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Abstract

One of the unsolved problems in cosmic ray (CR) physics is the small radial gradient of the
-ray intensity
compared to the inferred CR source distribution in the Galactic disk. In diffusive CR propagation models the
most natural explanation is very efficient spatial mixing due to MHD turbulence in the interstellar medium.
However, even in the most favorable case of a very large diffusive CR halo the
-ray gradient is still larger
than observed. In our view the small
-ray gradient could be the result of strong advection by a Galactic wind.
We show that a small
-ray gradient can be obtained, if the diffusion region doesnot extend far above the
Galactic plane. Important ingredients of our model are: (i) anisotropic CR diffusion, (ii) strong radial and
vertical gradients of the advection velocity (due to faster winds above higher CR source density regions).

1 Introduction:
The distribution of the
-ray emissivity in the galactic disk bears important information on the CR origin,

because Galactic diffuse
-rays result from interactions of CRs with interstellar gas. Thus, this distribution
depends critically on the conditions of CR propagation in the Galaxy. For
-ray energies above 100 MeV,
the main production process is�0-decay, resulting from nuclear collisions between high energy particles and
interstellar matter. The study of diffuse
-ray emission has shown that the nucleonic component of cosmic
rays is more or less homogeneously distributed over the entire Galactic disk. If the spatial distribution of
CRs were uniform, the
-ray emission should map perfectly well the distribution of interstellar hydrogen.
However, the distribution of the cosmic ray (CR) sources (most likely supernova remnants (SNRs) for particle
energies below1015 eV) is far from homogeneous. Taken at face-value, the discrepancy must arise during
the propagation of CRs from their sources through the interstellar medium. The difficulty in interpreting the
data correctly is due to the fact, that the coefficients of CR transport are not well known, and therefore models
(plus their respective assumptions) are used to bridge the gap between the measured
-ray parameters and the
unknown parameters of CR origin.

The most common models for the interpretation of the spatial CR distribution in the disk are phenomeno-
logical in nature and based on CR diffusion. It is assumed that particle propagation in the interstellar medium
can be described by an isotropic diffusion process due to CR scattering off magnetic field fluctuations. The
value of the diffusion coefficient (or tensor) is estimateded from observational data. In many cases this model
gives an acceptable interpretation of experimental results (see e.g. Berezinsky et al., 1990).

The interpretation of the
-ray gradient in the framework of an isotropic diffusion model, in which the
CRs are injected by a radially non-uniform SNR distribution (e.g. Case & Bhattacharya, 1996) leads to the
following conclusion: in order to obtain a rather uniform CR distribution in the disk one has to assume that
the Galaxy is surrounded by a huge halo whose vertical extension is larger than 10 kpc (Bloemen et al., 1993).
Only then diffusion mixes CRs efficiently enough, so that their distribution in the disk differs appreciably from
that of their sources. The numerical calculations (see Dogiel & Uryson, 1988) show however, that even in the
case of avery extended diffusion halothe calculated gradient of CRs is larger than derived from COS-B and
EGRET data. Therefore, if we believe that the observations of the SNR and
-ray distributions are correct, we
should seek alternative explanations for the gradient data.



2 Effects of CR Transport by a Galactic Wind:
A completely different scenario of CR escape into intergalactic space is implied by the so-called galactic

wind models. It is shown that the combined pressure of thermal plasma, CRs, magnetic fields and MHD waves
can lead to a secular escape of gas and CRs in normal spiral galaxies, provided that the coupling between
scattering waves and energetic nucleons is strong. In this case there is a net forward momentum transfer from
CRs to the gas via the frozen-in waves as a mediator (see Breitschwerdt et al., 1991; 1993). In wind models
the coupling between MHD-waves and CRs is generally assumed to be strong everywhere in space except for
a rather narrow region surrounding the galactic plane where CRs propagate predominantly by diffusion. In
the wind CRs are transported along with the gas and the waves to large distances from the disk. As numerical
simulations have shown, these models exhibit two effects that may provide the long-sought explanation for the

-ray gradient variation problem, both of which are not present in static halo models. The first one is that the
diffusion tensor may beanisotropic. The reason is that the component along the magnetic field lines depends
on the CR energy, asDk / E0:6, and the component perpendicular to the linesD? is energy independent. As
a result in the case of a strong galactic wind the location,zc, of the halo boundary depends on the energy as:

zc / E0:6 and the local CR life timeTcr � z2c
D / E0:6. The diffusion componentDk rises with energy so the

diffusion is one dimensional at high energies.
The second, and more important, new effect is theradial variation of the wind velocity(or mass flux, if the

gas density is constant) of the galactic wind along the galactic plane, which may give rise to an almost uniform
CR distribution in the disk, even for a strongly non-uniform CR source distribution, provided that the diffusion
halo height is small. The reason is that, depending on the local CR source strength (i.e. the number of SNRs
per unit volume and hence the number density of CRs at a given energy,n(r; z; E)), the CR energy density,�c
or its pressurePC, will vary accordingly with galactocentric radius. Thus an increase in�c will also increase
the galactic wind mass flux or wind velocity, respectively, and hence decrease the distance to the advection
boundary, given byD(Rc; zc; E)=(V (Rc; zc)zc) � 1, whereR andV = u + VA denote the halo radius and
the CR transport speed with respect to an Eulerian frame of reference. Consequently, the CR storage volume
will be reduced, thus facilitating CR escape locally and thereby decreasing the number of nuclear collisions,
which produce
-rays via�0-decay.

3 Uniform Disk Distribution of CRs in the Wind Model:
To illustrate the behaviour of the solution of the advection-diffusion equation we discuss two simple cases.

The first one describes one-dimensional diffusion with the advection velocityV depending on the radial coor-
dinater only, asV (r) = V0 �f1(r), with V0 being a constant andf1(r) an arbitrary function ofr. The equation
to solve for the CR distribution functionN(r; z) is

� d

dz

�
D
dN

dz
� V (r)N

�
= Q � f2(r) (1)

with the boundary conditionN = 0 atzc = 1. HereQ is the non-radial part of the CR source distribution, and
f2(r) is also an arbitrary function ofr, which describes the radial SNR distribution in the disk. The solution
of Eq. (1) is

N(z; r) =
Qf2(r)

V0f1(r)

�
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�
: (2)

We see that for the case of weak advectionV0 � 1 the solution isN � Qf2(1 � z)=D, and the CR gradient
depends on the source distributionf2 only. However ifV0 � 1 then

N � Qf2(r)

V0f1(r)
; (3)

and in this case the gradient is a strong function of the velocity distribution too. In the special casef1(r) =
f2(r) we obtainN = const.



Let us investigate a more complex case in which the velocity is also a function ofz. For a velocity distri-
butionV (z; r) = 3V0 z f1(r), with some suitable constantV0, the solution of the one-dimensional diffusion
equation was obtained by Bloemen et al., 1993. For strong advection the solution converges to

N(z = 0; r) ' A
Qf2(r)p
DV0f1(r)

; (4)

we retrieveN = const, if f1(r) = f22 (r), whereA is a constant.
The diffusion coefficientD is assumed to be constant, although we cannot exclude its spatial variation,

which can change the CR density distribution in the disk as well.

4 Analytical Solution of the Diffusion-Advection Equation:
We now want to work out a general solution of the two-dimensional CR transport equation for nucleons,

which reads
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where~x denotes the spatial coordinates, and the diffusion tensorD in cylindrical coordinates with axial sym-
metry is given by
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Our prime interests here are the anisotropic diffusion and advection, rather than the energy dependence and
so, for convenience, we set� = 0. For the nucleon component other than adiabatic losses are negligible
(dE=dt = 0); thus Eq. (5) in axial symmetry becomes
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where we have chosen a spatial variation for the velocity field as

~u(~x) =

 
ur
uz

!
=

 
0

3V0z=r
2

!
; (8)

and we have used a power law spectrum for particle injection by the disk sources. The choice of~u(~x) seems
rather arbitrary at first glance, and it can indeed be quite a complicated function ofr andz. However, numerical
calculations of galactic winds (Breitschwerdt et al., 1991) show a similar spatial variation of the velocity field
like the one we have chosen.

The full analytical solution od Eq. (7) is rather cumbersome, and will be discussed in detail elsewhere
(Breitschwerdt et al., 1999). Here we present the result for the CR distribution function in the disk (z = 0),
subject to the boundary conditionsN(r; z = �1) = 0 andN(r = �1; z) = 0:

N(r; z = 0; E) = � 1
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Here,�n = �2n � 3A � 2
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and
 = 
0 + 2.
It is instructive to look at the asymptotic behaviour of the solution at different radii. If the CR sources

occupy a limited volume of the disk bounded by a radiusa, and we letQ(r0) = Qr0�q�(a � r0) (whereq
is a fit to the observed SNR distribution, and� denotes the step function), then forr > a the functionN is
completely determined by the second integral which is a constant. Indeed from contour integration we find
that the first integral

R+1
r = 0 and the second integral

R r
0 =

R a
0 = const for r > a. Then from a simple

analysis we see thatN(r) / r�1�
p
A(
�3) andN(r) / r�1 if A� 1. This is just what is expected for purely

diffusive particle propagation. In the case of strong advection, i.e.A� 1, we haveN(r) / r�
p
A(
�3); such

a strong drop of CR density far away from the sources is due to adiabatic energy losses, since, if we neglect
them,
 = 3 formally, andN(r) / r�1, almost independent of the value ofA.

In the vicinity of the source region (r � a) the functionN is determined by the two integrals (cf. Eq. (9))
which can be written as
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For the case of strong advectionA � 1 the first integral is determined by the lower limit and the second one
by the upper limit,independentof the source distribution. Then we haveN(r) / r2�q and the CR density is
almost in the disk region close to the sources ifq = 2.

If A � 1 then the values of the integrals are determined by the source distribution. If the CR sources
are concentrated towards the centre of the disk,q > 2, then the CR distribution is determined by the second

integral andN(r) / r�1�
p
A(
�3). If the sources are uniformly distributed in the disk (q = 0) thenN /

(a2� r2). Thus from these analyses we see that a more or less uniform CR distribution can be expected in the
disk, if advection is strong, i.e.A� 1.

5 Conclusion:
If the advection velocity is proportional to the CR source density in the disk, then the propagation char-

acteristics of the CRs at each point of the disk are strongly determined by local conditions. In this case we
can obtain a radially uniform CR distribution, if the halo boundary is close to the disk. Therefore local CR
characteristics should vary strongly from point to point in the disk. Moreover, any attempt to estimate global
parameters of CRs (such as the halo height or diffusion coefficient) from distribution of their density in the
disk is misleading, since mixing of CRs in the Galaxy may be rather weak. Therefore one may conclude that
in the case of strong CR advection, the halo extension derived from CR nuclear data reflects only a local halo
extension near Earth and the value derived from
-ray data and pure diffusion models may be an artifact.
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