w}^{T}\mathbf{x}))$$

• Derivative of sigmoid:

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

• Derivative of Loss:

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i} (\sigma(\mathbf{w}^T \mathbf{x}) - y_i) \mathbf{x}_i$$

• Update rule:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{w} - \eta \sum_{i} (\sigma(\mathbf{w}^T \mathbf{x}) - y_i) \mathbf{x}_i$$

• Repeat until parameters stable

Gradient Descent

• Loss is convex

– Single global minimum

• Iterations lower loss and move toward minimum

Logistic Regression Example

1

000

000

Fitted decision boundary

5

OOo Predicted probability

3

p(y=1 | x)

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

Estimating a Classifier Performance

Predicted Positive Negative Positive True Positives (TP) False Negatives (FN) Negative False Positives (FP) True Negatives (TN)

Confusion Matrix Classifying tau decays

Receiver Operating Characteristic (ROC) Curve classifying quarks vs. gluons

arXiv:1512.05955

arXiv:1702.00414

Multiclass Classification?

• What if there is more than two classes?

Multiclass Classification?

• What if there is more than two classes?

- Softmax \rightarrow multi-class generalization of logistic loss
 - Have N classes $\{c_1, ..., c_N\}$
 - Model target $\mathbf{y}_{k} = (0, ..., 1, ...0)$ kth element in vector

$$p(c_k|x) = \frac{\exp(\mathbf{w}_k x)}{\sum_j \exp(\mathbf{w}_j x)}$$

– Gradient descent for each of the weights \mathbf{w}_k

Summary of Today

- Machine learning uses mathematical and statistical models learned from data to characterize patterns and relations between inputs, and use this for inference / prediction
- Machine learning comes in many forms, much of which has probabilistic and statistical foundations and interpretations (i.e. *Statistical Machine Learning*)
- Discussed linear models today
 - Many forms of linear models, we only touched the surface!
- Next time, some nonlinear models and unsupervised learning
 - Decision trees and ensemble methods
 - Neural network (intro)
 - Clustering
 - Dimensionality reduction

Recommended Materials

- Many excellent books (many available free online)
 - Introduction to Statistical Learning
 - Elements of Statistical Learning
 - Pattern Recognition and Machine learning (Bishop)
- Many excellent courses and documentation available online
 - Andre Ng's machine learning course on Coursera
 - University course material online: Stanford CS229, Harvard CS181, ...
 - Lectures from Machine Learning Summer School (MLSS)
 - Lectures from Yandex Machine learning in HEP summer schools
 - Scikit Learn documentation
 - ..

. . .

• References:

- I used / borrowed from many of these references to make these lectures!

References

- <u>http://scikit-learn.org/</u>
- [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
- [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009
- [Murray] Introduction to machine learning, Murray
 - <u>http://videolectures.net/bootcamp2010_murray_iml/</u>
- [Ravikumar] What is Machine Learning, Ravikumar and Stone
 - <u>http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf</u>
- [Parkes] CS181, Parkes and Rush, Harvard University
 - http://cs181.fas.harvard.edu
- [Ng] CS229, Ng, Stanford University
 - <u>http://cs229.stanford.edu/</u>
- [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
 - <u>https://indico.cern.ch/event/497368/</u>

Bayesian vs. Frequentist Models

- Mathematical models in ML typically described via random variables in which case they are also called statistical models
- Statistical models typically specified by **unknown** parameters (to be learnt from data)
- **Frequentist:** there exist a "ground-truth" set of unknown parameters that are constant (i.e. not random)
- **Bayesian:** model parameters are themselves random, and typically specified by their own distribution/statistical model, with their own unknown "hyperparameters"

Probabilistic Motivation

• Posterior probability:
$$p(y = 1 | \mathbf{x}) = \frac{p(\mathbf{x} | y = 1)p(y = 1)}{p(\mathbf{x} | y = 1)p(y = 1) + p(\mathbf{x} | y = 0)p(y = 0)}$$
$$= \frac{1}{1 + e^{-a(\mathbf{x})}} = \sigma(a(\mathbf{x})) \leftarrow \text{Logistic sigmoid}$$

• Log-probability ratio:
$$a(\mathbf{x}) = \ln \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x}|y=0)p(y=0)}$$

• In a large class of models $a(\mathbf{x})$ is linear

$$\mathbf{a}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x}$$

- When class-conditional density $p(\mathbf{x} | \mathbf{y})$ is in the exponential family of Generalized Linear Models,
 - Includes Gaussian, Exponential, Poisson, Beta, ...
- Have linear discriminant and estimate of per-class probability
- Even if $p(\mathbf{x} | \mathbf{y})$ unknown, motivation to model $p(\mathbf{y} | \mathbf{x})$ with logistic sigmoid

Regularization

87

Pattern Recognition and Machine Learning C. M. Bishop (2006)

Linear Separability

linearly separable

not linearly separable

Maximum Margin Classifiers

- Many possible solutions to separating classes
 Depends on the loss function chosen
- Assuming classes are linearly separable, what if we wanted to solution with the maximum distance between the decision boundary and the nearest data point?

- Assume we have:
 - $x in R^d$
 - $y in \{-1, 1\}$
- Linear classifier: $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T}\mathbf{x} + w_{0}$
- Distance of data point, \mathbf{x}_{i} , to decision boundary

$$\frac{y_i(\mathbf{w}^T \mathbf{x}_i + w_0)}{\sqrt{\mathbf{w}^T \mathbf{w}}}$$

• Optimization problem:

$$\arg \max_{\mathbf{w}, w_0} \left\{ \frac{1}{\sqrt{\mathbf{w}^T \mathbf{w}}} \min_i y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \right\} \longrightarrow \arg \min_{\mathbf{w}, w_0} \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
$$s. t. \quad y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1 \text{ for all } i$$

- Can solve with gradient descent methods!

What if points not linearly separable?

$$\arg\min_{\mathbf{w},w_0} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i \xi_i$$

s. t. $y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1 - \xi_i$ for all i

and
$$\xi_i \ge 0$$

- Add a smearing to the margin, $\xi \ge 0$
 - If $\xi = 0$, example correctly classifier
 - If $0 < \xi < 1$, example correctly classified, but in margin

- If $\xi > 1$, example incorrectly classified
- Add regularizer to problem to constrain ξ_i not too large
 - C is the regularization hyperparameter that controls how much "softening" of the boundary is allowed, thus how big is margin

What if points not linearly separable?

$$\arg\min_{\mathbf{w},w_0} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_i \xi_i$$

s. t. $y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 1 - \xi_i$ for all i
and $\xi_i \ge 0$

- Add a smearing to the margin, $\xi \ge 0$
- Add regularizer to problem to constrain ξ_i not too large
- C is the regularization hyperparameter
 - Controls how much "softening" of the boundary is allowed, thus how big is margin

-0.2

-0.4

0.2

0.4

0.6

0.8

0

-0.4

-0.6

-0.8 -1

-0.8

-0.6

C=infinity, hard margin

C=10, soft margin

Dual Formulation

• Use Lagrange multipliers (remember those!) to write a loss function for hard margin:

$$L(\mathbf{w}, w_0, \mathbf{a}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_i a_i \{ y_i (\mathbf{w}^T \mathbf{x}_i + w_0) - 1 \}$$

s. t.
$$\{a_i \ge 0\}$$

- Where **a** are Lagrange multipliers
- Minimize L w.r.t. \mathbf{w} and \mathbf{w}_0 :

$$\rightarrow \mathbf{w} = \sum_{i} a_{i} y_{i} x_{i}$$
$$\rightarrow \sum_{i} a_{i} y_{i} = 0$$

- Dual form of optimization
 - Solve for **a** and w_0 using gradient methods, or SMO algorithm

$$\max_{\mathbf{a}} \sum_{i} a_{i} - \frac{1}{2} \sum_{i} \sum_{j} a_{i} a_{j} y_{i} y_{j} \mathbf{x}_{i}^{t} \mathbf{x}_{j}$$

s. t.
$$\sum_{i} a_{i} y_{i} = 0$$
$$a_{i} \geq 0 \text{ for all } i$$

$$h(\mathbf{x}; \mathbf{a}, w_0) = \sum_i a_i y_i \mathbf{x}_i^t \mathbf{x} + w_0$$

Support Vector Machines

$$h(\mathbf{x}; \mathbf{a}, w_0) = \sum_i a_i y_i \mathbf{x}_i^t \mathbf{x} + w_0$$

- Only examples on margin will have a_i>0!
 - Follows from KKT conditions of constrained optimization
- Sum is only over a small number of examples on margin, the **support vectors**
 - Note: also only depends on inner produce! More later
- Margin on data = $1/||\mathbf{w}||$
 - At least one constraint will hold

Support Vector Machines: Recap

- Maximum Margin Optimization: $\max_{\mathbf{x}} \sum a_i \frac{1}{2} \sum \sum a_i a_j y_i y_j \mathbf{x}_i^t \mathbf{x}_j$
 - Dual formulation

s. t.
$$\sum_{i}^{a} a_{i}y_{i} = 0$$

$$a_{i} \ge 0 \text{ for all } i$$

$$\sum_{i}^{a} a_{i}y_{i} = 0$$

$$\sum_{i}^{b} a_{i}y_{i} = 0$$

• Discriminant function:

$$h(\mathbf{x}; \mathbf{a}, w_0) = \sum_i a_i y_i \mathbf{x}_i^t \mathbf{x} + w_0$$

 Sum is only over a small number of examples on margin called the support vectors

Basis Functions Revisited

• When data is not linearly separable, can use basis functions

$$h(\mathbf{x}; \mathbf{a}, w_0) = \sum_{i} a_i y_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + w_0$$

- Where ϕ is a map from $\mathbb{R}^m \to \mathbb{R}^k$
- But if k>>m (or if k infinite), inner product can be expensive to compute
- But we don't need the mapping φ, only inner products...

Kernels and the Kernel Trick

- A kernel function $K(x,x')=\phi(x)\phi(x')$ is an inner product where ϕ is a mapping $R^m \rightarrow R^k$
- Kernelized discriminant and optimization problem

10

$$h(\mathbf{x}; \mathbf{a}, w_0) = \sum_i a_i y_i K(\mathbf{x}_i, \mathbf{x}) + w_0 \qquad \max_{\mathbf{a}} \sum_i a_i - \frac{1}{2} \sum_i \sum_j a_i a_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

s. t.
$$\sum_i a_i y_i = 0$$

$$a_i \ge 0$$

- Kernel Trick: compute the Kernel K(x, x') without computing φ(x)!
 - So we just need to engineer the Kernel, not the exact features or exact mapping

Kernels

• Linear Kernel: $K(\mathbf{x},\mathbf{x}') = \mathbf{x}^{T}\mathbf{x}'$

• Polynomial Kernel: $K(\mathbf{x},\mathbf{x}') = (1 + \mathbf{x}^T\mathbf{x}')^q$

• Gaussian Kernal:
$$K(\mathbf{x},\mathbf{x}') = \exp\left(-\frac{1}{2}\frac{(\mathbf{x}-\mathbf{x}')^2}{\sigma^2}\right)$$

• As long as the Kernel matrix $K_{ij} = \phi(\mathbf{x}_i) \phi(\mathbf{x}_j)$ is a positive semi-definite matrix, it is a valid Kernel

SVM

Gaussian Kernel with σ =1

Gaussian Kernel with σ =0.25

