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Abstract

We examine the simplified ”box” models of shock acceleration and present a more physical version. We
determine simple criteria for the conditions under which ”pile-ups” can occur in shock accelerated electron
spectra subject to synchrotron or inverse Compton losses (the latter in the Thompson limit). An extension to
nonlinear effects is proposed.

1 Introduction
Many authors (Bogdan & V¨olk, 1983; Moraal & Axford, 1983; Lagage & Cesarsky, 1983; Schlickeiser,

1984; Völk & Biermann, 1988; Ball & Kirk, 1992; Protheroe & Stanev, 1998) have used, under various
guises, a simplified but physically intuitive treatment of shock acceleration, sometimes referred to as a “box”
model. In this paper we present an alternative more physical interpretation of the “box” model which can
be significantly different when additional loss processes, such as synchrotron or inverse Compton losses, are
included. A fuller account with more extensive discussion will appear in Astronomy and Astrophysics.

The main features of the “box” model, as presented in the literature (see references above) and exemplified
by Protheroe and Stanev (1998) can be summarised as follows. The particles being accelerated (and thus “in-
side the box”) have differential energy spectrumN(E) and are gaining energy at rateraccE but simultaneously
escape from the acceleration box at rateresc. Conservation of particles then requires
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(raccEN) = Q� rescN (1)

whereQ(E) is a source term combining advection of particles into the box and direct injection inside the box.
In essence this approach tries to reduce the entire acceleration physics to a “black box” characterised simply
by just two rates,resc andracc. These rates have of course to be taken from more detailed theories of shock
acceleration (eg Drury, 1991).

2 Physical interpretation of the box model
We prefer a very similar, but more physical, picture of shock acceleration which has the advantage of being

more closely linked to the conventional theory. For this reason we also choose to work in terms of particle
momentump and the distribution functionf(p) rather thanE andN(E). If we have an almost isotropic
distribution f(p) at the shock front where the frame velocity changes fromU1 to U2, then it is easy to
calculate that there is a flux of particles upwards in momentum associated with the shock crossings of
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f(p; t)n � (U1 �U2) (2)

wheren is the unit shock normal and the integration is over all directions of the velocity vectorv. Notice that
this flux is localised in space at the shock front and is strictly positive for a compressive shock structure; in
our description it replaces the acceleration rateracc.

The other key element is the loss of particles from the shock by advection downstream. We note that
the particles interacting with the shock are those located within one diffusion length of the shock. Particles
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Figure 1: A graphical representation in thex; p plane of our model.

penetrate upstream a distance of orderL1 = n � K1 � n=n � U1 whereK is the diffusion tensor and the
probability of a downstream particle returning to the shock decreases exponentially with a scale length of
L2 = n �K2 � n=n �U2. Thus in our picture we have an energy dependent acceleration region extending a
distanceL1 upstream andL2 downstream. The total size of the box is thenL(p) � L1(p) + L2(p). Particles
are swept out of this region by the downstream flow at a bulk velocityn �U2.

Conservation of particles then leads to the following approximate description of the acceleration,
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3 Inclusion of additional loss processes
It is relatively straightforward to include losses of the synchrotron or inverse Compton type (Thomson

regime) in the model. These generate a downward flux in momentum space, but one which is distributed
throughout the acceleration region. Combined with the fact that the size of the “box” or region normally
increases with energy this also gives anadditional loss process because particles can now “fall” through the
back of the “box” as well as being advected out of it. Note that particles which “fall” through the front of
the box are advected back into the acceleration region and thus this process does not work upstream. This is
shown schematically in Fig 1.

If the loss rate is_p = ��p2 (the generalisation to different loss rates upstream and downstream is trivial)



the basic equation becomes
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In the steady state and away from the source region this gives immediately the remarkably simple result for
the logarithmic slope of the spectrum,
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: (5)

The denominator goes to zero at the critical momentum

p� =
U1 � U2

3�L
(6)

where the losses exactly balance the acceleration. If the numerator at this point is negative, the slope goes to
�1 and there is no pile-up. However the slope goes to+1 and a pile-up occurs if

U1 � 4U2 + 3�p2
dL1

dp
> 0 at p = p�: (7)

In early analytic work (Webb et al, 1984; Bregman et al, 1981) the diffusion coefficient was taken to be
constant, so thatdL1=dp = 0 and this condition reduces toU1 > 4U2. However if, as in the work of Protheroe
and Stanev, the diffusion coefficient is an increasing function of energy or momentum, the condition becomes
less restrictive. For a power-law dependence of the formK / p� the condition for a pile-up to occur reduces
to

U1 � 4U2 + � (U1 � U2)
L1

L1 + L2

> 0 (8)

(The equivalent criterion for the model used by Protheroe and Stanev is slightly different, namely

U1 � 4U2 + � (U1 � U2) > 0 (9)

because of their neglect of the additional loss process.)
For the case whereL1=L2 = U2=U1 and with� = 1 this condition predicts that shocks with compression

ratios greater than aboutr = 3:45 will produce pile-ups while weaker shocks will not.

4 Nonlinear effects
At the phenomenological and simplified level of the “box” models it is possible to allow for nonlinear

effects by replacing the upstream velocity with an effective momentum-dependent velocityU1(p), reflecting
the existence of an extended upstream shock precursor region sampled on different length scales by particles
of different energies. With a momentum-dependentU1 the logarithmic slope of the spectrum is
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with a pile-up criterion of,
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We see that whether or not the nonlinear effects assist the formation of pile-ups depends critically on how
fast they make the effective upstream velocity vary as a function ofp. By makingU1(p

�) larger they make
it easier for pile-ups to occur. On the other hand, if the variation is more rapid thanU1 / p, the derivative
term dominates and inhibits the formation of pile-ups. If the electrons are test-particles in a shock strongly
modified by proton acceleration, and if the Malkov (1998) scalingU1 / p1=2 holds even approximately, then
a strong synchrotron pile-up appears inevitable (unless the maximum attainable momentum is limited by other
effects to a value less thanp�).

5 Conclusion
A major defect of all “box” models is the basic assumption that all particles gain and loose energy at exactly

the same rate. It is clear physically that there are very large fluctuations in the amount of time particles spend
in the upstream and downstream regions between shock crossings, and thus correspondingly large fluctuations
in the amount of energy lost. The effect of these variations will be to smear out the artificially sharp pile-ups
predicted by the simple “box” models. However our results are based simply on the scaling with energy of
the various gain and loss processes together with the size of the acceleration region. Thus they should be
relatively robust and we expect that even if there is no sharp spike, the spectrum will show local enhancements
over what it would have been in the absence of the synchrotron or IC losses in those cases where our criterion
is satisfied.
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