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A Model Independent Method for Determination
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Abstract

It is shown how to determine fluctuations of the muon density in EAS at a given distance from the core, for
showers with a fixed size. The method does not make use of any pre-assumed lateral muon distribution and
uses only information whether muon detector has been hit by at least one muon.

1 Introduction:

The KASCADE experiment gives a unique opportunity to study in detail some shower characteristics due
to a large number of detectors. In particular it is suitable to determine fluctuations of the muon densities in
showers using the information from the Array of 192 muon detectors (322dach). In this paper we present
how to determine the muon density probability distribution at a given core distarfoe showers with fixed
shower sizeV,. In our method the muon density, at a givenR, is not being determined for each individual
shower as that would need an a priori assumption about its lateral distribution. We prefer to avoid this and the
fluctuations ofp,,(R) have been reconstructed from a sample of showers with fixed

2 Theidea:

The shower sample used in this analysis has been obtained from a sample of the KASCADE data. We have
chosen only almost vertical showers (zenith angld8?). Our sample has been further divided into rather
narrow bins of shower sizA log N, = 0.1. Our aim is to determine probability density distributiffiv') of
the number of muong/ falling on a fixed distance ring, for a sample of showers from a fiXedin. The
core distance has been divided into binsaaR = 10 m. We shall use here the information from the muon
Array detectors, with;, > 0.3 GeV. Fluctuations ofV are caused by fluctuations in shower development in
the atmosphere and by the distribution of the primary particle mass.

Let us first choose the showers with a fixed number of muon detectors m at a given distance ring. If their
number isn(m) then the average number of show@rsk; m)) with & (out of ) muon detectors being hit by
at least one muon, should be

(F(k;m)) = n(m) /0 - (?) (1- e oN) oMb gn)an )

wherea = St/ Sring (ratio of the area of a muon detector to that of the whole distance ring). In (1) we
have assumed that showers have radial symmetry and that theons fall on the whole ringR, R + AR)



independently and randomly. To determifgk; m) experimentally we need a criterion for a muon detector
to be hit by at least one muon. First, we make our analysis only for distathicesiO m, where the punch
through effect can be almost neglected (at least for smaller showers). Next, after looking at distributions of the
energy deposit for single muons from many muon detectors, we have choseB.5 MeV as our condition
that a detector has been hit by muon(s). We would like to underline here that for our purpose we do not have
to worry about how many muons have hit a detector (which is not always possible with a good accuracy).
The actually observed number of showét:; m) with £ hit detectors fluctuates with the Poissonian
distribution around its expected value, given by (1) and is of course the better representation of its mean
(F(k;m)), the bigger is the number of showetém). The KASCADE experiment has a big advantage of
having many muon detectors (192 in the Array), allowing the numbef available detectors in a given ring
to reach values even above twenty (being around 10 most frequently).
Thus, in principle we can measure many valtgs; m) as0 < k < m, and for manym as well. Our
sample, however, was not big enough for all experimental ) to represent their expected valu@gk; m))
with a good accuracy. So, to determiité/) (for any N. and R bin) we have summed oti(k; m) histograms
over allm (over all positions of the shower core), obtaining histogréitis) = %,,,F(k; m). By summing up
overm we lose some information contained in theistributions for each individuak.. We gain however, by
getting smaller statistical relative uncertaintiesfgk) and by simplifying evaluation o V).

3 Factorial moments of the distribution of k and a check of the Array:

From (1) are can easily calculate moments of the probability distributién ¢f), (k) and so on. It turns
out, however, that in this case it is the factorial moments which are in a simpler way related to the muon
number distributiorf(V):

oo

(k(k—l)...(k:—i—l—l)):m(m—l)...(m—i+1)-/ (l—e’O‘N)if(N)dN )

0
fori =1,2,.... As1 — e N = p wherep is the probability of hitting a detector on@é muons have fallen

on the ring, we see that the integrals in the right-hand sides of (2) represent the successive moments of the
distribution ofp. Thus, in principle, having all moments one could obtain the probability distributign of

g(p), and therf(N) = g[p(IN)]. We notice, however, that the higher is the order of the factorial momént of

the smaller is the part of thedistribution on which it depends. Thus, as the number of showers with higher
finally decreases, one would need very big statistics in order to determine higher order moniefatsdf)

with a reasonable accuracy. So, in our analysis we shall not use formulae (2) to determine muon fluctuations
f(N'). We shall use them, however, to check the homogeneity of the detection conditions of the Array. From
(2) it follows that neitherk) /m nor (k(k — 1)) /m(m — 1) should on average, depend on that is, on the

position of the shower core. Fig.1 represents the experimentally obtained ratios, as a funstigiorofixed

N, and differentR. It can be seen that, within the statistical errors, the ratios do remain independetioof

almost any case, confirming the homogeneity of the Array.

4 Methods of determining muon density fluctuationsf(V):

As we have already explained, the basis for determitfiidg) (for any fixed N, and R bin) is a set of
equations (1) summed ovet, for £k = 0,1...,my.,. TO find f(IV), we have applied the three following
methods:

4.1 Numerical fit: The integral in the right-hand side of (1) summed owvewas approximated by a
sum of 10 values of the integrated function at 10 valued’ofThe ten unknown$§(NV;) were then found by

a maximum likelihood method allowing for the statistical fluctuation&'gf). The CERN program MINUIT

was used to find these best fitting valded;) on condition that(N;) > 0.

4.2 Method using three moments ofV distribution: It can be applied ift N < 1. After expanding
e~ N in (2), keeping only first three terms and averaging oxene can express the three experimentally de-



termined factorial ratios{k) / (m) , (k(k — 1)) / (m(m — 1)) and(k(k — 1)(k — 2)) / (m(m — 1)(m — 2))
as linear combinations @¥, N2, andN?. The latter moments can be easily found. Next we assumé(that
has a shape of a gamma functid®v) ~ N?~!e~9" and calculate andq from N, and N 2.
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4.3 Method adoptingf(N) as a gamma function: Here, we assume from the very beginning that
f(N') can be described by a gamma function. Inserting it into equations (2a) and (2b) and averagimg over
we can express the first two factorial ratios (as in the previous case) as functi@ndf;. The parameters

andgq can be found numerically. This method does not require small muon densities, as in the case 4.2.
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Figure 2: Distribution of the number of hit muon detectord R fixed) — upper histograms. Cor-
responding calculated distributions &f — number of muons in the distance ring — lower graphs.
Left graphs: 4.5 < log N, < 4.6 and60 < R < 70m; right graphs:5.5 < log N, < 5.6 and

160 < R < 170m. Points — method 4.1; dashed line — method 4.2; dotted line — method 4.3. The dotted
histograms (upper graphs) are calculatgd)) for f(/V) found by method 4.1 (MINUIT).



5 Results:

Fig.2 illustrates the results of our analysis. The upper histograms are the observed distriB(&ipns
chosen for some particular values 8f and R. The lower graphs represent the corresponding distributions
f(N) - AN (multiplied by the total number of events for each case), obtained by the three methods. It can be
seen thaf(/V) obtained by the three different methods give similar results. For exampie(fet log N, <
5.1 the differences ol calculated by the three methods are typically below 5%. The muon lateral distributions
pu(R) obtained in this paper agree reasonably well with the results of
another analysis of the KASCADE data (Leibrock et al., 1998), asitis
shown in Fig.3. The dispersions of the distributi§?v) obtained by
the three methods differ more significantly, sometimes even by factor
riy &+ 55<logNe<5.6 of two. The first method, based on MINUIT, gives usually the biggest
ST value. As it fits ten values df( V), instead of two parameters of an

T analytic (gamma) function, as in the other two methods, we think that
e it gives a better description of reality (although it probably is more
- sl ' sensitive to fluctuations df (k). The dispersions, relative top,, de-
e termined by the first method, are presented in Fig. 4. We can see that
i<re e typical values are 30 - 40%. For rather sma&l, where our statis-

4.5<logNe<4.6 ;& tics were the best, a trend of increasing relative fluctuations with the
10° R core distanceR can be observed, although its statistical significance
40 60 80 100 120 140 160 180R[r$1c]>o is not blg The fluctuations qebu for fixed N, should be sensitive

to the primary composition. Shower simulations are needed to show

how big this effect is for the low energy muons considered here. With
big statistics, available from the KASCADE experiment, it would be
possible to obtain more detailed determination of the shapes of the
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Figure 3: Comparison of the
average lateral distributions of
muons f,, in m~2) obtained in
this work (triangles) for three o
(triangles) N (i.e. p,) distributions.
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squares). Circles show values
c(JbC'][ained)by EAS-TOP (Aglietta entific Research (KBN), grant no. 2PO3B16012.

etal) fork, > 1 GeV.
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Figure 4. Relative dispersion of the muon density as a function of core distance forithrbms.
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