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Abstract

Mechanism of depth-variation of Moliere angular distribution is investigated under the mass-less ap-
proximation using Kamata-Nishimura formulation of the Moliére theory. Investigations are achieved
in both the frequency space and the angular space. Depth-variation of the shape comes from the
difference of increases of width between the central gaussian distribution and the asymptotic single
scattering one. We have found change of the threshold angle discriminating moderate-angle scatter-
ing and large-angle one among the single scattering quantitatively explains the monotonous increase
of B with increase of traversed thickness in case of fixed energy process and the monotonous decrease
of the scale factor v in case with ionization loss.

1 Introduction:

Under the multiple scattering process with ionization [1], it shows a distinctly different feature
compared with that under the fixed energy process. The shape of angular distribution becomes young
again, or more precisely the expansion parameter B becomes small again, before particles dissipate
their whole energies. We examined the mechanism of depth-variation of Moliere angular distribution
under the mass-less approximation [1] with and without ionization using Kamata-Nishimura formula-
tion of Moliere theory [2, 3]. The theory separates the single scattering into moderate scattering and
low-frequent large angle scattering, by the former we get the angular distribution of Williams type [4]
and by the latter we get the effects of single and plural scatterings. The adjustment of discriminating
angle between the two realizes the invariance of asymptotic single-scattering term and leads to the
monotonous increase of B under the fixed energy process and becoming small again of B under the
ionization process.

2 Depth-Variation of Moliere Angular Distribution:

The Moliere angular distribution is determined by the two parameters, the expansion parameter
B and the unit of Moliere angle #y, among them the shape of the distribution is determined by the
former. According to our investigation [1], those in case with ionization are determined by

B—InB=Q-In{Q/(vt)} and 6y =60g\/B/Q (1)
under the mass-less approximation, where v and fg are expressed as
v = (E/Ey)FotB)/[(Fo=E) and g = Kt/ EoE. (2)

In case without ionization we have v =1 and 8g = K\/Z/E.

We show depth-variation of B in Fig. 1 for various incident energies. In fixed-energy process,
B increases monotonously with ¢. It means the weight of single and plural scatterings decreases
gradually against multiple scattering. In case with ionization, B shows smaller value, so that the
shape of angular distribution shows younger one than that in fixed-energy process compared at
the same t. Before charged particles reach to their ranges, B becomes small again so that the
shape of angular distribution becomes young again. This fact does not mean central structure of
angular distribution becomes narrow again. The width of central gaussian distribution, which is well



represented by fy1, increases monotonously with ¢ and shows larger value than that in fixed-energy
process as indicated in Fig. 2. The relative increase of #y to g becomes small again at the final
stage of their passages, which makes the shape young again.

3 Interpretation of Depth-Variation in The Frequency Space:
The diffusion equation for Moliere angular distribution is described [2, 3] as
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o(0) denotes the single scattering formula. Under the azimuthally symmetrical condition, it becomes

o (0)2r0dfdt = (7Q) " (K?*/E*)0~*2r0d0dt  with 6 > \/ex,. (4)
Applying Hankel transforms, Kamata-Nishimura rewrote the equation [2, 3] as
of K?%¢? 1, K22
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This equation is integrated as
1 K2¢? 1, K?¢? K¢ Y
= oxp{ (et + g (T I T ], Where () =1 /0 v, (6)

In case with ionization, the terms in Eq. (6) are determined by

I(QCQ I(QCQ I(QCQ K 2<=2 K’Q(Q I(QCQ
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4F? AFEgE 4E2 "R AFEoE  AEoEv
where v is defined in Eq. (2). Thus we get
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Expanding the right-hand side up to the first degree of Q71 and using g of (2), we have
G, 1 A GG BAC

= 1
27rf_exp{—(1—}—§ln1/t) }—— p{— T 1 . In . 4o, (9)
so that we get the angular distribution
0/0c 6dB /02 6  6do
270df ~ f(©) g - 1
200 = F e e (T 2 nwh) f "G 6z T (10)

where f(© and f(!) denote the Moliere functions [5, 6].

In fixed-energy process, we should substitute v = 1 in Eq. (10). The first term shows the central
gaussian distribution and the second the asymptotic single-scattering distribution. There exists a
little difference between units of the two distributions. The unit of the former varies a slight more
rapid than the latter due to the factor of (1+Q711In t)1/2, which causes the quantitative correction to
the central structure of angular distribution by the single scattering, mentioned in the section VII.B
of Scott [7] and the section 4 of Kamata-Nishimura [2].

In case with ionization, v decreases monotonously, so that the ratio of the unit of the first term
to the latter decreases at the last stage of their passages, which causes the shape of the angular
distribution young again. It should be noted that asymptotic feature of the second term also shows
accumulation of single scattering distribution at large enough angle. In fact, we have

¢ 20d0 t K? 1.6 0 1,86 0
270d6 [ o(8)dt' = 220y~ / 1q( 22 = L( Ly Ly 11
wbd [ o (0) Pt = GG G = ) G (11)

at the observation level of t.



4 Interpretation of Depth-Variation in The Angular Space:

We introduce a discrimination angle 65, below which the cross section means the moderate angle
scattering o) and above which it means the low-frequency large angle scattering oy,

0, = /% fexa = (K/E)e' =% and  o(0) = om(8) + o1, (6). (12)
Using the formula (14) of Bethe [3]

_4/ 1= Jo(H)]dt ~1+1n2 —~C —Inz + O(2?), (13)

and neglecting higher order than O(z?%), we find the diffusion factor corresponding to the Rutherford
scattering of finite range, from i t0 Onax, depends only on the ratio Opax/Omin as

1 K%¢?
Q 4E?

/e%ax[l — Jo(6¢)]o(8)2m0d6 ~ 0 (Bmas /Omin) ()

so that we get the following diffusion factors corresponding to the respective scatterings:
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We get the solution of Eq. (5) in power series of Q% according to Kamata-Nishimura [2, 3]
f=h+Q A+Qfa+ -, (16)
where we distinguished f, from f() of Moliere-Bethe [5, 6]. fr can be got successively from
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Thus we have
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In fixed-energy process, we get f1 by using the property of or,:

Ot 62,2
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The last expression shows that f; with the lower boundary of integration multiplied by v/t would
be the function of 6g(, so that f; be of 8/6g, not depending on t explicitly. Thus, separating the
integral to two parts, we get
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In case with ionization, f; becomes

fi = dt’ 1 — Jo(¢8)]o(6)276d6. (22)




This time the discriminating angle 6 increases with ¢’ and the coefficient in the single scattering

formula varies with #'.

We separate angular integration into two parts by the fixed discriminating

angle 65 corresponding to the geometrical mean energy v/EoE. Then we get
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So that fo + Q=1 f; gives Eq. (9) and fo+ Q71 f; gives Eq. (10), respectively. We can understand the
probability density corresponding to the first term of Eq. (23) modifies the width of central gaussian

distribution as the property of Kamata-Nishimura series function of fl(l) indicated in [8].
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Figure 1: Depth-variation of expansion parameter
B for various incident energies, Fo/c of 10, 10%
103, 104, 10°, and 108 in unit of Qe=%. Dot line
indicates traditional B without ionization.

5 Conclusions:

The shape of angular distribution becomes young

again at the final stage of Moliere process with
ionization. The aging of the shape is oriented
to relative increase of the unit of central gaussian
distribution to that of asymptotic single-scattering
one, both increasing with ¢. The mechanism can
be explained by the move of Fourier component to
and from the single scattering term in frequency
space. In the angular space, it corresponds to the
existence of discrimination angle separating the
single scattering into the moderate and the large-
angle scatterings.
gle with ¢ causes the monotonous aging in fixed-
energy process and energy dependence of the dis-
crimination angle in stead of a constant causes
becoming young again of the shape in ionization
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Figure 2: Depth-variation of the unit of Moliére
angle By for various incident energies, Fy/e of 10,
102, 103, 10%, 10°, and 10° in unit of Qe~%. Dot
line indicates traditional éy; without ionization.

process.
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