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Abstract

The cold-plasma resonance conditions of cosmic rays with waves propagating parallel to the mean magnetic
field are studied. We calculate the phase speeds of the waves resonant with particles of fixed type as a function
of particle velocity. This allows us to determine the mean scattering-center speed for given particle species and
wave modes as a function of particle momentum. As an application, we discuss the resulting scattering-center
compression ratio of a low-Mach-number parallel shock wave for electrons and ions at different energies.

1 Introduction
The quasi-linear interaction of cosmic-ray particles with transverse, parallel-propagating plasma waves

occurs via gyro resonance. To interact efficiently with a circularly polarized wave, the particle must gyrate
around the mean magnetic field in the same sense and with the same frequency as the electric field of the
wave when viewed in the rest frame of the particle’s guiding center (GC frame). Augmented with the disper-
sion relations of the relevant wave modes, this condition determines the wavenumbers and frequencies of the
waves resonant with particles of a given type (charge/mass) and velocity. The intensity of the waves at these
wavenumbers, in turn, determines how fast the given particle is diffusing in momentum space.

If the particle’s guiding center moves much faster than the waves relative to the plasma, one may neglect
the plasma-frame wave frequency in the (Doppler-shifted) GC-frame wave frequency and make the so-called
magneto-static approximation (e.g., Jokipii 1966). This approximation, however, does not give correct results
for particles with pitch angles close to 90�. Since the description of particle scattering in this region deter-
mines the fundamental cosmic-ray transport parameter, the spatial diffusion coefficient (Schlickeiser & Miller
1998), one has to abandon the magneto-static approximation at least when computing this parameter from
the assumed/observed spectrum of magnetic fluctuations. In this paper, we study the effect of finite phase
speeds of the waves on another transport coefficient, the bulk speed of the cosmic rays, which is the effective
speed of the waves that scatter the cosmic-ray particles. Dispersive waves, therefore, can give rise to bulk
speeds that are dependent on cosmic-ray charge/mass and momentum. We shall study how this affects the
scattering-center compression ratio in low-Mach-number parallel shock waves.

2 Dispersion Relation and Resonance Condition
The dispersion relations of parallel transverse waves in a cold electron–proton plasma can be described

with the equation (e.g., Steinacker & Miller 1992)
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wherek is the wavenumber and! the wave frequency,
e[p] = qe[p]B=(me[p]c) is the signed non-relativistic
electron [proton] gyro-frequency,qe(p) andme[p] are the electron [proton] charge and mass,B is the back-
ground magnetic field magnitude,c is the speed of light, andVA = B[4�ne(mp + me)]

�1=2 is the non-
relativistic Alfvén speed,ne is the electron density of the plasma. Negative (positive) frequencies denote
right (left) handed polarization and the sign of!=k fixes the propagation direction of the wave relative to the



Figure 1: Phase speed, as a function of parallel particle velocity, of parallel-propagating transverse waves
resonant with particles having constant dimensionless gyro-frequency of� = �p (left) and�1=3 (right).

background magnetic field direction. Assuming that(VA=c)
2 � 4
p=j
ej = 0:00218, we may write the

dispersion relation (1) in the dimensionless form
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where� = kVA=j
ej, f = !=j
ej, �p = 
p=j
ej = me=mp = 1=1836; the wave frequency takes values
between�1 � f � �p; and the sign fixes the wave-propagation direction relative to the background magnetic
field. Whenjf j � �p, the dispersion relation (2) describes Alfv´en waves. At positive frequencies, the Alfv´en
waves are converted to proton-cyclotron waves asf ! �p. At negative frequencies they are first converted to
whistlers atf � ��p and finally to electron-cyclotron waves asf ! �1.

Finally, the gyro-resonance condition between the cosmic rays and the parallel/anti-parallel waves is

f 0 � �0vk=VA = �; (3)

where�0 andf 0 are the dimensionless resonant wavenumber and frequency,v is the particle speed andvk
the particle velocity parallel to the background magnetic field (parallel velocity),� = qB=(
mcj
ej) =
meq=(
mjqej) is the (signed) dimensionless gyro-frequency,q is the charge,
 is the Lorentz factor, andm is
the mass of the cosmic ray.

3 Effective Wave Speed
In the following, we will treat�0 = �
 = meq=(mjqej) as constant. Combining equations (2) and (3)

allows us to write down an equation for the phase speedw = VAf
0=�0 of the waves resonant with particles of

fixedv as a function ofvk in a parametric form
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from which an implicit form, i.e.,vk = vk(w), may be derived straight-forwardly. In Figure 1 we have
plotted the solution (4–5) for two values of� corresponding to non-relativistic protons and mildly relativistic
electrons. We have indicated what values the wave frequencyf 0 takes in each branch of the curves. The curves



are plotted for parallel-propagating waves; for anti-parallel waves, bothvk andw change signs for constantf 0

and a complete figure would include the negativew axes with curves obtained by rotating the plots in Figure 1
about their origins by 180�.

Scattering by waves that all move with the same phase speed, e.g., parallel Alfv´en waves, tends to make the
particle distribution isotropic in the wave frame, i.e., the coordinate system moving with the phase speed of
the waves relative to the plasma. This results in a plasma-frame bulk motion of the cosmic rays with the phase
speed of the waves. If waves with several speeds are present the situation is a bit more involved, but the use of
quasi-linear theory with the diffusion approximation for cosmic-ray propagation gives the plasma-frame bulk
speed of the particles in form (Schlickeiser 1989)
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wherep and� = vk=v are particle momentum and pitch-angle cosine, andD�p = 1
2 h���pi =�t and

D�� = 1
2
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�
=�t are components of the momentum diffusion tensor in the cosmic-ray kinetic equation.

In general, the diffusion tensor componentsD��(�; p) andD�p(�; p) are obtained by taking ensemble
averages of the first-order corrections due to wave fields to the helical particle orbit. For parallel cold-plasma
waves, they have been calculated by Steinacker & Miller (1992). Let us, however, study how the bulk speed
V in equation (6) may be estimated without knowing the detailed form of these coefficients. Let us study the
interaction of the particle with a single resonant wave mode with phase speedw. The interaction between
the particle and the wave component can be viewed in the wave frame, where the wave’s magnetic field is
static making the scattering elastic. Thus, we may write the equation�p0 = 0 for the wave-frame momentum,
p0 = p[1� 2�w=v + (w=v)2]1=2, which leads to

�p =
wp

v � �w
��;

if terms of the order(w=c) are neglected. Thus, in this case, we may write for the ratio of the momentum-
diffusion-tensor components
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If several waves, numbered by�, are scattering the particle with given� andp, we may write
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2=j�v � wg;�j is the pitch-angle diffusion
coefficient related to the wave�, w� andwg;� are the phase and group speeds of the wave�, andA�(p)
is proportional to the power in the magnetic field fluctuations of the wave�. Note that this result agrees
with Steinacker & Miller (1992), where both coefficients were calculated using quasi-linear theory directly.
Combining the results (8–9) with equations (4–5) allows us to calculate the bulk speedV (p) in (6–7) of the
cosmic rays, if the scattering frequencies as a function of wave frequency are specified. In particular, if the
spectrum of waves as a function of wavenumber is steep enough, we may approximate thata� is unity for the
resonant wave with the lowest wavenumber and zero for the others.

4 Discussion
In cosmic shock waves, particles can gain energy through first and second order Fermi mechanisms by

multiple shock crossings and stochastic downstream acceleration, respectively. When first-order Fermi accel-
eration dominates, the spectral index of the shock accelerated particles is� = (rk + 2)=(rk � 1) and, thus,



determined by the scattering-center compression ratio of the shock,rk(p) = [u1+V1(p)]=[u2+V2(p)], where
u1[2] is the upstream [downstream] shock-frame flow speed of the plasma andV1[2] is the respective relative
bulk speed of particles due to finite phase speed of the waves. Let us examine the effects of the non-zero wave
speeds on the first-order Fermi acceleration of cosmic rays. In the upstream region of the shock, we may as-
sume that all waves are propagating against the flow (backward waves,w < 0) if they are self-generated by the
accelerated particles through the streaming instability. Let us assume that backward waves are generated at all
frequencies�1 < f 0 < �p. All upstream waves that have�w < u1 will then be convected to the shock and
become downstream waves. In the downstream region, due to the interaction of the upstream waves with the
shock, waves propagating in both directions will be present. For Alfv´en waves, Vainio & Schlickeiser (1999a,
1999b) showed that the dominating downstream wave components are the backward ones. However, since we
assume that the waves are generated in the upstream region, we can not have downstream backward waves
propagating faster than the shock relative to the downstream plasma. This implies that we do not have back-
ward waves at frequencies12(�1+�p� f0) < f 0 < 1

2 (�1+�p+ f0); wheref20 = (1+�p)
2� 4�pM

2=r,
M is the Alfvénic Mach number of the shock andr is the gas compression ratio of the shock. When the
downstream Alfvénic Mach numberM=r1=2 > wmax=VA = (1 + �p)(4�p)

�1=2 � 21:4 all waves are able
to propagate in the downstream region. For cold upstream plasma this means thatM > 42:8 but since we are
considering also the downstream modes in the cold-plasma approximation, we must restrict ourselves to small
gas compression ratios and shocks withr1=2 �< M < 2.

As an illuminating example, we shall consider downstream turbulence consisting of (i) Alfv´en waves
with jf j � �p being dominated by the backward propagating waves, (ii) forward whistler waves with
�p � f � 1, and (iii) equal intensities of forward and backward waves near the cyclotron frequencies.
The last assumption is made since we do not really know how waves with high frequencies and wave numbers
interact with shocks and since other wave-generation processes may also be important at high frequencies.
For upstream waves we make the assumption that waves at low wavenumber dominate in intensity over the
waves at high wavenumber. We assume that all upstream waves are backward waves. Using these assump-
tions for turbulence near the shock and the results of previous section we conclude the following: (i) up- and
downstream bulk speed of the energetic (v � VA) ions relative to the plasma is close to local Alfv´en speed,
V �> �VA; (ii) upstream bulk speed of energetic electrons is decreasing with momentum fromV1 � �9VA
at v � 2wmax to V1 �> �VA at ultra-relativistic (
 > 200) energies; (iii) downstream bulk speed of energetic
electrons isV2 > 0 at non-relativistic energies andV2 � �VA at ultra-relativistic energies.

Our study reveals that (i) for ions and ultra-relativistic (E > 100 MeV) electronsrk = r(M � 1)=(M +
Hc;2r

1=2), where the downstream cross-helicity state is close toHc;2 = �1 and, thus,� � 1 (see Vainio
& Schlickeiser [1999a, 1999b] for a more detailed discussion); (ii) for less energetic electrons, the first-order
Fermi process will be less efficient and will, in fact, turn to deceleration at mildly relativistic or non-relativistic
energies. Thus, we expect stochastic acceleration in the downstream region to determine the spectrum of these
electrons at the shock.
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