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Abstract

The flux of low energy atmospheric neutrinos (E� � 4 GeV ) has been studied with the MACRO detector
at Gran Sasso by detecting �� interactions inside the apparatus, and by upward-going stopping muons. The
updated analysis of the data collected until now with the complete apparatus will be presented. The results
show a deficit of the measured number of events in an uniform way over the whole zenith angle with respect
to Monte Carlo predictions. The deficit and the angular distributions, when interpreted in terms of neutrino
oscillations, are consistent with the MACRO results on the much higher energy upward throughgoing muons
(E� � 100GeV ).

1 Introduction:
Recent results (Fukuda, 1998, Ambrosio, 1998a) have confirmed the anomaly in the atmospheric neutrino

flux which was previously observed by several underground experiments (Casper, 1991, Fukuda, 1994, Alli-
son, 1997). The suggested explanation for this anomaly is �� disappearance due to neutrino oscillations, with
maximum mixing and �m2 in the range of a few times 10�3 eV2. The high energy �� events have been deeply
investigated by the MACRO experiment (Ronga, 1999). Here we report on the updated analysis (Bernardini,
1998, Spurio, 1998) of low energy � events.

The MACRO detector (Ahlen, 1993) is a large rectangular box (76.6 m � 12 m � 9.3 m) whose active
detection elements are planes of streamer tubes for tracking and liquid scintillation counters for fast timing.
The lower half of the detector is filled with trays of crushed rock absorber alternating with streamer tube planes,
while the upper part is open. The low energy �� flux can be studied by the detection of �� interactions inside the
apparatus, and by the detection of upward going muons produced in the rock surrounding it and stopping inside
the detector (Fig. 1a). Because of the MACRO geometry, muons induced by neutrinos with the interaction
vertex inside the apparatus can be tagged with time-of-flight (T:o:F:) measurement only for upgoing muons
(IU�=Internal Upgoing �). The downgoing muons with vertex in MACRO (ID�=Internal Downgoing �)
and upward going muons stopping inside the detector (UGS� = Upward Going Stopping �) can be identified
via topological constraints. Fig. 1b shows the parent neutrino energy distribution for the three event topologies
detected by MACRO. The Internal Upgoing � events are produced by parent neutrinos with energy spectrum
almost equal to that of the Internal Downgoing plus Upward Going Stopping � events.

2 Internal Upgoing Events (IU ):
The data sample used for the Internal Upgoing (IU ) events corresponds to an effective live-time of 4.1 years

from April, 1994 up to February, 1999. The identification of IU events was based both on topological criteria
and T:o:F:measurements. The basic requirement is the presence of at least two scintillator clusters in the upper
part of the apparatus (see Fig. 1a) matching a streamer tube track reconstructed in space. A similar request is
made in the analysis for the up throughgoing events produced by �� interactions in the rock below the detector
(Ambrosio, 1998a).

For IU candidates, the track starting point must be inside the apparatus. To reject fake semi-contained
events entering from a detector crack, the extrapolation of the track in the lower part of the detector must cross
and not fire at least three streamer tube planes and one scintillation counter.



Figure 1: Left: sketch of different event topologies induced by neutrino interaction in or around MACRO. IU�= Internal
Upgoing�; ID�= Internal Downgoing�; UGS�= Upgoing Stopping�; Up throughgoing = upward throughgoing�. In
the figure, the stars represent the streamer tube hits, and the black boxes the scintillator hits. The T:o:F: of the particle
can be measured for the IU� and up throughgoing events. Right: parent neutrino energy distribution for the three ��
samples.

The above conditions, tuned on the Monte Carlo simulated events, account for detector inefficiencies and
reduce the contribution from upward throughgoing muons which mimic semi-contained muons to less than
� 1%. The measured 1=� distribution is shown in Fig. 2. The measured muon velocity�c is calculated with the
convention that downgoing muons have 1/� near +1 while upgoing muons have 1/� near -1. It was evaluated
that 5 events are due to an uncorrelated background. After the background subtraction, 116 events are classified
as IU events.

3 Upgoing Stopping Events (UGS) and Internal Downgoing (ID):
The UGS+ ID events are identified via topological constraints, and not with the T:o:F . For this analysis,

the effective live-time is 4:1 y. The main request for the event selection is the presence of one reconstructed
track crossing the bottom layer of the scintillation counters (see Fig. 1a). All the hits along the track must be
confined at least one meter inside each wall of a MACRO supermodule. The selection conditions for the event
vertex (or � stop point) in the detector are symmetrical to those for the IU search, and reduce to a negligible
level the probability that an atmospheric muon produces a background event. The main difference with respect
to the IU analysis (apart from theT:o:F:) is that on average fewer streamer tube hits are fired. To reject ambigu-
ous and/or wrongly tracked events which passed the event selection, a scan with the MACRO Event Display
was performed. All the real and simulated events which passed the event selection were randomly merged.
The accepted events passed a double scan procedure (differences are included in the systematic uncertainty).

The main background source is due to upward going charged particles (mainly pions) induced by interac-
tions of atmospheric muons in the rock around the detector (Ambrosio, 1998b).

4 Comparisons between Data and Monte Carlo:
The expected rates were evaluated with a full Monte Carlo simulation. The events are mainly due to ��



CC, with a contribution from NC and �e (� 13% for IU
and � 10% for UGS + ID). The �e and �� were allowed
to interact in a volume of rock containing the experimental
Hall B and the detector. The rock mass in the generation
volume is 169:6kton, while the MACRO mass is 5:3 kton.
The atmospheric� flux of the Bartol group (Agrawal, 1996)
and the cross sections of Lipari 1995 were used. The detec-
tor response has been simulated using GEANT and simu-
lated events are processed in the same analysis chain as the
real data. In the simulation, the parameters of the streamer
tube and scintillator systems have been chosen in order to
reproduce the real average efficiencies. The total theoret-
ical uncertainty on � flux and cross section at these en-
ergies is of the order of 25%. The systematic error is of
the order of 10%, arising from the simulation of detector
response, data taking conditions, analysis algorithm effi-
ciency, and the mass and acceptance of the detector. With
our full MC simulation, the prediction for IU events is
202�20syst�50theor , while the observed number of events
is 116 � 11stat. The ratio R = (DATA=MC)IU =

0:57� 0:05stat � 0:06syst � 0:14theor. The prediction for
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Figure 2: The1=� distributionof the detected IU
events (dashed area) after all analysis cuts. The re-
maining� 1:6� 105 are downgoing atmospheric
stopping muons.

UGS + ID events is 274� 27syst � 68theor, while the observed number of events is 193� 14stat. The ratio
R = (DATA=MC)UGS+ID = 0:71� 0:05stat� 0:07syst� 0:18theor. An almost equal number of UGS and
ID neutrino induced events are expected in our data sample. Fig. 3 shows the angular distribution of the IU
and UGS + ID data samples, with the Monte Carlo predictions.

Figure 3: Zenith angle (�) distribution for IU and UGS + ID events. The background-corrected data points (black
points with error bars) are compared with the Monte Carlo expectation assuming no oscillation (full line) and two-flavour
oscillation (dashed line) using maximum mixing and �m2 = 2:5� 10�3 eV 2.



The low energy �� samples show a deficit of the measured number of events over the whole angular dis-
tribution with respect to the predictions based on the absence of neutrino oscillations. The measured deficit
of low-energy events is in agreement with the MACRO results on the throughgoing events (Ambrosio, 1998a,
Ronga, 1999), i.e. with a model of �� disappearence with sin2 2� ' 1:0 and �m2 � 2:5� 10�3 eV 2. In fact,
the IU and UGS events have crossed the Earth (L � 13000 km), and in the energy range of few GeV the
flux is reduced by a factor of two for maximum mixing and �m2

� 10�2 � 10�3 eV 2. No flux reduction is
expected for ID events (L � 20 km).

5 Ratio IU over UGS + ID events:
Due to the large theoretical error arising from the uncertainties on absolute� flux and cross section, the total

number of events has a non negligible probability to be
compatible with the no-oscillation hypothesis (� 6:5%
for IU and � 14% for UGS + ID events). On the
other side, using the ratio between IU and UGS + ID
events, the theoretical error coming from neutrino flux
and cross section uncertainties almost disappears. A
residual 5% due to small differences between the en-
ergy spectra of the two samples survives. The system-
atic uncertainty on the ratio is also reduced to � 6% due
to some cancellations. The value of that ratio over the
zenith angle distribution obtained from data is shown
in Fig. 4, where it is compared with MC expectation.
The ratio between the total numbers of detected events
is R = 0:60 � 0:07stat, while R = 0:74� 0:05syst �

0:04theor is expected in case of no oscillation. The prob-
ability to obtain a ratio at least so far from the expected
one is � 6% assuming Bartol as the true parent � flux

Figure 4: The cos� distribution of the ratio between
IU and UGS + ID events. The data result is
compared with Monte Carlo expectation assuming
no oscillation (full line) and two-flavour oscillation
(dashed line) using maximum mixing and �m2 =
2:5� 10�3 eV 2.

and taking into account the not Gaussian shape of the uncertainty on the ratio. In conclusion, the analysis of
low energy � events collected by MACRO shows a preference toward an oscillation model with parameters
compatible with those suggested by the upward-throughgoing muon data.

References

Agrawal, V., et al. 1996, Phys. Rev. D53, 1314
Ahlen, S., et al. (MACRO Collaboration) 1993, Nucl. Instr. Meth. A324, 337
Allison, W.W.M., et al. 1997, Phys. Lett. B391, 491
Ambrosio, M., at al. (MACRO Collaboration) 1998a, Phys. Lett. B434, 451
Ambrosio, M., et al. (MACRO Collaboration) 1998b, Astrop. Phys. 9, 105
Bernardini, P., (MACRO Collaboration) 1998, Proceedings of ”Frontier Objects in Astrophysics and Particle
Physics - Vulcano Workshop”, hep-ex/9809003
Casper, D., et al. 1991, Phys. Rev. Lett. 66, 2561
Fukuda, Y., et al. 1994, Phys. Lett. B335, 237
Fukuda, Y., et al. 1998, Phys. Rev. Lett. 81, 1562
Lipari, P., Lusignoli, M., & Sartogo, F. 1995, Phys. Rev. Lett. 74, 4384
Ronga, F., (MACRO Collaboration) 1999, HE 4.1.07 in this conference
Spurio, M., (MACRO Collaboration) 1998, Proceedings 16th ECRS (Alcala‘ de Henares, Spain)


