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Abstract

The primary cosmic-rg mas compositia is estimatel using the hadront componehof EAS measurd by the
large hadran calorimete of the KASCADE experiment Methods for evaluatirg the mean mas are described,
modd dependenceare discussd ard resuls are presented The dat indicak an increag of the mean mass
with rising primary enegy, especialf beyond the knee

1 Proem

The experimern KASCADE (Klages et al., 1997) hasinits cente of array statiors alarge hadra calorime-
ter to study the core of EASin the enegy region arourd the knee In the following, obsevables are presented
which allow to infer the primaly mas compositio from particle distributions in the hadronc core However,
a corret¢ modelling of the interactiors in the atmosphes is mandatoy to extrad reliable conclusios about
the primaty mass The procedue is very prore to even smal changs in the interaction mechanism Two
interaction models namely QGSJH (Kalmykov & Ostapcheko, 1993 and VENUS (Werne, 1993 as im-
plementd in the EAS simulaticn code CORSIKA (Hed et al., 1998 are used Thes two models basel on
the Gribov Regge theory, have been chos@ becaus their solid theoretich grourd allows beg to extrapolate
from collider measuremestto highea enegies forward kinematicé regions ard nucleus-nuclesiinteractions.
They have been proven to descrite the hadront obsevables reasonalyl well (Antoni et al., 1999).

2 Experimental Set-up and Measu ements

KASCADE measureall three componerg of an EAS simultaneousl, i.e. the electromagneticdhe muonic,
ard the hadrone part The latter is studied with the 320 m? large iron calorimete which is 11 interaction
lengtts deg ard interspersd with eight layers of acive detectors Thes are ionization chambes filled with
the room temperatug liquids tetramethylsilaa ard tetramethylpentaneThe electrods of 25 x 25 cn¥ size
are matchel to the mean laterd sprea of hadront cascadgin iron and allow the resole individud hadrons
with 40 cm separation For hadrors above athreshotl enegy of 50 GeV impad point, enagy, ard direction
of incidene are reconstructedDetails of the calorimete performane are given in (Engle et al.,, 1999).
For theinvestigatiors presentd below, event had to fulfil | the foll owing requirementsMore than two hadrons
are reconstructedthe zenih angk of the shower is less than30° and the core as determine by the array
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stations with a resolution of about 2 m, hits the calorimeter or lies within 1.5 m distance outside its boundary.
About 40 000 showers meet these conditions.

The showers are classified according to their truncated muonl\gﬁ’"zeas measured by the array.\fﬁ’" is
obtained experimentally by integrating the muon lateral distribution in the range 40-200/fnis a good
estimator of the primary energy,, because for selected showers hitting the calorimBges Nu’"o’%, nearly
irrespective of the primary mass.

3 Simulations

Simulations were performed using the CORSIKA version 5.2 and 5.62. A sample of 7000 p and Fe events
were simulated with QGSJET, and 2000 showers were generated with VENUS, each for p, He, O, Si and Fe
primaries. The showers were distributed in the energy range of 0.1 to 31.6 PeV according to a power law with
a differential index of 2.7 and were spread in the zenith angle in the intervalli’db 20°. The shower axes
were distributed uniformly over the calorimeter surface extended by 2 m beyond its boundary.

4 Results

In Fig.1 two examples of hadronic observables are presented which both distinctly depend on the primary
mass. The graph on the left-hand shows the lateral hadron density and on the right—hand the distance distri-
butions inminimum-spanning tregdST), both forNﬁ’" intervalls that correspond to primary energies around
1.2 and 2 PeV, respectively. A MST connects all hadrons to each other in a plane perpendicular to the shower
axis. It is that configuration where the sum of all connections weighted by the inverse energy sum of its
neighbours has a minimum. Presented are results from the simulations for primary protons and Fe nuclei.
The shaded area, hence, presents the region allowed for any primary mass composition. The measured data,
indeed, fall in-between, and the distance to the two extrema determines the mean mass. Actually, in this way
the logarithmic mas@n A) is obtained, because most of the observables depend only on the mass logarithmi-
cally. This can be infered from Fig.2 where the mean distance between the extrema is plottednvérfars
the lateral hadron density, see the left-handed graph in Fig.1.

In a similar manner four other observables are investigated, namely the lateral energy density, the en-
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Figure 1: Lateral hadron density (left—hand) and distances in a MST (right—hand) for a muon number interval
as indicated. The data are compared with simulations using VENUS and QGSJET for primary protons and

iron nuclei.



ergy spectrum of hadrons, the energy of the most energetic hadron —
and the distribution of the fractional energy of hadrons with rg- -
spect to the most energetic hadron in the shower. The latter ancEthe -
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Several other investigations have revealed that the simulations generate too many hadrons at observa-
tion level, see e.g. (Antoni et al.,
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Figure 4. Mean logarithmic mass vs. primary energy. The shaded area
represents direct measurements, compilation (Wiebel-Sooth, 1998),
EAS measurements Chacaltaya (Shirasaki et al., 1997), HEGRA
(Bernishr et al., 1998), DICE (Swordy 1998), MSU (Fomin et al., 1998).
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