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Abstract

The diffusion equation to get Moliere angular distribution with ionization is solved analytically using
Kamata and Nishimura formulation of the theory. The shape of the distribution is reduced to the
traditional Moliere function with some smaller expansion parameter B and with some larger unit of
Moliere angle compared with those without ionization. The new distribution is compared with the
traditional one and the scale factor v characterizing the new theory is indicated in figures.

1 Introduction:

Charged particles traversing through materials receive multiple Coulomb scattering and change
their directions of motion successively. Many theoretical works have been proposed to describe the
angular distribution of the particles after traversing matters. Among them the Moliere theory [1, 2]
is regarded most advanced taking account single and plural scatterings in the theory.

In spite of high accuracy of the theory, almost no improvements have been achieved to the Moliere
theory. There exists another formulation of Moliere theory proposed by Kamata and Nishimura
[3, 4], equivalent in mathematics [5]. Using the method we have succeeded in getting the Moliere
angular distribution with ionization. The results will be helpful in reliable designings and analyses of
experiments concerning charged particles, as well as accurate and effective tracing of charged particles
and basic tests of Monte Carlo simulations [6, 7].

2 The Angular Distribution With Ionization Under The Relativis-

tic Condition:
The diffusion equation for the angular distribution of charged particles with ionization can be
represented [3, 4] as
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under the small angle approximation [8], where we measure ¢ in radiation lengths [9]. The last term
of the right-hand side means that the charged particles with the initial energy Fy dissipate their
energy in constant rate, € in unit radiation length [9]:

E = Eqy— et. (2)
We assume axial symmetry of Coulomb scatterings, then Hankel transforms of Eq. (1) gives
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According to the Kamata-Nishimura formulation of Moliere theory, this equation becomes
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where w is the scattering coefficient defined in Rossi-Greisen [9], with scattering energy Fj replaced
by Kamata-Nishimura’s K [3, 4]:

w=2pv/K. (5)

If we take the relation (2) into account, the last term of the right hand side of Eq. (4) vanishes. In
the relativistic condition, or in case where the energy F of charged particle is enough greater than
the rest energy (referred to as mass-less approzimation), we get the following relations

pv=FE{l - (mc*/E)*}~E and w~2E/K,. (6)
so that we get the Kamata-Nishimura equation [3, 4]:
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where E depends on £, or using the relation (2) we get
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The solution satisfying the initial condition of f = 1/(27) at E = Fjy is expressed by
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Applying our translation formula [5] we get the probability density in Moliere series:
F@) = fO@) + B fO@) + B O 0) + ... (10)
The expansion parameter B is determined by
B-InB=Q-In{Q/(vt)} where v =¢’(E/E)FotF)/(Fo-F) (11)

and the Moliere angle ¥ is measured in the unit fy:

9=10/6y and Oy =6g\/B/S. (12)

fc shows the well-known root mean square angle derived from the Fermi-Yang theory [9, 10, 11, 12]
with F; replaced by K:

0 = KVt/\/EoE. (13)

The angular distributions with ionization are compared with those without ionization in Fig. 1.

3 Molieére Angular Distribution With Ionization:

We should remind equation (7) of Kamata-Nishimura formulation is written under the relativistic
condition or the mass-less approximation. At finite energies, we have to start with Eq. (4). We
assume the solution of Eq. (4) to be
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and introduce a new unknown function v. Under the ionization process of a constant rate, gaussian
mean square angle becomes

, K 1 1 1 (Eo — me?)/(E — mc?)
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If we could determine v, the Moliere angular distribution would be reduced to the traditional
Moliere expansion by using the translation formula indicated in [5], where B is determined by

—In B=Q-In{Q/(vt/5%)} (16)
and the Moliere angle (12) by (15).

4 Derivation of the New Scale Factor v:

If we regard the dependence of F on ¢ by the relation (2), then the last term of Eq. (4) vanishes.
Substituting Eq. (14) into Eq. (4), we get the ordinary differential equation for v:

17} 4 432
Sn(ut/5?) + 202 In(v1/) = g (1 = n %). (17)

The solution of this equation with initial value 1 of v at ¢ = 0 becomes
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Thus we get
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The scale factor v obtained this time is a function of Fy/(mc?) and E/(mc?). Variation of v with
t is indicated in Fig. 2.

5 Limiting Cases:
At the limit of € — 0 we should get the result without ionization loss. In fact Eq. (20) reaches to

v—1 with 0 — Kt/ (pv), (21)

and the results are reduced to the original Moliere-Bethe distribution [1, 2].
Under the relativistic condition or the mass-less approximation, the results of section 3 and 4
should reach to those of section 2. In fact, at the limit of mc? — 0 Eq. (20) reaches to

v — e2(E)Ep)FotE)/(Eo=E)  with  0g — KVt/\/EoE. (22)

If we imagine artificial material where Kamata-Nishimura’s constant K is finite and Q diverges,
then the diffusion equation (4) becomes identical with that from gaussian approximation. Then we
get
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where 6% is the mean square angle derived from the gaussian approximation indicated in Eq. (15).
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Figure 1: Angular distributions multiplied by 2.
Solid lines correspond to those at ¢/(Fy/¢) of 0.1,
0.3, 0.5, 0.7, and 0.9 from left to right. Dot lines
indicate accumulations of single scatterings.

6 Conclusions:

Multiple scattering theory to describe Moliere
angular distribution is improved to take into ac-
count ionization, using Kamata-Nishimura formu-
lation of the theory. Traditional angular distribu-

tions derived by Moliere-Bethe, Kamata-Nishimura

and Fermi are indicated as limiting cases of our
result and are unified to our present result. The
new distribution will improve the accuracy and
the reliability in tracing charged particles at ex-
perimental analyses and Monte Carlo simulations.
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Figure 2: Variation of the scale factor v against .
Abscissa means t/(Fy/c). The curves correspond
to incident energies Fy/(mc?) of 10, 20, 50, and
0.
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