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Abstract 

Neutrinos in the Standard Model are massless particles, however neutrino oscillation 

experiments have demonstrated that neutrinos have masses. Beyond the Standard Model 

theories exist to introduce neutrino mass mechanisms. Some of these models do so by 

postulating the existence of additional particles, the heavy neutral leptons (HNLs). These 

particles can be of Dirac or Majorana type based on the specific model. In this thesis, 

theoretical computations show possible kinematical variables of final state particles that can 

provide discrimination between the Dirac vs Majorana nature of the HNLs and experimental 

simulations and analysis show the possibility of such discrimination within the context of 

their possible discovery at the FCC-ee experiment at CERN.  
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Introduction 

The Standard Model of Particle physics is the primary theory of fundamental particles and 

interactions, and has shown excellent agreements with experiments. Nevertheless, it leaves 

many questions unanswered, for instance, the nature of dark matter, gravity, or the origin of 

neutrino masses. In such a scenario, Beyond the Standard Model physics comes in to try and 

hypothesize the answers to these open questions.  

One such important question, as mentioned above, is that of the origin of neutrino masses. 

Standard model predicts neutrinos to be massless particles, however, observations of 

neutrino oscillations suggest that neutrinos have masses. It then becomes important to 

explore models that can provide mechanisms for generating neutrino masses in a way that 

is consistent with the Standard Model. There exist many such models, and a few of these 

models achieve neutrino mass mechanisms by introducing sterile heavy neutrino mass 

eigenstates, or heavy neutral leptons. Based on the specific model, the heavy neutral lepton 

can be a Dirac particle (one that participates in lepton number conserving processes) or a 

Majorana particle (one that participates in lepton number conserving and violating 

processes).  

In this project, I begin with exploring all the necessary theoretical prerequisites building up 

to the Type I and Inverse seesaw models. The heavy neutral leptons, as proposed in these 

models are then studied by performing helicity amplitude computations pertaining to the 

leptonic decay modes of the heavy neutral leptons. The amplitudes are then used for 

computation of differential decay width with respect to an angular variable (𝜃𝑒𝑒), the angle 

between the final state electron and positron. It is shown that this variable is able to provide 

for some amount of discrimination between the Dirac and Majorana type HNLs. 
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The next part of the project concerns the generation of events simulating the production and 

leptonic channel decay of the heavy neutral leptons in the center of mass energy of ~ 91 GeV 

based on the proposed Tera Z Run phase of the Future Circular Collider-ee(FCC-ee) 

experiment, which is a proposed next generation collider at CERN. The events undergo 

detector simulation to obtain final samples, which are then analyzed within the FCC-ee 

framework. The analysis shows that the angular variable (𝜃𝑒𝑒) does provide discrimination 

between the Dirac and Majorana type heavy neutral leptons(HNLs), and that if such a 

particle is indeed observed at the FCC-ee, it should be possible to comment on its nature to 

some extent.  

As a result, the theoretical computations and experimental simulations and analysis show 

complementarity in distinguishing between the Dirac vs Majorana nature of a heavy neutral 

lepton, should it exist and is discovered, in a future experiment. 

The thesis will be structured as follows: In the first chapter, I will provide an overview of the 

mass mechanisms in the Standard Model to understand why neutrinos of the SM are 

massless. I will also discuss the requirement of neutrino masses imposed by neutrino 

oscillation experiments. In the second chapter, I will explore the Type I seesaw and Inverse 

seesaw models that gives rise to Majorana and Dirac type HNLs respectively. Chapter 3 will 

comprise of the theoretical computations done in this project. In the fourth chapter, I will 

provide an overview of the FCC-ee and the FCC framework. In the fifth chapter, I will go into 

the details of the experimental analysis done in this project. 
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Chapter 1: Standard Model and the need for BSM theories 

The Standard model is a very successful and self consistent quantum field theory that 

explains a lot of the elementary physics phenomena at currently accessible energies.  The 

Standard model provides a list of fundamental particles and their properties such as rest 

mass, electric charge, color charge, particle type, etc., are often deduced experimentally. In 

the quantum field theory prescription, these particles correspond to the excitations of their 

respective fields that can be created using creation operators and annihilated using 

annihilation operators. Any field theory can be characterized by its Lagrangian that contains 

kinetic terms, mass terms and interaction terms. A more quantitative review of this 

description can be found in any standard quantum field theory textbook, however, the focus 

here will now shift to understanding the mass terms in a Lagrangian. 

Mass terms in QED Lagrangian 

A very important symmetry in physics is gauge symmetry. The idea that physics remains the 

same for observers in different reference frames is paramount to being able to deduce 

universal laws of nature in the first place. In quantum field theory, transformations of any 

kind are represented by members of a Group G where the group G acts as a representation 

of the symmetry itself. Mathematically, this means that a transformation that takes a certain 

quantity 𝜙ⅈto 𝜙𝑗happens such that: 

𝜙𝑗 = 𝑔𝑗
ⅈ
𝜙ⅈ where 𝑔 ∈ 𝐺 

We now take a look at a very simple theory that will effectively display the above mentioned 

concepts for further use. Consider a complex scalar field 𝜙 where 𝜙 =  𝜙1 + 𝑖𝜙2, where 𝜙1 

and 𝜙2 denote real fields. The action of this theory would be given as  
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𝑆 = ∫𝑑4𝑥  𝜕𝜇𝜙𝜕𝜇𝜙∗ + 𝑚2𝜙∗𝜙  

Action, which is always a dimensionless invariant, is the time integral of Lagrangian, which 

is itself a space integral of Lagrangian density. From here onwards, the term Lagrangian will 

be used to denote both the Lagrangian and the Lagrangian density. Hence, we have a 

Lagrangian of  𝜕𝜇𝜙𝜕𝜇𝜙∗ + 𝑚2𝜙∗𝜙 for the complex scalar theory. 

Consider a transformation such that 𝜙 → 𝑒ⅈ𝜃𝜙. The conjugate of the expression is 𝜙∗ →

𝑒−ⅈ𝜃𝜙∗. We have the rules of transformation for this theory and applying it to the Lagrangian 

yields the following: 

 𝜕𝜇𝑒ⅈ𝜃𝜙𝜕𝜇𝑒−ⅈ𝜃𝜙∗ + 𝑒ⅈ𝜃𝑒−ⅈ𝜃𝑚2𝜙∗𝜙 =  𝜕𝜇𝜙𝜕𝜇𝜙∗ + 𝑚2𝜙∗𝜙 

As shown, this transformation leaves the Lagrangian, and consequently the action 

unchanged. What we have seen here is that the group 𝑈(1), a group denoting unitary 

transformations of degree 1, is a global symmetry of our theory.  

We have now looked at a very simplistic example that will allow us to move further into 

understanding the requirements for mass terms of real particles in the Standard Model. 

Before moving onto that though, the concepts of spin, helicity and chirality needs to be 

understood. The concept of spin is such that, consider a particle that has an angular 

momentum without any rotations, this angular momentum must thus originate from some 

intrinsic property of the particle, which is its spin. The spin can be characterized using a 

vector by visualizing a system such that for a 3d space, for angular momentum in 

anticlockwise direction for an observe located at any point on positive z-axis, the positive 
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direction of z-axis is itself the spin vector. Spin is an axial vector, i.e. a vector that doesn’t 

change sign under a parity transformation.  

Consider a particle with spin 𝒔 moving with momentum 𝒑. The sign of the dot product 𝒔. 𝒑 

could be positive or negative, where a positive sign characterizes positive or right handed 

helicity, and a negative sign characterizes negative or left handed helicity. It is important to 

note that helicity is not an invariant for a massive particle as a massive particle could be 

boosted (Lorentz transformation pertaining to speed) to a frame such that the direction of 𝒑 

could be flipped. However, for a massless particle, travelling at the speed of light, no such 

transformation exists and therefore helicity for a massless particle is invariant under any 

Lorentz transformations.  

Lorentz transformations include boosts and rotations. When coupled with translations, they 

form the Poincare transformations characterized by the Poincare group. The concept of 

chirality is very abstract and it becomes hard to visualize it, however, mathematically the 

chirality of a particle is whether it transforms in a left handed or a right handed 

representation of the Poincare group. For a massless particle, helicity and chirality are the 

same, whereas for massive particles, they are not. Electrons, for instance, are Dirac particles 

which are denoted by a Dirac spinor 𝜓. The left handed transformation of the Poincare group 

is given by 
1

2
(1 − 𝛾5) and the right handed transformation is given by 

1

2
(1 + 𝛾5). A left chiral 

electron is given as 𝜓𝐿 =
1

2
(1 − 𝛾5)𝜓. 

We have now looked at concepts, at least qualitatively, that will allow us to look at mass 

terms quantitatively. To look at mass terms, we will turn our focus to quantum 

electrodynamics particles. The Lagrangian of QED is given as: 
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ℒ = 𝜓̅(𝑖∂/ − 𝑚)𝜓 −
1

4
𝐹𝜇𝜈𝐹𝜇𝜈 

The Dirac spinor 𝜓 can be written as 𝜓𝐿 + 𝜓𝑅 and its adjoint 𝜓̅ is defined as 𝜓†𝛾0. 

The mass term 𝑚𝜓̅𝜓 is given as shown below: 

𝑚𝜓̅𝜓 = 𝑚(𝜓𝐿
̅̅̅̅ 𝜓𝐿 + 𝜓𝐿

̅̅̅̅ 𝜓𝑅 + 𝜓𝑅
̅̅ ̅̅ 𝜓𝐿 + 𝜓𝑅

̅̅ ̅̅ 𝜓𝑅) 

= 𝑚(𝜓̅𝑃𝑅𝑃𝐿𝜓 + 𝜓̅𝑃𝑅𝑃𝑅𝜓 + 𝜓̅𝑃𝐿𝑃𝐿𝜓 + 𝜓̅𝑃𝐿𝑃𝑅𝜓) 

𝑃𝐿𝑃𝑅 = 𝑃𝑅𝑃𝐿 = 0 and hence 𝑚𝜓̅𝜓 reduces to 𝑚(𝜓𝐿
̅̅̅̅ 𝜓𝑅 + 𝜓𝑅

̅̅ ̅̅ 𝜓𝐿).  

Furthermore, the symmetry of QED is that of 𝑈(1)𝑒𝑚 group and transformations under  

𝑈(1)𝑒𝑚 too leave the Lagrangian (including the mass term) invariant. The 𝑈(1)𝑒𝑚 

transformations can be global, i.e. where 𝜓 → 𝑒ⅈ𝛼𝜓 or local, i.e. 𝜓 → 𝑒ⅈ𝛼(𝑥)𝜓. However, in case 

of local gauge symmetry, the photon field becomes relevant as regular derivatives are 

replaced by covariant derivatives. We now turn our attention to the Standard Model.  

Mass terms in SM Lagrangian 

The symmetry group of the standard model is given by 𝑆𝑈(3)𝑞 ∗ 𝑆𝑈(2)𝐿 ∗ 𝑈(1)𝑌. The 𝑆𝑈(3)𝑞 

corresponds to the framework of quantum chromodynamics and we will leave it aside for 

the purposes of this thesis. The 𝑆𝑈(2)𝐿 ∗ 𝑈(1)𝑌 denotes the electroweak part of the standard 

model. Before taking a look at the group pertaining to the electroweak interaction, it is a good 

idea to qualitatively understand the historical development of neutrino physics to 

understand the motivation behind the structure of the electroweak group. An interested 

reader is encouraged to look at [1] for a more detailed overview. 
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Neutrinos do not make up the everyday matter. The proposition of their existence arose as a 

need to explain the beta decay spectrum. The decay of a neutron to produce a proton and a 

beta particle (electron) was expected to give the emitted beta particle a fixed amount of 

energy, however, when the energy of these beta particles was measured, a spectrum was 

observed that ended at the expected energy point. Today we understand that this decay 

process also produces an antineutrino that takes away a variable amount of energy leaving 

us with an energy spectrum for the beta particles. An important point to note here is that this 

is a weak interaction process, hence electrons take part in weak interactions, and hence they 

should have some ‘weak interactions charge’. Neutrinos do not have an electric charge (due 

to charge conservation) and hence they do not take part in QED interactions but rather only 

in weak interactions. The fact that electrons take part in QED and weak interactions is a 

motivation for wanting to bring the two interactions into a unified framework of electroweak 

interactions. 

The next historical development in the field that we need to understand is that of the 

discovery of parity violation in weak interactions.  An experiment of importance is described 

in [2]. The full explanation of parity violating interactions is beyond the scope of this thesis, 

hence we will focus on some key observations that have been made experimentally in the 

field. 

1. Weak interactions constitute of charged current and neutral current interactions 

2. Charged current interactions only involve particles with left handed chirality 

3. Neutral current interactions can involve particles of both chirality but usually 

involves a slight bias towards left handed chirality 
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4. There has been no observation of neutrinos with a right handed chirality 

These observations highlight the importance and structuring of the ‘weak interactions 

charge’ mentioned above, which is actually called the weak hypercharge. In the weak 

interactions, the left handed electron and the left handed neutrino have the same 

hypercharge and are paired into a doublet (as are their charge conjugated anti-particles) as: 

𝑙𝐿 = (
𝑣𝑒𝐿

𝑒𝐿
)  which has a weak hypercharge of -1. The right handed electrons have a different 

hypercharge and they exist as singlets as 𝑒𝑅 with a weak hypercharge of -2. The existence of 

right handed neutrinos is not known, and if they do exist, their hypercharge would be 0 as 

they do not participate in weak interactions. This entire prescription covers the next 

generation of leptons too, i.e. 𝜇 and 𝜏.  

We now have 2 out 4 components that make up the Standard Model’s leptonic mass terms. 

For the next two terms, we need to understand the physics of the Higgs Field. Its detailed 

review is outside the scope of this thesis, however due to its importance, I will attempt to 

provide a heuristic explanation of the topic that should enable the reader to understand the 

Standard Model mass terms.  

There are two main problems with the electroweak interactions briefly described above. The 

first is that massive gauge bosons break local gauge invariance of a theory, however, the 

gauge bosons of weak interactions (𝑊−,𝑊+ and 𝑍) are massive. The second is that we have 

put left handed particles in doublets, that transform as doublets under the 𝑆𝑈(2) group 

whereas the right handed particles which are singlets, transform as singlets under the S𝑈(2) 

group. To transform as a doublet under the 𝑆𝑈(2) group means to undergo transform as: 

𝜙 → 𝑒−
𝑖

2
𝜔𝑖𝜎𝑖𝜙 where 𝜎ⅈ are the Pauli matrices. To transform as a singlet under the  𝑆𝑈(2) 
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group means to stay invariant. These transformations do not cancel one another and thus 

the gauge invariance, as was shown above for the QED Lagrangian mass terms, does not exist 

here. The introduction of the Higgs Field solves both these issues, and we will be focusing on 

how the second issue is solved. 

The Higgs field is composed of a complex scalar doublet. To understand this, firstly consider 

a real scalar field 𝜙 with a kinetic term, 𝜕𝜇𝜙𝜕𝜇𝜙, and a potential term, 
1

2
𝜇2𝜙2 +

1

4
𝜆𝜙4. The 

quadratic term can be thought of as the mass term with 𝜇 being the mass, and the quartic 

term can be thought of as the self interaction term. For this field to have a finite minima, 𝜆 >

0. However, the mass term has no such constraints. If we take a mass term whereby 𝜇2 < 0, 

we end up with a potential that does not have its minima at 0, but rather has two minima at 

±√
−𝜇2

𝜆
 . 

If we extend such an argument to a complex scalar field 𝜙 = 𝜙1 + 𝑖𝜙2, the minima of such a 

field would not be at 0, but rather be a circle in the complex plane, giving the well known 

‘Mexican-hat potential’. The Higgs field is a doublet of two such complex scalar fields. What 

happens in such a field is that at 𝜙 = 0, the vacuum expectation value is non zero. 

Furthermore, since the potential is rotationally symmetric, the circle on the complex plane 

that corresponds to the minima of the field, denotes an infinite number of degenerate 

vacuum states. Choosing a particular vacuum state breaks the symmetry of the system and 

this process is known as the Spontaneous Symmetry Breaking of the Electroweak Symmetry. 

The Higgs doublet, which is given as 𝜙 = (
𝜙+

𝜙0) = (
𝜙1 + 𝑖𝜙2

𝜙3 + 𝑖𝜙4
), after the spontaneous 

symmetry breaking can be written as 𝜙 =
1

√2
(
0
𝑣
), where 𝑣 is the vacuum expectation value. 



Page 12 of 77 
 

This choice of vacuum state can be made without loss of generalization and expanding about 

this state yields 𝜙 =
1

√2
(

0
𝑣 + ℎ(𝑥)

). This ℎ(𝑥) is the neutral scalar observed that is a remnant 

of the Higgs doublet, known as the Higgs Boson Particle.  

The SM Lagrangian has Yukawa terms, which are coupling terms between Scalar fields and 

Dirac fields. Consider the term: ℒⅈ𝑛𝑡 = −𝑌𝑒(𝑙𝐿̅𝜙𝑒𝑅 + 𝑒𝑅𝜙̅̅ ̅̅ ̅𝑙𝐿), where 𝑌𝑒 is the Yukawa coupling, 

𝑙𝐿 is the left handed lepton doublet, 𝜙 is the Higgs doublet and 𝑒𝑅 is the right handed electron 

singlet. This term stays invariant under the group transformation. Expanding out this 

expression gives: 

 ℒⅈ𝑛𝑡 = −
𝑌𝑒𝑣

√2
(𝑒𝐿̅𝑒𝑅 + 𝑒𝑅̅̅ ̅𝑒𝐿) −

𝑌𝑒

√2
(𝑒𝐿̅𝑒𝑅 + 𝑒𝑅̅̅ ̅𝑒𝐿)ℎ 

We then choose 
𝑌𝑒𝑣

√2
= 𝑚𝑒 , and then the above expression can be written as: 

 ℒⅈ𝑛𝑡 = −𝑚𝑒𝑒̅𝑒 −
𝑚𝑒

𝑣
𝑒̅𝑒 

The first term corresponds to the mass of the electron, and the second term corresponds to 

the coupling between electron and Higgs boson. To physically interpret the idea that the 

coupling of electron with the Higgs field gives electron its mass, it is worth remembering that 

the weak hypercharge of the left handed electron is different from the weak hypercharge of 

the right handed electron. The Higgs field can be thought as an infinite source and sink of 

weak hypercharge and therefore it can interact with a left handed electron taking away a 

unit of hypercharge and turning it into a right handed electron, and vice versa. This 

interaction slows down the electron. It is useful to draw a crude analogy of this process with 

that of photons originating from the Sun. A photon requires ~ 8 minutes to reach the Earth 
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from the surface of the Sun, but it requires time that is orders of magnitudes larger for it to 

reach the surface of the Sun from the center of the Sun. This is due to the fact that photons 

inside the Sun are constantly interacting with the plasma. Similarly, it can be thought of the 

fermion being ‘slowed down’ due to its interaction with the Higgs field, effectively making it 

a massive particle. The coupling of a fermion would dictate how much the particle is ‘slowed 

down’, and therefore the mass of a fermion is directly proportional to its Yukawa coupling 

with the Higgs field. This concludes the section on mass terms in the SM and we are now 

ready to discuss neutrino masses. 

Neutrino masses 

From the Standard Model Lagrangian, we see clearly that there is no coupling between 

neutrinos and the Higgs field. As a result, a direct prediction of the Standard Model is that 

neutrinos are massless. However, experimental observations have shown neutrinos have 

masses. These experiments have observed the phenomena of neutrino oscillations which we 

will now explore. The phenomena of neutrino oscillations is, like previous concepts, quite 

thorough with decades of research work gone into it and therefore I will once again be taking 

a heuristic approach in laying it out in this section. 

The nuclear fusion reactions that happen in our Sun and the rates of such reactions are well 

understood and computed respectively. A very large number of electron neutrinos are 

produced through these processes, so much so that it becomes possible to detect them 

despite the fact that they only interact weakly. By knowing the estimated flux of neutrinos 

passing through a detector and knowing the weak coupling constant, it is possible to 

estimate the number of neutrinos that should be observed. This experiment resulted in  
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unpredicted results, in particular, the number of electron neutrinos observed was always 

less than the estimated number. The deficit approximately ranged from one half to two 

thirds. This is known as the Solar Neutrino Problem. 

The solution to this problem lies in how one thinks about a particle in the first place. When 

we conceptualize a particle, we think of it as an entity that moves around and interacts 

(including scattering and decay processes) as an individual entity. It is this simple notion 

which needs to be abandoned in understanding the nature of neutrinos. In particular, for 

neutrinos, the entities which interact are not the same entities which move around, or 

propagate. In formal terms, neutrinos interact as flavor eigenstates, which are states we 

generally think of when we refer to neutrinos: 𝑣𝑒,𝜇,𝜏. However, neutrinos propagate as mass 

eigenstates, denoted as: 𝑣1,2,3. Each of the flavor eigenstates can be written as a linear 

combination of the mass eigenstates and each of the mass eigenstates can be written as a 

linear combination of the flavor eigenstates. In particular, 

|𝑣𝛼⟩ = ∑𝑈𝛼ⅈ

ⅈ

|𝑣ⅈ⟩ 

|𝑣ⅈ⟩ = ∑𝑈𝛼ⅈ
∗

𝛼

|𝑣𝛼⟩ 

Where 𝑈𝛼ⅈ is the PMNS matrix which is a complex matrix that contains the mixing terms 

between the individual flavor and mass eigenstates, 𝑣𝛼 are the flavor eigenstates with 𝛼 =

𝑒, 𝜇 or 𝜏 and 𝑣ⅈ are the mass eigenstates with 𝑖 = 1, 2 or 3. The propagation frequency of each 

of the mass eigenstate is distinct and this results in the interference of the mass eigenstates 

to oscillate. A state which is a superposition of these mass eigenstates would as a result 
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oscillate too. A more mathematical description of the process of neutrino oscillations can be 

found in [3]. 

The phenomena of neutrino oscillations has been well studied in many different 

experiments. The study of this phenomena is not able to deduce the mass of the mass 

eigenstates but rather the mass difference between pairs of mass eigenstates. As a result, at 

least two neutrino mass terms are required to be additionally added to the Standard Model 

Lagrangian.  

The physics of Standard Model and Neutrino Physics are very rich fields in physics and a 

short thesis chapter can never do justice to their complexity. However, I hope this chapter is 

able to clearly demonstrate that the Standard Model of Particle Physics predicts neutrinos to 

be massless particles, however the experimental observations of neutrino oscillations 

require the existence of massive neutrinos. This lays the foundation that necessitates the 

exploration of Beyond the Standard Model Physics to explain masses of neutrinos that are 

compatible with Standard Model Physics. This concludes the 1st chapter of the thesis and the 

next chapter will focus on two types of BSM models that allow for neutrino masses. 
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Chapter 2: Neutrino mass mechanisms 

In the last chapter, it was shown that mass terms require left and right handed states of a 

given particle. For neutrinos, only the left handed state has been observed suggesting 

neutrinos are massless particles in the Standard Model. However, the observations of the 

phenomena of neutrino oscillations suggests that neutrinos do have masses (at least for 2 

out of 3 generations). In this chapter we will look at a couple of specific BSM models that 

allow for neutrino mass terms that will be the focus of the rest of the thesis. 

From the simplicity standard point, one may question what is the simplest mechanism that 

introduces neutrino mass terms? The simplest mechanism would be to just introduce a right 

handed neutrino state 𝑣𝑅 , set its weak hypercharge to 0, thereby making it a sterile particle, 

i.e. one that does not have any possible interactions but still allowing us to write mass terms 

of the form 𝑚𝑣𝐿̅̅ ̅𝑣𝑅 + 𝑚𝑣𝑅̅̅ ̅𝑣𝐿. However, if it was that simple, my thesis would be ending here. 

The problem with such a mass term is that of scales. The smallest mass for a Standard Model 

particle is that of an electron, which is approximately 0.5 MeV. The upper bound on neutrino 

masses is approximately 0.1 eV. In such a case, one wonders why the Yukawa coupling of a 

neutrino is 6-7 orders of magnitude smaller (but not 0) than the smallest Yukawa coupling 

in the Standard Model (which is of the electron).  

It is here where it becomes worthwhile to look at models that not only introduce neutrino 

mass terms, but also explain the smallness of the neutrino’s mass term. One class of theories 

such theories are called seesaw models. In some of these models, heavy sterile neutrino mass 

eigenstates are introduced and their ‘heaviness’ leads to the ‘lightness’ of the regular 

neutrinos. In this chapter, we will be looking at two types of seesaw models that introduce 

two types heavy neutrino mass eigenstates or heavy neutral leptons which will be the focus 
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of the rest of this thesis. However, before that, we will take a slight detour to look at the 

concept of a Majorana particle.  

Majorana Fermions 

In the last chapter, we saw that the Dirac spinor 𝜓 is a sum of the left and right handed fields 

𝜓𝐿 + 𝜓𝑅. In explicit 4 component form, a Dirac spinor is given as 𝜓 = [
𝜓𝐿

𝜓𝑅
] where the top and 

bottom terms are both 2 component terms. Consider an operator 𝑪, which acts on spinors 

such that 𝑪𝜓̅𝑇 = 𝜓𝑐 = [
−𝑖𝜎2𝜓∗

𝑅

𝑖𝜎2𝜓∗
𝐿

]. This operator, which is called the charge conjugation 

operator, takes a field and flips its charge and its ‘handed-ness’. For instance, applying this 

operator on a left handed electron spinor would give a right handed positron spinor. This is 

not a transformation of chirality as left handed particle and right handed anti-particles are 

both left chiral states.  

Now consider a case such that 𝜓𝑐 = 𝜓. This condition is forbidden for a charged lepton 

because this would mean the charge of an electron and a positron is the same. More 

generally, such a condition is forbidden for a particle that possess a charge under a 𝑈(1) 

symmetry group, electromagnetism being one such group. However, for a particle that does 

not have such a charge, such a condition is entirely possible. If we consider a field whereby 

its left handed component and right handed components are not independent but rather 

𝜓𝑅 = 𝑖𝜎2𝜓∗
𝐿
, such a condition than becomes intrinsic. This is the Majorana condition and 

the spinor fields that follow it are known as Majorana fields that describe Majorana fermions 

or Majorana particles. 
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An interesting aspect of Majorana fermions is that they allow for mass terms with the same 

chiral state such as 𝑚𝜓𝐿
̅̅̅̅ (𝜓𝐿)

𝑐 = 𝑚𝜓𝐿
̅̅̅̅ 𝜓𝑐

𝑅
. Another interesting aspect of Majorana fermions 

is that they violate lepton number symmetry which is a symmetry that states that the 

difference between the number of leptons and anti-leptons is conserved. This concludes the 

detour on Majorana fermions and we now move onto the actual focus of the chapter, which 

is on neutrino mass mechanisms. 

Low Scale Type I Seesaw 

We had considered the possibility of introducing a sterile right handed neutrino just to 

introduce a neutrino mass term above. Consider again, a right handed neutrino 𝑁𝑅 , that 

forms Dirac mass terms with the regular neutrinos: 𝑚𝐷𝑣𝐿̅̅ ̅𝑁𝑅 + ℎ. 𝑐. However, in such a 

model, there is nothing stopping a Majorana mass term involving just the newly introduced 

right handed neutrino 𝑁𝑅  of the form 𝑀(𝑁𝑅)𝑐̅̅ ̅̅ ̅̅ ̅̅ 𝑁𝑅 + ℎ. 𝑐.  

To understand the mathematical formulation in a simplistic manner, we will consider a 

single 𝑣 and 𝑁, however the same formulation can be trivially extended to include 3 𝑣 and 

an arbitrary number of  𝑁 (whereby at least 2 are needed, as was explained in the last 

chapter). In this simplified formulation, the neutrino mass matrix can be given as: 

[𝑣̅ 𝑁̅] [
0 𝑚𝐷

𝑚𝐷 𝑀
] [

𝑣
𝑁

]. If we were to diagonalize the matrix [
0 𝑚𝐷

𝑚𝐷 𝑀
], to the following form, 

[
𝑚𝑣 0
0 𝑚𝑁

], whereby we assume that 𝑀 ≫ 𝑚𝐷, we get 𝑚𝑣 ≈
𝑚𝐷

2

𝑀
 and 𝑚𝑁 ≈ 𝑀. This is the crux 

of the simplest type of seesaw mechanism, where the largeness of 𝑀, the mass eigenvalue of 

heavy mass eigenstates, leads to the smallness of 𝑚𝑣, the mass eigenvalue of the regular 

neutrinos. In literature, it is often found that the scale of 𝑚𝑁 ≈ 𝑀 be given as 𝒪(1014 − 1015). 
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This is based on the assumption that 𝑦𝑣𝑁 ~ 𝒪(1). Recall from last chapter that mass is 

proportional to the Yukawa coupling multiplied by the Higgs vacuum expectation value, 

which results in 𝑚𝐷 ~ 𝑦𝑣𝑁. 𝑣, where 𝑣 is the vacuum expectation value of the Higgs field. 

Substituting the above approximate values and the vacuum expectation value of 246 GeV 

into 𝑚𝑣 ≈
𝑚𝐷

2

𝑀
, gives the value of 𝑚𝑣 in the (sub) eV range, which is consistent with the upper 

bounds on neutrino masses. This is the well known high scale Type I seesaw mechanism. By 

introduction of at least two heavy mass eigenstates 𝑁ⅈ , 𝑖 = 1, 2, …, it becomes possible to 

explain neutrino masses. 

However, the choice of 𝑦𝑣𝑁 ~ 𝒪(1) is arbitrary. We could reasonably expect the Yukawa 

coupling of neutrinos to be the same order as that of electrons, i.e. 𝑦𝑣𝑁 ~ 𝑦𝑒 ~ 𝒪(10−6), in 

which case the mass eigenvalue of the heavy neutrino mass eigenstate comes down to the ~ 

10 - 100 GeV range. This constitutes the low scale Type I seesaw. A review of this model can 

be seen in [4]. Henceforth, within this thesis, the term Majorana heavy neutral lepton or 

Majorana HNL, will constitute referring to the heavy mass eigenstate of this class of neutrino 

mass models.  

Inverse Seesaw 

For describing this model, I will again stick to the use of a single generation of neutrinos to 

keep the notation simple and ensure the conceptual explanation is concise. In the inverse 

seesaw, instead of introducing one type of heavy mass eigenstate singlet 𝑁, a pair of heavy 

mass eigenstate singlets, 𝑁 and 𝑆, are introduced. In this configuration, the lepton number of 

𝑁 can be given a value of 1 and the lepton number of 𝑆 can be given a value of -1.   
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In this scenario, we could then write the neutrino mass matrix in the basis of [𝑣 𝑁 𝑆] as 

[
0 𝑚𝐷 0

𝑚𝐷 𝜇𝑁 𝑚𝑅

0 𝑚𝑅 𝜇𝑆

]. Here 𝑚𝐷 corresponds to the Dirac mass terms involving 𝑣 and 𝑁, 𝑚𝑅 

corresponds to Dirac mass terms of the form 𝑚𝑅((𝑁𝑅)𝑐̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝑅 + (𝑆𝑅)𝑐̅̅ ̅̅ ̅̅ ̅𝑁𝑅) and 𝜇𝑁 and 𝜇𝑆 

correspond to Majorana mass terms for 𝑁 and 𝑆. We consider the mass hierarchy of 𝜇𝑁, 𝜇𝑆 ≪

𝑚𝐷 ≪ 𝑚𝑅. Furthermore, the contribution from 𝜇𝑁 to the masses of 𝑣 is minimal and for 

simplification, they can be taken as 0. With these assumptions and simplifications, the mass 

matrix can be diagonalized as [

𝑚𝑣 0 0
0 𝑚𝑁 0
0 0 𝑚𝑆

] where 𝑚𝑣 ≈ 𝜇𝑆
𝑚𝐷

2

𝑚𝐷
2+𝑚𝑅

2 and 𝑚𝑁, 𝑚𝑆 ≈

√𝑚𝐷
2 + 𝑚𝑅

2 ∓
𝜇𝑆

2

𝑚𝑅
2

𝑚𝐷
2+𝑚𝑅

2. Here 𝜇𝑆, the Majorana mass term, is sometimes also referred to 

as the lepton number violating parameter, and it is proportional to the mass eigenvalue of 

the light neutrinos. A review of this model can be found in [5]. 

It is the smallness of the Majorana mass term 𝜇 that leads to the smallness of the light 

neutrino masses, and therefore this model is referred to as the Inverse Seesaw model, in 

contrast to the Type I seesaw where the largeness of the Majorana mass term was 

responsible for smallness of the light neutrino mass terms. In the limit 𝜇𝑆 → 0, light neutrino 

mass eigenvalues become 0 and the heavy mass eigenstates N and S become degenerate. This 

is however, not what we want, as we went through all the effort just so that the light neutrino 

masses could be included in the theory in the first place.  

However, for the theoretical calculations and experimental simulations and analysis part of 

this thesis, I will consider only a single heavy neutrino mass eigenstate. This simplifies the 

study, however it should be explicitly noted that since we are considering ‘the heavy mass 
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term’, we are in effect working in the 𝜇𝑆 → 0 limit, treating N and S as degenerate such that 

𝑚𝑁 = 𝑚𝑆 ≈ √𝑚𝐷
2 + 𝑚𝑅

2. This is a small cost for the making this phenomenological study 

possible and accessible. From here on, the term Dirac heavy neutral lepton or Dirac HNL 

refers to the heavy mass eigenstate N or S, whereby the notation N will be consistently used 

henceforth. 
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Chapter 3: Theoretical Computations of the HNL 

In the last chapter, we took a close look at the notion of a Dirac HNL and a Majorana HNL 

with a special focus on the mass terms of the specified neutrino eigenstates in question. In 

this chapter, the focus will shift onto the interaction terms. 

The hypothesized heavy neutral leptons are sterile particles, and as a result do not directly 

interact with any Standard Model particles. Instead, their interactions happen through their 

mixing with the neutrino flavor eigenstates. In chapter 1, we took a brief look at the idea of 

how neutrinos mix between their flavor eigenstates and mass eigenstates and how this 

mixing is characterized by the terms of the mixing matrix 𝑈. Similarly, the mixing between 

the neutrino flavor eigenstates 𝑣𝛼 and heavy neutrino mass eigenstates 𝑁ⅈ  where 𝛼 = 𝑒, 𝜇, 𝜏 

and 𝑖 = 1, 2, 3…  can be characterized with a mixing matrix 𝑉. In particular, the mixing 

expressions are given as: 

|𝑣𝛼⟩ = ∑𝑉𝛼ⅈ

ⅈ

|𝑁ⅈ⟩ 

|𝑁ⅈ⟩ = ∑𝑉𝛼ⅈ
∗

𝛼

|𝑣𝛼⟩ 

Combining this with the mixing between the flavor eigenstates and the light mass 

eigenstates, the following expression is obtained: 

|𝑣𝛼⟩ = ∑𝑈𝛼ⅈ

ⅈ

|𝑣ⅈ⟩ + ∑𝑉𝛼𝑗

𝑗

|𝑁𝑗⟩ 

An interesting aspect about the Dirac and Majorana HNL interaction terms is that they are 

the same. This is because the interaction for both classes of HNLs is mediated through their 
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mixing with the flavor eigenstate. The differences we seek to find in the decays associated 

with Dirac vs Majorana HNLs will therefore not be due to differences in the interaction terms 

in the Lagrangian but rather be based on the allowed decay channels for the individual HNL. 

The Majorana HNL allows for lepton number violating decays whereas the Dirac HNL does 

not. The interaction Lagragian for the HNL (both Dirac and Majorana) including the various 

generations is given as: 

ℒ𝑁 ⅈ𝑛𝑡 = −
𝑔

√2
𝑊𝜇

+ ∑ ∑ 𝑁𝑗̅

𝑙=𝑒,𝜇,𝜏

𝑉𝑙𝑗
∗𝛾𝜇𝑃𝐿𝑙

−

𝑗

−
𝑔

2 cos(𝜃𝑤)
𝑍𝜇 ∑ ∑ 𝑁𝑗̅

𝑙=𝑒,𝜇,𝜏

𝑉𝑙𝑗
∗𝛾𝜇𝑃𝐿𝑣𝑙

𝑗

−
𝑔𝑚𝑁

2 𝑚𝑊
ℎ ∑ ∑ 𝑁𝑗̅

𝑙=𝑒,𝜇,𝜏

𝑉𝑙𝑗
∗𝛾𝜇𝑃𝐿𝑣𝑙

𝑗

+ ℎ. 𝑐. 

For the theoretical calculations and experimental simulations, I will focus on one generation 

of heavy neutral lepton, 𝑁1 and its mixing with the electron neutrino. This approach is 

consistently followed throughout the thesis as explained in the previous chapter. 

Feynman Rules 

For interactions involving Dirac particles, the Feynman rules can be picked up directly from 

the Lagrangian. However, this is not the case for Majorana particles where it needs to be 

taken into account that they can undergo lepton number conserving or lepton number 

violating decays, and the rules for each of these channels is different. [6] provides a 

prescription for such interactions which will be discussed after looking at the explicit 

Feynman rules first.   

From ℒ𝑁 ⅈ𝑛𝑡 , it is clear that the interaction terms involving 𝑁 are exactly the same as the ones 

for the regular neutrino flavor eigenstates 𝑣, barring the 𝑉∗. In particular, where the fermion 
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flow arrow of the HNL is directed away from the vertex, the term 𝑉∗ comes into effect, and 

where the fermion flow arrow is pointed towards the vertex, its conjugate 𝑉 comes into 

effect. To summarize, the following are the Feynman rules for vertices: 

 

 

 

 

 

 

 

 

 

 

The rule for the force mediating massive vector bosons is as follows: 

 

 

A point to note is that the diagrams involving Higgs boson are not being considered as they 

will have very negligible effect due to the Yukawa coupling of electron being very small. 

−𝑖𝑔

√2
𝛾𝜇𝑃𝐿 

𝑙 

𝑙 

𝑊+/𝑊− 

−𝑖𝑔

√2
𝑉∗(𝑉)𝛾𝜇𝑃𝐿 

𝑙 

𝑁̅(𝑁) 

𝑊+/𝑊− 

−𝑖𝑔

2 cos(𝜃𝑤)
𝛾𝜇𝑃𝐿 

𝑣(𝑣̅) 

𝑣̅(𝑣) 

𝑍 

−𝑖𝑔

2 cos(𝜃𝑤)
𝑉∗(𝑉)𝛾𝜇𝑃𝐿 

𝑣(𝑣̅) 

𝑁̅(𝑁) 

𝑍 

−𝑖𝑔

2 cos(𝜃𝑤)
𝛾𝜇 (2 𝑠𝑖𝑛2(𝜃𝑤) −

1

2
+

1

2
𝛾5) 

𝑙− 

𝑙+ 

𝑍 

𝐵 = 𝑊/𝑍 

−𝑖𝑔𝜇𝜈 + 𝑞𝜇𝑞𝜈/𝑀𝑏𝑜𝑠𝑜𝑛
2

𝑞2 − 𝑀𝑏𝑜𝑠𝑜𝑛
2  
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The rules for the external spinors are usually given as 𝑢̅/𝑢 for particles and 𝑣/𝑣̅ for 

antiparticles, however, the computation in this chapter will be performed explicitly in 

helicity basis  and hence the rules for the spinors with explicit left or right handedness need 

to be looked at as follows: 

For incoming particles: 

𝑢𝐿 =

[
 
 
 
 
 
 
 
 −√𝐸 + 𝑚 sin (

𝜃

2
)

√𝐸 + 𝑚 𝑒ⅈ𝜙 cos (
𝜃

2
)

𝑃

√𝐸 + 𝑚
sin (

𝜃

2
)

−
𝑃

√𝐸 + 𝑚
𝑒ⅈ𝜙 cos (

𝜃

2
)
]
 
 
 
 
 
 
 
 

;           𝑢𝑅 =

[
 
 
 
 
 
 
 
 √𝐸 + 𝑚 cos (

𝜃

2
)

√𝐸 + 𝑚 𝑒ⅈ𝜙 sin (
𝜃

2
)

𝑃

√𝐸 + 𝑚
cos (

𝜃

2
)

𝑃

√𝐸 + 𝑚
𝑒ⅈ𝜙 sin (

𝜃

2
)
]
 
 
 
 
 
 
 
 

 

For outgoing particles: 

𝑢𝐿̅̅ ̅ = [−√𝐸 + 𝑚 sin (
𝜃

2
) √𝐸 + 𝑚 𝑒−ⅈ𝜙 cos (

𝜃

2
) −

𝑃

√𝐸 + 𝑚
sin (

𝜃

2
)

𝑃

√𝐸 + 𝑚
𝑒−ⅈ𝜙 cos (

𝜃

2
)] ; 

𝑢𝑅̅̅̅̅ = [√𝐸 + 𝑚 cos (
𝜃

2
) √𝐸 + 𝑚 𝑒−ⅈ𝜙 sin (

𝜃

2
) −

𝑃

√𝐸 + 𝑚
cos (

𝜃

2
) −

𝑃

√𝐸 + 𝑚
𝑒−ⅈ𝜙 sin (

𝜃

2
)] 

For outgoing antiparticles (i.e. inward pointing antiparticles): 

𝑣𝐿 =

[
 
 
 
 
 
 
 
 

𝑃

√𝐸 + 𝑚
cos (

𝜃

2
)

𝑃

√𝐸 + 𝑚
𝑒ⅈ𝜙 sin (

𝜃

2
)

√𝐸 + 𝑚 cos (
𝜃

2
)

√𝐸 + 𝑚 𝑒ⅈ𝜙 sin (
𝜃

2
)]
 
 
 
 
 
 
 
 

;           𝑣𝑅 =

[
 
 
 
 
 
 
 
 

𝑃

√𝐸 + 𝑚
sin (

𝜃

2
)

−
𝑃

√𝐸 + 𝑚
𝑒ⅈ𝜙 cos (

𝜃

2
)

−√𝐸 + 𝑚 sin (
𝜃

2
)

√𝐸 + 𝑚 𝑒ⅈ𝜙 cos (
𝜃

2
) ]

 
 
 
 
 
 
 
 

 

For incoming antiparticles (i.e. outward pointing antiparticles): 
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𝑣𝐿̅̅ ̅ = [
𝑃

√𝐸 + 𝑚
cos (

𝜃

2
)

𝑃

√𝐸 + 𝑚
𝑒−ⅈ𝜙 sin (

𝜃

2
) −√𝐸 + 𝑚 cos (

𝜃

2
) −√𝐸 + 𝑚 𝑒−ⅈ𝜙 sin (

𝜃

2
)] ; 

𝑣𝑅̅̅ ̅ = [
𝑃

√𝐸 + 𝑚
sin (

𝜃

2
) −

𝑃

√𝐸 + 𝑚
𝑒−ⅈ𝜙 cos (

𝜃

2
) √𝐸 + 𝑚 sin (

𝜃

2
) −√𝐸 + 𝑚 𝑒−ⅈ𝜙 cos (

𝜃

2
)] 

All the above rules have been given without any derivations as they can easily be found in 

many standard Quantum Field Theory or Particle Physics textbooks. These rules apply 

directly to interactions involving Dirac particles. For interactions involving Majorana 

particles, [6] provides a prescription that can be used for interactions involving Majorana 

particles. In particular, the effect of the prescription is as follows: 

- For each diagram, define a fermion flow (given as red lines in the diagrams that 

follow). This is trivial for a lepton number conserving interaction, whereby just the 

arrows on the Feynman diagram can be followed, however, for lepton number 

violating diagrams, the direction of the flow can be chosen arbitrarily (which then has 

an impact on which spinors to choose). For the computations in this project, I stick to 

using the fermion flow that is consistent with the corresponding lepton number 

conserving diagram. (This will become clearer in the next few sections.) 

- Based on the above convention, for lepton number conserving diagrams, fermion flow 

will match the arrows in the diagram and the vertex terms will be used as they are. 

However, for lepton number violating, the fermion flow will oppose the arrows in the 

diagram and vertex terms will need to be modified. The modification as proposed in 

[6] has a simple effect in the computations of interest to us: 𝑃𝐿 is changed to −𝑃𝑅 in 

the vertex terms. 
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- For the spinors of lepton number conserving diagrams, spinors will be used 

conventionally, however, for lepton number violating decays, as our defined fermion 

flow is in the opposite direction of the arrows in the diagram, we treat the 

(incoming)outgoing particles as (incoming)outgoing antiparticles and vice versa. A 

simple justification for this prescription is given in [7]. 

With this we are now ready to take a look at the Feynman diagrams of interest. 

Feynman Diagrams 

The number of diagrams involved in the computation are 12 for the Majorana HNL and 6 for 

the Dirac HNL. The following method is used for labelling them: 

- Odd numbered diagrams correspond to lepton number conserving diagrams and 

even numbered diagrams correspond to their lepton number violating counterparts 

- Diagrams 1-4 involve neutral current decays, hence they are divided into left handed 

and right handed diagrams corresponding to the handedness of the final state 

electron and positron 

- Diagram 5-8 involve charged current decays and as such they only allow final state 

left handed particles and right handed antiparticles 

The diagrams as are follows: 

 

 

 

 

 Fig. 3.1: Diagram 1L Fig. 3.2: Diagram 2L 
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Fig. 3.3: Diagram 1R Fig. 3.4: Diagram 2R 

Fig. 3.5: Diagram 3L Fig. 3.6: Diagram 4L 

Fig. 3.7: Diagram 3R Fig. 3.8: Diagram 4R 

Fig. 3.9: Diagram 5 Fig. 3.10: Diagram 6 

Fig. 3.11: Diagram 7 Fig. 3.12: Diagram 8 
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Amplitudes 

The HNLs in the above diagrams are on shell long lived particles, and as a result, to study the 

difference between Dirac vs Majorana HNLs, it suffices to compute the amplitude 

corresponding to the three body decay of the HNL, and the production of the HNL does not 

need to be included. Computation of all the amplitudes (and decay widths) are shown in 

Appendix A, however for the purposes of understanding, I will briefly demonstrate the 

process of computing the amplitudes for Diagram 1L and Diagram 2L as a means to show 

how lepton number violating channels are treated according to the prescription which was 

described in the Feynman rules section above. 

 

 

 

 

 

The fermion lines in the above diagram become specially important now because they are 

the only way of identifying whether the decay corresponds to a lepton number conserving 

or lepton number violating channel. 

Based on the Feynman rules and the prescription, given above, for treating lepton number 

violating processes, the amplitudes are as follows: 

ℳ1𝐿 = 𝑣𝑅̅̅ ̅(𝑝𝑁) ∗
−𝑖𝑔

2 cos(𝜃𝑤)
𝑉∗𝛾𝜇𝑃𝐿 ∗ 𝑣𝑅(𝑝𝑣̅) ∗

−𝑖𝑔𝜇𝜈

𝑞2 − 𝑀𝑍
2 ∗ 𝑢𝐿̅̅ ̅(𝑝𝑒−)

∗
−𝑖𝑔

2 cos(𝜃𝑤)
𝛾𝜇 (2 𝑠𝑖𝑛2(𝜃𝑤) −

1

2
+

1

2
𝛾5) ∗ 𝑣𝑅(𝑝𝑒+) 

Fig. 3.13: Diagram 1L- HNL decay Fig. 3.14: Diagram 2L- HNL decay 
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ℳ2𝐿 = 𝑣𝐿̅̅ ̅(𝑝𝑁) ∗
−𝑖𝑔

2 cos(𝜃𝑤)
𝑉∗𝛾𝜇(−𝑃𝑅) ∗ 𝑣𝐿(𝑝𝑣) ∗

−𝑖𝑔𝜇𝜈

𝑞2 − 𝑀𝑍
2 ∗ 𝑢𝐿̅̅ ̅(𝑝𝑒−)

∗
−𝑖𝑔

2 cos(𝜃𝑤)
𝛾𝜇 (2 𝑠𝑖𝑛2(𝜃𝑤) −

1

2
+

1

2
𝛾5) ∗ 𝑣𝑅(𝑝𝑒+) 

 

The highlighted terms above correspond to the prescription described above on how lepton 

number violating processes are treated.  After following this process for all the diagrams, 

amplitudes have to be squared with appropriate diagrams that interfere clubbed together. 

In particular, for the Majorana HNL: 

ℳ𝑁 𝑚𝑎𝑗
2 = (ℳ1𝐿 + ℳ5)

2 + (ℳ2𝐿 + ℳ6)
2 + (ℳ3𝐿 + ℳ7)

2 + (ℳ4𝐿 + ℳ8)
2 + ℳ1𝑅

2 + ℳ2𝑅
2

+ ℳ3𝑅
2 + ℳ4𝑅

2 

For the Dirac HNL: 

ℳ𝑁 𝑑ⅈ𝑟
2 = (ℳ1𝐿 + ℳ5)

2 + (ℳ3𝐿 + ℳ7)
2 + ℳ1𝑅

2 + ℳ3𝑅
2 

With the squared amplitudes computed, we proceed with the phase space integration and 

computation of differential decay width. 

Phase space and differential decay width 

To obtain the decay width or the differential decay width of a particle, its squared amplitude 

has to be integrated over the phase space. The squared amplitude above consists of 9 phase 

space variables (𝑝𝑒, 𝑝𝑝, 𝑝𝑣, 𝜃𝑒, 𝜃𝑝, 𝜃𝑣, 𝜙𝑒, 𝜙𝑝, 𝜙𝑣) and 1 fixed variable 𝑚𝑁. Note that we 

work in the rest frame of the HNL and the final state particles are treated as massless. 

However, these 9 variables are not independent degrees of freedom. A 3 body decay has a 

phase space characterized by 5 independent variables. Before looking at these variables, a 

subtle yet important note: (anti)neutrinos are invisible in collider experiments and as such 
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their kinematical variables can not be obtained, hence in the amplitude and differential decay 

width calculations, no distinctions are made between momentum, polar angle and azimuthal 

angle for neutrinos and anti neutrinos. Their properties are correctly captured by the 

appropriate usage of particle or anti particle spinors and it is completely fine to label their 

four momentum components as just 𝑣, thereby having a final amplitude and differential 

decay width that does not discriminate between neutrinos and anti neutrinos.  

The 1 fixed variable, is, as its name suggests, fixed by the mass of the HNL. The 5 phase space 

variables can however be chosen based on the purposes of the study. An example of 

differential decay width with respect to 5 phase space variables as shown in [8] is as follows: 

𝜕𝛤 =
1

(2𝜋)5

1

16𝑀
|𝑀|2 𝜕𝐸1 𝜕𝐸2 𝜕𝛼 𝜕cos(𝛽) 𝜕𝛾 

Here the decay phase space is parametrized by the energies of the 2 out of the 3 final state 

particles, and by the 3 Euler angles (note that a 3 body decay lies on a plane and the 

orientation of any plane can be characterized by 3 Euler angles).  

Here it becomes useful to consider the specific phase space variables to choose. The 

difference between Majorana and Dirac HNLs is that of lepton number conserving + lepton 

number violating decays vs just lepton number conserving decays respectively. The ‘lepton 

number violating’ processes become possible by the condition 𝜓𝑐 = 𝜓, which was explained 

in the previous chapter. To make physical sense out of this mathematical condition, the 

Majorana condition can be interpreted as the possibility of a Majorana particle to undergo a 

spin (and hence helicity) flip as it propagates. Since the Dirac vs Majorana difference is linked 

to the spin, it is a good choice to opt for phase space variables linked to angular distributions. 
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Consider a triangle which has a fixed parameter. The lengths of its sides are intimately linked 

with the angles between its sides. We can use this observation for the 3 body decay on a 

plane because, when the momentum vectors of the 3 final state particles are placed tail to 

head, it has to form a closed triangle (due to conservation of momentum and decaying 

particle being at rest) and the sum of the lengths of the sides of the triangle has to be fixed 

(conservation of energy whereby the momentum of final state particles is derived from the 

mass of the HNL). As a result, we can parametrize the 3 body decay on a plane by angles 

between 2 pairs of particles, for instance 𝜃𝑒𝑒 and 𝜃𝑒𝑣 where 𝜃𝑒𝑒 is the angle between the 

electron and the positron, and 𝜃𝑒𝑣 is the angle between the electron and the (anti)neutrino. 

Technically, 𝜃𝑒𝑒 and 𝜃𝑒𝑣 are also not completely independent, as the integration over one of 

the variables has limits involving the other variable. 

We now have 5 phase space variables 𝜃𝑒𝑒, 𝜃𝑒𝑣, 𝛼, 𝛽 and 𝛾. There is however, a rotational 

invariance about the spin axis of the decaying particle, which allows reducing the phase 

space to just 4 variables. This can be achieved by setting the azimuthal angle of one of the 

particles to 0. Before that, all these angles need to be linked to the 9 variables in the 

amplitude.  First step would be to link 𝛼 = 𝜙𝑒 = 0, where it is set to 0 using the rotational 

invariance of the system. Second, we can choose 𝛽 = 𝜃𝑒. Next, we define the system on the 

y-z plane where the 𝑝𝑒 lies on the positive z-axis. Without loss of generality, we can define 

the positive y direction to be the direction where the positron’s momentum vector lies and 

the negative y direction to be where the (anti)neutrino’s momentum vector lies. Then we 

rotate the y-z plane about the z-axis by 𝛾 followed by a rotation about the y-axis by 𝜃𝑒. This 

explanation has qualitatively provided the link between 9 variables from the amplitude 

calculation to the 5 phase space variables of our choice as follows: 
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1. 𝑝𝑒 =
−𝑚𝑁 sin (𝜃𝑒𝑒+𝜃𝑒𝑣)

sin(𝜃𝑒𝑣) + sin(𝜃𝑒𝑒) − sin (𝜃𝑒𝑒+𝜃𝑒𝑣)
 

2. 𝜃𝑒 as is 

3. 𝜙𝑒 = 0 

4. 𝑝𝑝 =
𝑚𝑁 sin (𝜃𝑒𝑣)

sin(𝜃𝑒𝑣) + sin(𝜃𝑒𝑒) − sin (𝜃𝑒𝑒+𝜃𝑒𝑣)
 

5. 𝜃𝑝 = 𝑎𝑟𝑐 cos(𝑠𝑖𝑛(𝜃𝑒) 𝑠𝑖𝑛(𝛾)𝑠𝑖𝑛(𝜃𝑒𝑒) + 𝑐𝑜𝑠(𝜃𝑒)𝑐𝑜𝑠(𝜃𝑒𝑒)) 

6. 𝜙𝑝 = 𝑎𝑟𝑐 sin (
𝑐𝑜𝑠(𝛾) 𝑠ⅈ𝑛(𝜃𝑒𝑒)

𝑠ⅈ𝑛(𝜃𝑝)
) 

7. 𝑝𝑣 = 𝑚𝑁 − 𝑝𝑒 − 𝑝𝑝 

8. 𝜃𝑣 = 𝑎𝑟𝑐 cos(𝑐𝑜𝑠(𝜃𝑒) 𝑐𝑜𝑠(𝜃𝑒𝑣) − 𝑠𝑖𝑛(𝜃𝑒) 𝑠𝑖𝑛(𝛾) 𝑠𝑖𝑛(𝜃𝑒𝑣)) 

9. 𝜙𝑣 = 𝑎𝑟𝑐 sin (
−𝑐𝑜𝑠(𝛾) 𝑠ⅈ𝑛(𝜃𝑒𝑣)

𝑠ⅈ𝑛(𝜃𝑣)
) 

With this, all variables have now been defined in terms of the phase space variables and the 

phase space integration can be performed to obtain 𝛤 or 
𝜕𝛤

𝜕𝜃𝑒𝑒
. The formula that was provided 

above for the differential decay width can be used for the integration, however, the change 

of variables needs to be accounted for by multiplication with the determinant of the Jacobian 

matrix. The entire calculation is provided in Appendix A. 

Results 

Since the results are directly based on the calculations done in Appendix A, I would like to 

clarify a few points before presenting the results.  

- In the full calculation, 𝜃𝑒 and 𝜙𝑒 were directly taken as Euler angles without the use 

of 𝛼 or 𝛽. The angle referred to as 𝛾 above is denoted as 𝛽 in the calculations in 

Appendix A. 
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- It was seen that amplitudes have a 𝑉 or a 𝑉∗ factor. When the amplitudes are squared, 

the amplitude expression in multiplied by its complex conjugate and therefore every 

squared amplitude term contains 𝑉∗𝑉 as a multiplicative factor. This value of mixing 

angle gives a model dependence to the results as it directly affects the decay width 

and the differential decay. The entire calculation can be performed without any 

reference to 𝑉 or 𝑉∗ and at the end 𝑉∗𝑉 can be multiplied to 𝛤 or 
𝜕𝛤

𝜕𝜃𝑒𝑒
. However, the 

results present are of normalized differential decay width i.e. 
1

𝛤

𝜕𝛤

𝜕𝜃𝑒𝑒
. This characterizes 

the difference between Dirac HNL decays and Majorana HNL decays without the 

model dependent 𝑉∗𝑉 term and as a result, in the calculations in Appendix A, 𝑉 or 𝑉∗ 

are not present.  

- The choice of normalized differential decay width is necessary as the decay width 

(and therefore the differential decay width) of the Dirac and Majorana HNL differ by 

a factor of ~2. This is due to that fact that Majorana HNL has twice the decays modes 

as that of the Dirac HNL. 

The normalized differential decay widths for 20, 50 and 70 GeV HNLs are as below: 

 

 

 

 

 

Fig. 3.15: Differential decay width (20 GeV) 
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All the three plots show differences between the Dirac and Majorana HNL, however, these 

plots can not be directly compared with experimental or simulated data. Real experimental 

data or Monte Carlo simulated data would involve an HNL that has a large momentum which 

would modify the angular distributions(boost modifies angular distances). Furthermore, 

considering the HNL production happens at a specific energy, the largeness of the 

momentum of the HNL would depend on the smallness of the mass of the HNL, and as a 

result, HNLs corresponding to different masses would be boosted by different amounts 

Fig. 3.16: Differential decay width (50 GeV) 

Fig. 3.17: Differential decay width (70 GeV) 
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leading to different levels of modification to the angular distribution plots. As such, we 

proceed by interpreting the results obtained in the above computations and use the 

interpreted conclusions for comparison with experimental studies. 

The observations and interpretations are as follows: 

- The differential decay width for all masses shows a higher value for the Dirac HNL at 

larger angles and conversely shows a higher value for the Majorana HNL at smaller 

angles (barring the range of -1 to -0.8 for cos (𝜃𝑒𝑒)). In experimental or simulated data, 

a higher differential decay width would translate to a higher number of events. 

- The angle at which the differential decay widths of Dirac and Majorana HNLs cross 

(the second time) appears to increase slightly as the mass of the HNL increases. 

- The differential decay widths do indeed differ, but the differences appear to be very 

little. It is imperative to study this variable in Monte Carlo generated events to see 

whether the difference is enough to have a decent discriminating potential. 

With this, the theoretical section of this thesis concludes and in the next chapter, the focus 

will shift to the experimental aspects of the project. 
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Chapter 4: Introduction to FCC-ee and the FCC Framework 

The Future Circular Collider is a planned collider by CERN that will succeed the Large Hadron 

Collider. The Large Hadron Collider has been of immense importance to particle physics, 

most specifically due to its discovery of the Higgs Boson, which completed the Standard 

Model of Particle Physics. However, as of the writing of this thesis, there has not been a single 

discovery of any Beyond the Standard Model particles. Due to many open problems that can 

not be explained by the Standard Model, it becomes imperative to study BSM models that 

could indeed explain physical observations. The lack of discovery of any BSM particles hints 

at two possibilities for the nature of such particles that is, either they are heavier than the 

existing energy reach or they are very weakly coupled to SM particles. Without any reason 

to pick one possibility over the other, it becomes necessary to look at a collider that can 

access higher energies and higher luminosities and this is why the planned FCC is going to 

be a very important laboratory.  

It is useful to picture the FCC in comparison to the LHC. The LHC was preceded by the Large 

Electron Positron Collider (LEP). Previously LEP and now the LHC run in the same 27 km 

tunnel. The center of mass energy of LEP was 209 GeV whereas for the LHC, it is  13-14 TeV. 

Similarly, the FCC is planned to be run as an electron positron collider, the FCC-ee, followed 

by a hadronic collider, the FCC-hh. The energy range of FCC-ee is planned to be from 90 to 

350 GeV whereby it will run at different center of mass energies at different periods of time. 

The planned center of mass energy of FCC-hh is 100 TeV. As evident from these values, the 

FCC project would therefore tremendously increase the reach of physics in terms of energy 

scales and cross sections. 
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The study within this thesis has focused on the searches for HNL at the FCC-ee and therefore, 

I would like to go over some aspects of the FCC-ee in details, that explain why it provides an 

optimum environment for searches of HNL within the 10s of GeV mass scale.  

Aspects of FCC-ee 

The FCC-ee is proposed to be a high luminosity, and wide energy range electron positron 

collider that focuses on studying the Z boson, W boson, Higgs boson and top quark. It is 

estimated that it would produce on the order of: ~ 5e12 Z bosons, 1e8 W bosons, and 1e6 

Higgs bosons and top quarks each. This is implemented in several stages by running the 

collider at specific energy scales including the Z pole (91 GeV), WW threshold (161 GeV), HZ 

production peak (240 GeV) and 𝑡𝑡 threshold (350 GeV) and above. At the Z pole and WW 

threshold, the machine would run at the center of mass energy calibrated to the precision of 

the order of 100 keV. The aim of these runs is precision measurements and new physics 

searches. New physics searches offer a direct glance at new particles whereas precision 

measurements allow for constraining of known physical parameters and also for detecting 

deviations from theoretical predictions, which is a good signature for new physics.  

In the context of the searches pertaining to heavy neutral leptons/heavy neutrinos/right 

handed neutrinos/sterile neutrinos, based on our current experimental data, these particles 

would be quite difficult to produce, however the energy reach, the very high luminosity and 

the very nature of leptonic collider providing a relatively clean background environment 

makes the FCC-ee a perfect avenue for such explorations. The very nature of weakly coupled 

sterile neutrinos is related to their small mixing angles and this translates to them being long 

lived particles and consequently leading to displaced vertex searches which makes the 
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detection environment even clearer. Based on the planned luminosity of 150 𝑎𝑏−1 [9] of the 

Tera-Z run at the FCC-ee, we obtain the following number of HNLs produced for different 

mixing angles at the HNL mass of 50 GeV [17] without any event selection: 

Mixing Angle V_eN Cross section (pb) No. of events 

1.00E-01 2.29 343200000 

1.00E-02 2.29E-02 3432000 

1.00E-03 2.29E-04 34320 

1.00E-04 2.29E-06 343 

1.00E-05 2.29E-08 3 

1.00E-06 2.29E-10 0 
 

Table 4.1: Cross section and expected number of events for particular values of mixing angles V_eN 

It becomes evident from these numbers that the FCC-ee provides for a great environment to 

search for heavy neutral leptons.  

Simulation and Analysis 

The process of simulation begins by using Madgraph [10, 11] and Pythia [12] to generate a 

Les Houches Event file that contains kinematical variables of particles involved in the 

process of collisions and decays. To generate the processes involving a Majorana HNL, the 

HeavyN [13, 14] Universal FeynRules Object model is used, and to generate Dirac HNL, the 

HeavyN Dirac [5] Universal FeynRules Object model is used. The .lhe file format is then 

passed on to Delphes [15] for the detector simulation, whereby the IDEA detector [16] card 

is used for the response simulation. The final output is an EDM4HEP format file. The final 

analysis is conducted using the FCC framework that uses the EDM4HEP format and is able to 

generate all the variables of interest by the use of a Python Script, that is customized as per 

the analysis needs.  
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The Process 

We base our analysis on the purely leptonic decay channel of the HNL. This choice is 

motivated by the structure of the FCC Framework at the time the analysis was conducted. In 

order to retrieve a process, a function of ‘exclusive decay’ was used which required the user 

to specify the exact particles produced in the process. This is a simple task for a leptonic 

decay channels but becomes extremely complex for semi leptonic or purely hadronic 

channels given the wide range of ways in which quarks could be produced. This however 

leaves a possible avenue for future study upon the inclusion of an ‘inclusive decay’ function 

within the FCC Analysis framework which could be used to conduct a study on the hadronic 

decay modes.  

The analysis in this study focuses on the 2 to 4 body decay processes involving the HNL as 

specified below. 

The process for the Majorana HNL is: 

𝑒− 𝑒+  → 𝑍 → 𝑁 𝑣 + 𝑁 𝑣  where  𝑁 →  𝑒− 𝑒+ 𝑣 + 𝑒− 𝑒+ 𝑣   

The process for the Dirac HNL is: 

𝑒− 𝑒+  → 𝑍 →  𝑁 𝑣 + 𝑁 𝑣  where 𝑁(𝑁) → 𝑒− 𝑒+ 𝑣(𝑣) 

This is due to the previously stated fact about the nature of these particles, i.e. the Majorana 

HNL undergoes lepton number conserving and lepton number violating decay processes 

whereas the Dirac HNL undergoes only lepton number conserving decay processes.  
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Analysis specifics 

It is important to note that in collider experiments, neutrinos and anti neutrinos are invisible 

as they pass through the different layers of the detector without interacting. This means that 

the lepton number conservation or violation can not be deduced and by extension the 

Majorana or Dirac nature of the decaying particle can not be deduced by observing the lepton 

number conservation or violation. This results in the analysis being restricted to only the 

charged leptons produced in the decay of the HNL. After the generation of the sample files 

following the procedure as stated in the above section, the sample files are used to extract 

event wise global variables and kinematical variables pertaining to the charged leptons, i.e. 

electrons and positrons. In particular, we are able to obtain variables including (but not 

limited to) the lifetime of the HNL, transverse distance traversed by the HNL before decaying, 

missing transverse energy, individual components of the four momentum of the daughter 

particles, etc. This lays the groundwork for the next chapter where we discuss in details the 

specific results obtained from the above specified analysis.  

 

 

 

 

 

 

 

 

 



Page 42 of 77 
 

Chapter 5: HNL Simulations and Analysis 

The focus of this chapter are the results obtained from the experimental simulation and 

analysis (as explained in last chapter). The analysis is performed on Dirac and Majorana 

HNLs with masses of 20 GeV, 50 GeV and 70 GeV considering only the leptonic decay channel: 

𝑒− 𝑒+ → 𝑍 → 𝑁 𝑣/𝑣  →  𝑒− 𝑒+ 𝑣/𝑣 𝑣/𝑣 

It is worth considering whether the same decay process provides equivalent information 

across the mass ranges of 20-70 GeV. To answer this question, the branching ratios of HNL 

with masses ranging from 10 GeV to the W boson mass were considered for the following 

channels: 

- 𝑁 → 𝑞 𝑞 𝑙 

- 𝑁 → 𝑞 𝑞 𝑣 

- 𝑁 → 𝑙 𝑙 𝑣 

- 𝑁 → 𝑣 𝑣 𝑣 

Where 𝑞, 𝑙 and 𝑣 take into account particles and anti-particles of all generations. The 

branching ratios were obtained using Madgraph [10, 11] with the HeavyN [13, 14] Universal 

FeynRules Object model. The results obtained are shown in Fig. 5.1. This figure shows that 

the branching ratios for HNLs are more or less the same and therefore the analysis of 20, 50 

and 70 GeV can be looked at together. The branching ratios are independent of the mixing 

angles of the HNLs. 
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Fig. 5.1: HNL Branching ratios as a function of mass 

 

The analysis begins by looking at the distributions of the final state leptons’ variables, namely 

𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 𝑝𝑇, 𝜃, 𝜑 and 𝐸 of the reconstructed final state electrons and positrons. It would be 

natural to expect the 𝜑 distributions to not show any differences as the decay processes for 

both, Majorana and Dirac HNLs, would have a rotational symmetry about the beam axis. This 

can be seen for electrons and positrons in Fig. 5.2a and 5.2b for 20 GeV, Fig. 5.3a and 5.3b for 

50 GeV and Fig. 5.4a and 5.4b for 70 GeV cases respectively. 
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Fig. 5.2a (left):  𝜑 distribution of final state electrons,  Fig. 5.2b (right):  𝜑 distribution of final state positrons 

 

 

 

Fig. 5.3a (left):  φ distribution of final state electrons,  Fig. 5.3b(right):  φ distribution of final state positrons 
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Fig. 5.4a (left):  φ distribution of final state electrons,  Fig. 5.4b(right):  φ distribution of final state positrons 

All the other final state leptons’ variables will now be looked at, and based on theoretical 

studies, that predict a difference in angular distribution variables, it could be expected that 

all these variables should show differences between Majorana and Dirac cases. 

 

Fig. 5.5a (left):  𝑝
𝑥
 distribution of final state electrons,  Fig. 5.5b(right):  𝑝

𝑥
 distribution of final state positrons 
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Fig. 5.6a (left):  𝑝
𝑥
 distribution of final state electrons,  Fig. 5.6b(right):  𝑝

𝑥
 distribution of final state positrons 

 

 

 

Fig. 5.7a (left):  𝑝
𝑥
 distribution of final state electrons,  Fig. 5.7b(right):  𝑝

𝑥
 distribution of final state positrons 
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Fig. 5.8a (left):  𝑝
𝑦
 distribution of final state electrons,  Fig. 5.8b(right):  𝑝

𝑦
 distribution of final state positrons 

 

 

 

Fig. 5.9a (left):  𝑝
𝑦
 distribution of final state electrons,  Fig. 5.9b(right):  𝑝

𝑦
 distribution of final state positrons 
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Fig. 5.10a (left):  𝑝
𝑦
 distribution of final state electrons,  Fig. 5.10b(right):  𝑝

𝑦
 distribution of final state positrons 

 

 

 

Fig. 5.11a (left):  𝑝
𝑧
 distribution of final state electrons,  Fig. 5.11b(right):  𝑝

𝑧
 distribution of final state positrons 
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Fig. 5.12a (left):  𝑝
𝑧
 distribution of final state electrons,  Fig. 5.12b(right):  𝑝

𝑧
 distribution of final state positrons 

 

 

 

Fig. 5.13a (left):  𝑝
𝑧
 distribution of final state electrons,  Fig. 5.13b(right):  𝑝

𝑧
 distribution of final state positrons 
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Fig. 5.14a (left):  𝑝𝑇 distribution of final state electrons,  Fig. 5.14b(right):  𝑝𝑇 distribution of final state positrons 

 

 

 

Fig. 5.15a (left):  𝑝𝑇 distribution of final state electrons,  Fig. 5.15b(right):  𝑝𝑇 distribution of final state positrons 
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Fig. 5.16a (left):  𝑝𝑇 distribution of final state electrons,  Fig. 5.16b(right):  𝑝𝑇 distribution of final state positrons 

 

 

 

Fig. 5.17a (left):  𝜃 distribution of final state electrons,  Fig. 5.17b(right):  𝜃 distribution of final state positrons 
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Fig. 5.18a (left):  𝜃 distribution of final state electrons,  Fig. 5.18b(right):  𝜃 distribution of final state positrons 

 

 

 

Fig. 5.19a (left):  𝜃 distribution of final state electrons,  Fig. 5.19b(right):  𝜃 distribution of final state positrons 
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Fig. 5.20a (left):  𝐸 distribution of final state electrons,  Fig. 5.20b(right):  𝐸 distribution of final state positrons 

 

 

 

Fig. 5.21a (left):  𝐸 distribution of final state electrons,  Fig. 5.21b(right):  𝐸 distribution of final state positrons 
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Fig. 5.22a (left):  𝐸 distribution of final state electrons,  Fig. 5.22b(right):  𝐸 distribution of final state positrons 

 

All the variables shown above, 𝑝𝑥 (Fig. 5.5 – 5.7), 𝑝𝑦 (Fig. 5.8 – 5.10), 𝑝𝑧 (Fig. 5.11 – 5.13),  𝑝𝑇 

(Fig. 5.14 – 5.16), 𝜃 (Fig. 5.17 – 5.19), and 𝐸 (Fig. 5.20 – 5.22) demonstrate two key features: 

1. All the variables show Dirac vs Majorana distinction, however these distinctions have 

some oscillatory (as seen in ratio plots) behavior to them (its importance is explained 

below) 

2. The distinctions tend to decrease as the mass of the HNL tends to W boson mass 

The 2nd feature is not expected, as in general, the Dirac Majorana Confusion Theorem [18] 

states that differences between Dirac and Majorana are proportional to their masses, and 

hence it was expected that these differences should only increase (very slightly in this case, 

as the order of magnitude is the same) or stay the same. As of the writing of this thesis, I do 

not know the reason for the observations made above and it is therefore an open question 

to be looked at in future studies, specifically in the context of whether a certain step in the 
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simulation process makes some simplifications or assumptions that would be true for lighter 

HNLs and not for heavier HNLs. 

The 1st feature regarding the distinctions between the variables of final state leptons is only 

clearly visible at significantly large statistics. To put statistics size requirement into 

perspective, it is worth noting that in [17], in Sec. 3.2.3, where results from this project were 

briefly described, these variables were not at all mentioned because these differences were 

not observed (or they were observed to be smaller than statistical error bars). During the 

stage of writing of [17], the number of total Monte Carlo generated events (before any 

selections) was 10’000. The analysis shown in the thesis here corresponds to 100’000 Monte 

Carlo generated events (before any selections). This suggests that these variables are indeed 

able to distinguish between the Dirac and Majorana nature (as expected because they are 

directly or indirectly related to angular distribution), however they require a significantly 

higher sample size. It is proposed that further explorations of these variables be done using 

Deep Neural Networks or some other modern Machine Learning techniques which could be 

used to develop classifiers that work more efficiently and are thus able to distinguish 

between the Dirac vs Majorana nature with a smaller sample size.  

The next two variables to look at are the lifetime and transverse distance of the displaced 

vertex. These are natural choices for long lived particles. Here it needs to be noted that this 

analysis was performed for a mixing angle of 1e-3, which has a direct impact on these two 

variables. This mixing angle is expected to give 𝒪(1𝑒4) events for 50 GeV particle as shown 

in Table 4.1. The choice of mixing angle was based on the number of expected events which 



Page 56 of 77 
 

in turn was chosen due to the choice of the main variables of distinction in this study 

(explained later below). 

 

Fig. 5.23 (left): Distance between beam axis and displaced vertex, Fig. 5.24 (right): Lifetime of HNL 

 

 

Fig. 5.25 (left): Distance between beam axis and displaced vertex, Fig. 5.26 (right): Lifetime of HNL 
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Fig. 5.27 (left): Distance between beam axis and displaced vertex, Fig. 5.28 (right): Lifetime of HNL 

 

These two variables, the displaced vertex distance and the lifetime are the clearest variables 

that allow for the distinction between the Dirac vs Majorana case, however to identify the 

nature of HNL, the mass and the mixing angle have to be known exactly. Therefore, these 

variables can not be used on their own for the purposes of distinction. In a real experiment, 

the reconstructed mass of the HNL and the cross section measurements (that can provide 

the mixing angles) could allow for these variables to provide a clear distinction. A detailed 

explanation for this can be found in [17] Sec. 3.2.3.  

The next two variables of focus are the missing transverse energy and the angle between the 

final state electron and positron (𝜃𝑒𝑒). 
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Fig. 5.29 (left) and Fig. 5.30 (right): Missing Energy  

 

 

 

Fig. 5.31: Missing Energy  
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Fig. 5.32 (left) and Fig. 5.33 (right): Reconstructed cos 𝜃𝑒𝑒  

 

 

 

 

Fig. 5.34: Reconstructed cos 𝜃𝑒𝑒  

 

The missing transverse energy variable corresponds to the energy in the perpendicular 

plane that isn’t detected in the experiment but should be present due to the conservation of 
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energy. In this analysis, it corresponds to the transverse energy that is not picked up by the 

detectors as it is carried by the 2 neutrinos/anti neutrinos that escape the detectors 

undetected. This variable seems to provide a much cleaner distinction as the ratio of Dirac 

to Majorana HNL has a very linear trend whereby at 0 GeV, it is maximum, at a quarter of the 

total center of mass energy, it is 1 and at a half of the total center of mass energy, it is at its 

minimum.  

The cos 𝜃𝑒𝑒 variable, which is the cosine of the angle between the final state electron and 

positron provides the clearest distinction between the Dirac vs Majorana HNLs. Initially this 

analysis was performed at a no. of events of the order of 𝒪(1𝑒3). Cos 𝜃𝑒𝑒 was able to show 

the Dirac vs Majorana distinction but the distinction was not as clear as above. In the next 

iteration, the analysis was performed at 𝒪(1𝑒4) no. of events. This is when this particular 

variable provided a very clearly visible distinction. This motivated the choice for the analysis 

to be done on HNLs with mixing angle of 1e-3, which if such an HNL with such a mixing angle 

exists, should provide roughly 𝒪(1𝑒4) no. of events at the proposed Tera Z factory run of the 

FCC-ee.  Cos 𝜃𝑒𝑒 could allow for a distinction for mixing angles of 1e-3 and above directly for 

HNLs with a mass above 30-40 GeV. For HNLs below that mass, the number of events will 

have reduced potentially making the distributions not as clear, however for these masses 

with a little larger mixing angle, such as an HNL with 20 GeV mass and 1e-2 mixing angle, it 

is still possible to carry such an analysis.  For mixing angles below 1e-3, it may still be 

possible to make the distinction by employing advanced machine learning techniques.  

The features of the cos (𝜃𝑒𝑒) variable to notice are that: 
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- cos (𝜃𝑒𝑒) distribution of the Dirac HNL has a higher number of events for larger angles 

compared to Majorana HNL  

- Conversely, cos (𝜃𝑒𝑒)  distribution of the Majorana HNL has a higher number of events 

for smaller angles compared to the Dirac HNL 

- The value of cos (𝜃𝑒𝑒) at which Majorana distribution becomes higher in value than 

Dirac distribution seems to reduce as the mass of the HNL increases, or more simply, 

the angle, at which the ratio cross over happens, increases as the mass of the HNL 

increases. 

- The shape of the distribution for different masses varies widely due to the fact that 

all HNLs are produced at a center of mass energy of ~ 91 GeV, and hence the boost of 

the HNL will vary with their masses. For particle systems that are boosted, the angles 

between final state particles are reduced, hence in the above distribution, lighter 

HNLs (which are boosted more heavily) have higher no. of events involving smaller 

values of 𝜃𝑒𝑒. 

With this, the experimental section of this thesis comes to an end. In the next section, the 

entire project is concluded with a comparison between the results obtained from the 

theoretical and experimental parts of my thesis. 
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Chapter 6: Summary and Conclusion 

In this thesis, heavy neutral leptons, which are hypothesized heavy mass eigenstates of 

neutrinos that provide mass mechanisms for neutrinos, were explored. In particular, they 

were studied within the context of Type I Seesaw and Inverse Seesaw models, which propose 

the existence of Majorana and Dirac HNLs respectively. If sterile heavy neutral leptons 

indeed exist, it would be an imperative task to ascertain their Majorana or Dirac nature as 

that would provide a statement on whether lepton number is conserved in nature. In this 

thesis, the distinction between the Dirac vs Majorana nature is explored. The leptonic decay 

channels were explored to find kinematical observables that can discriminate between Dirac 

vs Majorana nature of the HNL. In particular, this was done through two methods: 

1. Theoretically, by performing differential decay width computations through the use 

of helicity amplitudes 

2. Phenomenologically, by MC event generation, detector simulations and analysis 

within the FCC-ee framework 

The results obtained for 20, 50 and 70 GeV HNLs are as shown below for comparison: 

 

 

 

 

 

 

 

 

Fig. 6.1a (left): Theoretical cos 𝜃𝑒𝑒  distribution, and Fig. 6.1b (right): Experimental cos 𝜃𝑒𝑒  distribution for a 20 GeV HNL 



Page 63 of 77 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results appear to be mostly consistent: 

- Dirac distribution > Majorana distribution for larger 𝜃𝑒𝑒 

- Majorana distribution > Dirac distribution for smaller 𝜃𝑒𝑒 

- As HNL mass increases, the value of 𝜃𝑒𝑒 at which Dirac and Majorana distribution 

cross over also increases 

Fig. 6.2a (left): Theoretical cos 𝜃𝑒𝑒  distribution, and Fig. 6.2b (right): Experimental cos 𝜃𝑒𝑒  distribution for a 50 GeV HNL 

Fig. 6.3a (left): Theoretical cos 𝜃𝑒𝑒  distribution, and Fig. 6.3b (right): Experimental cos 𝜃𝑒𝑒  distribution for a 70 GeV HNL 
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There is some inconsistency in the theoretical and experimental plots in the cos (𝜃𝑒𝑒) range 

from -1 to -0.8, however, these ranges denote the largest angles of separation, which would 

have the highest difference in the rest frame vs laboratory (boosted) frame of reference. 

The same can be said about the difference in the shape of the distribution between the 

theoretical and experimental plots which is as expected, as theoretical plots correspond to 

𝜃𝑒𝑒 in the HNL’s center of mass frame whereas the experimental plots correspond to 𝜃𝑒𝑒 in 

the laboratory frame, whereby the lighter the HNL, the more boosted the final state particles. 

For example, for the 20 GeV HNL, in the experimental plots (laboratory frame), the 

distribution peaks for particles that have small angular separation as opposed to the 

theoretical plots (center of mass frame) where the distribution peaks when the particles are 

back to back. 
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Appendix A 

The appendix shows the entire Mathematica code that was written for theoretical 

computation done for this project. The computations were run on the University of Geneva’s 

high performance Baobab cluster. 
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Appendix B 

It was initially planned for this section to provide a thorough and detailed explanation for 

the process of sample generation and sample analysis that was done for the experimental 

part of the project. However, as the analysis was conducted within the FCC framework, which 

is an evolving framework, it would be better for the reader to look at the explanations of the 

processes at the appropriate repositories. In the starting days of this project being 

undertaken, many scripts had to be written to perform the full analysis chain, however, 

during the time of writing of this thesis, many scripts that achieve such objectives are now 

provided in a standardized way in the FCC repositories. In particular, 

- The FCC repository is available at: https://github.com/HEP-FCC 

- The FCC Analysis repository is available at: https://github.com/HEP-

FCC/FCCAnalyses 

- The FCC-ee Long Lived Particles repository is available at: https://github.com/HEP-

FCC/FCCeePhysicsPerformance/tree/master/case-studies/BSM/LLP 

- The HNL model files for Madgraph event generation are available at: 

https://feynrules.irmp.ucl.ac.be/wiki/HeavyN 

The entire experimental simulations and analysis were performed on CERN’s lxplus system. 
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https://github.com/HEP-FCC/FCCeePhysicsPerformance/tree/master/case-studies/BSM/LLP
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