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Abstract

We consider particle acceleration in the interaction region of a young supernova remnant. In the early phase of
a supernova remnant, the ejecta drives a blast shock wave into the interstellar medium, and the high pressure
behind the blast wave also drives a reverse shock wave back into the ejecta. We investigate particle acceleration
in this converging flow region between two shocks.

1 Introduction:
Supernova remnants (SNRs) are believed to be the source of galactic cosmic rays (GCRs) from the argu-

ments of energetics and the elemental abundance in the source of GCR. The recent detections of non-thermal
X-ray emissions by ASCA (Koyama et al., 1995) and TeV gamma rays by CANGAROO from the shell of
SN1006 (Tanimori et al., 1998) show the existence of∼ 1014 eV electrons accelerated by the shock in SNR
(Yoshida & Yanagita, 1997) and imply an existence of nuclear components with similar energies.

However, it is still an open question whether these energetic nuclei are accelerated from interstellar matter
(ISM), or from supernova ejecta. Meyer, Drury, and Ellison (1997) and Ellison, Drury, and Meyer (1997)
claims that GCRs observed in the present are injected into the shocks in SNRs from the ISM. On the other
hand, the linear growth in Be abundance with Fe abundance observed in old, halo stars strongly suggests that
GCRs come from supernova ejecta (Ramaty et al., 1997). Yanagita and Nomoto (1998) show that the bulk of
GCRs is interpreted as a mixture of ejecta of Type Ia and Type II supernovae, by determining the best mixing
ratio on the basis of the nucleosynthetic models of supernovae.

In this paper, we investigate particle acceleration in a SNR from the ejecta-dominated phase to the Sedov
phase. In the ejecta-dominated phase of a SNR, the ejecta drives a blast shock wave into the interstellar
medium, and the high pressure behind the blast wave also drives a reverse shock wave back into the ejecta
(Chevalier 1982). Berezinsky and Ptuskin (1989) and Zhang (1993) investigated particle acceleration in this
converging flow region between two shocks. Drury and Keane (1995) discussed the role of the reverse shock
in GCRs acceleration. In this paper, by using McKee and Truelove’s universal solution (1995), we examine
the maximum achievable energy of particles accelerated by shock waves and the condition that particles can
be accelerated within the shocked shell bounded by the two shock fronts.

2 Particle Accelerations by Two Shock Waves:
In order to consider particle accelerations at supernova shock waves, we use the analytic hydrodynamical

model. McKee and Truelove (1995) show that there exists a universal solution for the evolution of a adiabatic
SNR from the ejecta–dominated phase to the Sedov phase, in which they assume that the ejecta and the ambient
medium have a uniform density. This solution is uniquely specified by three parameters: the total energy of
the explosionEe, the ejecta massMe, and the ambient hydrogen number densityn0. The units of length

RST = 2.23(Me/M�)1/3n0
−1/3 pc

and time
tST = 209(Ee/1051 erg)−1/2(Me/M�)5/6n0

−1/3 yr

can be formed from the above parameters. The unit of timetST means the transition time between the ejecta-
dominated phase and the Sedov phase. Approximate analytic time evolutions of radii and velocities are ob-
tained for the blast shock in the ambient medium and the reverse shock back into the ejecta in terms of the



unitsRST andtST . In the ejecta–dominated phase (t < tST ),

Rb/RST = 1.37(t/tST )[1 + 0.60(t/tST )3/2]−2/3, vb/vST = 1.37[1 + 0.60(t/tST )3/2]−5/3,

Rr/RST = 1.24(t/tST )[1 + 1.13(t/tST )3/2]−2/3, ṽr/vST = 1.41(t/tST )3/2[1 + 1.13(t/tST )3/2]−5/3,

where the suffixesb and r denote the blast shock and the reverse shock respectively, andvST denotes the
unit of velocity defined as1.04 × 104(Ee/1051 erg)1/2(Me/M�)−1/2 km s−1. Hereṽr is the velocity of the
upstream flow in the rest frame of the reverse shock:ṽr = Rr/t − vr, wherevr is the velocity of the reverse
shock in the rest frame of the ambient medium. In the Sedov phase (t ≥ tST ),

Rb/RST = [1.56(t/tST ) − 0.56]2/5, vb/vST = 0.63[1.56(t/tST ) − 0.56]−3/5,

Rr/RST = (t/tST )[0.78 − 0.03(t/tST ) − 0.37 ln(t/tST )], ṽr/vST = 0.37 + 0.03(t/tST ).

This approximate analytic solution reproduces well the result from a numerical simulation during the period
before the reverse shock reaches the center att/tST ' 4.9.

In this shock structure, when the mean free path of a particle is smaller than the distance between the blast
shock and the reverse shock∆R = Rb − Rr, the particle is accelerated at the individual shock. If the mean
free path of a particle becomes larger than the distance between the two shocks, the particle is accelerated in
the region between the two shocks (Berezinsky and Ptuskin, 1989). The necessary condition under which the
latter occurs is that the the time scale of diffusiontdf within the shocked shell bounded by the two shocks is
shorter than the age of The SNRtage. The diffusion time can be estimated as

tdf =
(∆R)2

κ2
, (1)

where we assume that the diffusion coefficientκ2 in the shocked shell is spatially constant. This assumption
may be valid because the flow in the shocked shell is subject to convective or Rayleigh–Taylor instability
and the mixing occurs around the contact discontinuity (Chevalier, Blondin, & Emmering, 1992). Here, the
suffix 2 denotes the downstream and later the suffix 1 which denotes the upstream is introduced. The flow in
the shocked shell is in the downstream at each rest frame of both shocks. We also assume that the diffusion
coefficient isκ2 = frLc/3 = f2Ec/(3ZeB2), wheref is the ratio of the mean free path of the particle to
the Larmor radiusrL = E/(ZeB), E is the energy of the particle,c is the velocity of light,Ze is the electric
charge of the particle, andB is the magnetic field strength in Gaussian unit.

The estimate of the maximum energyEmax of the particle accelerated by two shock waves is needed
to calculate the minimum diffusion timetdf . For this estimate, it is needed to know the solution of the time-
dependent cosmic-ray transport equation which describes the particle acceleration process by the two spherical
shocks. Here, however, for simplicity, we use well known results for a single plane shock separately for the
blast and reverse shocks. For nucleons the maximum achievable energy is limited by the age of the SNRtage,
because the energy loss time of high energy nucleons for the synchrotron radiation and the inverse Compton
scattering is much longer thantage (Zhang, 1993). In the first Fermi particle acceleration the acceleration time
tacc is represented by

tacc =
3

V1 − V2
(
κ1

V1
+

κ2

V2
),

whereV andκ are the flow velocity and the diffusion coefficient in the the upstream and downstream(Drury,
1983). We assume that the diffusion coefficients in the upstream and the downstream region areκ1 =



f1Ec/(3ZeB1) andκ2 = f2Ec/(3ZeB2). For a strong shock withV1 = Vs andV2 = Vs/rc, whereVs

is the shock velocity andrc is the compression ratio, the the acceleration timetacc is

tacc =
rc

rc − 1
Ec

ZeV 2
s

(
f1

B1
+

f2

B2
rc).

Therefore, for each shock, the maximum energyEmax is determined by equatingtacc = tage as

Emax =
rc − 1

rc

ZeV 2
s

c
(
f1

B1
+

f2

B2
rc)−1tage. (2)

Figure 1 shows the maximum energiesEmax for the blast shock and the reverse shock as a function of
the the age of the SNR, where we assume that the shocks are strong:rc = 4, wave excitations are rapid:
f1 = f2 = 1, magnetic fields are parallel with respect to the shock normal:B1 = B2 = 3µG, andZ = 1 for
both shocks. We also chooseEe = 1051 erg,Me = 1.4 M�, andn0 = 0.055 cm−3 as the parameters which
determine the time evolutions of radii and velocities of both shocks. Aftert/tST = 1.6, the maximum energy
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Figure 1: The maximum energiesEmax esti-
mated at the blast shock and the reverse shock as
a function of the the age of the SNRtage normal-
ized bytST .
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Figure 2: The minimum diffusion timestdf/tST

within the shocked shell are compared with the
age of the SNRtage/tST .

Emax,r estimated at the reverse shock is larger thanEmax,b estimated at the blast shock, becauseṽr becomes
larger thanvb.

The minimum diffusion time scalestdf,b andtdf,r can be calculated by using the maximum energyEmax,b

andEmax,r. In Figure 2 the diffusion timestdf,b andtdf,r are compared with the age of the SNRtage. When
tage/tST < 0.52, the condition that particles can be accelerated in the region between two shockstdf,b < tage

is satisfied, although the minimum of oftdf,r/tST is 5.6 att/tST = 0.46 andtdf,r does not satisfy the condition.
This result implies that particles can be accelerated effectively in the region between two shocks.

3 Discussions:
We discuss the effect of magnetic field amplification in the shocked shell. As mentioned above, the flow is

expected to be turbulent due to convective or Rayleigh-Taylor instability. And the turbulence may amplify the
magnetic field (Zhang, 1993). If we assume that the magnetic filedB2 in the shocked shell become larger than
rcB1 andf2 becomes smaller thanf1 due to strong scattering by the turblence in equation (2), the maximum
energyEmax mainly depends onB1 andf1 and the diffusion coefficientκ2 in the shocked shell becomes
smaller. Then, since the diffusion timetdf becomes larger, particles may not be accelerated effectively in the
region between two shocks.



It is pointed out by Chevalier and Blondin (1995) that the effect of radiative cooling in the shocked shell
is important when the ejecta with a steep density profile interact with the surrounding medium with a den-
sity profile of ρ ∝ r−2 which is produced by the mass loss of the progenitor star. If the cooling occurs in
the shocked shell, the shell thickness∆R becomes thin. Then, we can expect that the diffusion timetdf be-
comes smaller than that for the adiabatic case. Accordingly, in order to investigate the condition of particle
acceleration in the shocked shell, it is important to consider the effect of cooling on the hydrodynamics of
shocked shell. For further investigation, it is needed to know the the process of the particle acceleration by
the two spherical shocks, by solving cosmic-ray transport equation coupled with the hydrodynamic equations
including radiative cooling.
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