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Abstract

The theory of diffusive particle acceleration explains the spectral properties of the cosmic rays below energies
of ' 1015 eV as produced at strong shocks in supernova remnants (SNR’s). To supply the observed flux of
cosmic rays, a significant fraction of the energy released by a supernova has to be transfered to cosmic rays.
The key to the question of the efficiency of SNR’s in producing cosmic rays is the injection process from
thermal energies. A self-consistent model has to take into account the interaction of the accelerated particles
with magneto-hydrodynamic waves, which generate the particle diffusion, a requisite for the acceleration
process. Such a nonlinear model of the turbulent background plasma has been developed recently (Malkov
1998). We use this model for the first numerical treatment of the gas dynamics and the diffusion-convection
equation at a quasi-parallel strong shock, which incorporates a plasma-physical injection model to investigate
the cosmic ray production.

1 Introduction
The problem of the efficiency of particle acceleration at shocks by the first order Fermi acceleration process,

and the strength of the back-reaction of these particles on the plasma flow, is intimately related to the injection
process. This describes the rate at which particles are not only part of the thermal plasma, which is compressed
and heated when it passes the shock, but become subject to energy gain due to the Fermi process, described
by the diffusion-convection equation (e.g. Skilling 1975). We will follow closely a picture of this injection
process which has been developed by Malkov & V¨olk (1995) and Malkov (1998).

The spatial diffusion of particles, which is an essential part of their acceleration process, is produced by
magneto-hydrodynamic waves, which are in turn generated by particles streaming along the magnetic field
B0. We will assume the fieldB0 to be parallel to the shock normal (x-direction). The magnetic field, which
corresponds to a circularly polarised wave can be written asB = B0ex + B?(ey cos k0x � ez sink0x).
The amplitudeB? will be amplified downstream by a factor�=�� = r, where� and �� are the plasma
densities downstream and upstream respectively andr is the compression ratio. The downstream field can be
described by a parameter�, for which we assume� := B0=B? � 1, in the case of strong shocks considered
here. Note that the perpendicular component of the magnetic field leads effectively to a quasi-alternating
field downstream of the shock for particles moving along the shock normal. Only particles with a gyro radius
rg? = p c sin�=(eB?) for which the conditionk0rg? > 1 is fulfilled, would be able to have a net velocity with
respect to the wave frame, i.e. the downstream plasma would be transparent. The fraction of these particles,
which are also in the appropriate part of the phase space (depending on the shock speed) would be able to
cross the shock from downstream to upstream. For the protons of the plasma, the resonance condition for the
generation of the plasma waves givesk0vp � !0 = !?B0=B?, where the cyclotron frequency of protons is
given by!? = eB?=(mpc), andvp is the mean downstream thermal velocity of the protons. We now have
for the thermal protonsk0rg? � � � 1, which means, that most of the downstream thermal protons would
be confined by the wave, and only particles with higher velocity (the tail of the Maxwell distribution) are able
to leak through the shock. Ions with mass to charge ratio higher than protons, have a proportional larger gyro
radius, so that the injection efficiency of protons, would yield a lower limit for the ions. On the other hand, for
thermal electrons a plasma with such proton generated waves would not be transparent. However, reflection
off the shock could become efficient. In the following we will focus on the wave generating protons.

To find the part of the thermal distribution for which the magnetised plasma is transparent, and therefore
forms the injection pool, Malkov (1998) solves analytically the equations of motion for protons in such self



generated waves. This is a nonlinear problem, because of the feedback of the leaking particles on the trans-
parency of the downstream plasma, mediated by the waves generated in the upstream region, which are swept
to downstream with the plasma flow. He finds a transparency function�esc which depends mainly on the parti-
cle velocityv, the velocity of the shock in the downstream plasma frameu2 and the parameter�. This function
expresses the fraction of particles which are able to leak through the magnetic waves, divided by the part of
the phase space for which particles would be able to cross from downstream to upstream when no waves are
present. Furthermore, as a result of the above described feedback, he is able to constrain the parameter�,
leaving essentially no free parameter.

The plasma flow structure, of course, also depends on the cosmic rays. These provide an energy sink for the
plasma and smooth the shock structure due to a gradual deceleration of the plasma flow. We use a numerical
method of solving the gas dynamics equations together with the cosmic ray transport equation which has been
developed by Kang & Jones (1995), and which is outlined in more detail in Sect. 3. We show in the next
section how we incorporate the above described model in this numerical method.

2 Injection model
The key part of the solution to the problem of proton (ion) injection is the above described transparency

function of the plasma. Kang & Jones (1995) used a numerical injection model with two essentially free
parameters which describe boundaries in momentum at which particles can be accelerated and from which
these contribute to the cosmic ray pressure. The transparency function provides now a more physical definition
of exactly this intermediate region. For the adiabatic wave particle interaction it is given by Malkov (1998)
Eq. (33), with�esc = 2 �esc=(1 � u2=v), where the wave escape function�esc is divided by the fraction of the
available phase space. We use here the following approximation:

�esc(v; u2) = H [~v � (1 + �)]
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Figure 1:Escape function Eq. (1), for protons at times
t=t0 = 0 (dotted), 5 (dashed) and 10 (solid line).

where the particle velocity is normalised to~v =
vk0=!? andH is the Heaviside step function. We ar-
gued above, that!?=k0 ' u2=� (see Malkov 1998,
Eq. 42). The transparency function now solely de-
pends on the shock velocityu2, the particle velocity
v, and the relative amplitude of the wave�. An im-
portant result of Malkov (1998) is the constraint on
the parameter�. He found0:3 <� � <� 0:4, as a re-
sult of the feedback described above. Comparison
with hybrid simulations suggest0:25 <� � <� 0:35
(Malkov & Völk 1998). The function (1) is plot-
ted in Fig. 1 for� = 0:35 and protons vs. their ki-
netic energy for three different times during the evo-
lution of a modified shock (see below). The time de-
pendence arises from the modification of the down-
stream plasma velocity by the cosmic rays. We use this function to correct the result of the cosmic ray transport
equation for the upstream phase space density after each numerical time step. That means, the Maxwell distri-
bution is restored (according to the appropriate plasma temperature) where�esc = 0, because here the cosmic
ray acceleration has no effect. For higher velocities we multiply the difference between the new and old
phase space distribution by the transparency function. Where�esc = 1, the solution of the transport equation
is unchanged, because for these particles the plasma is completely transparent, and all of them are subject
to first order Fermi acceleration. The transition between these regions is then described by the shape of the
transparency function (1). The phase space distribution then changes gradually (in energy) from a Maxwell



distribution to a power law distribution at high energies, and it is the difference between this distribution and
the Maxwell distribution, which we use to calculate the cosmic ray pressurePc.

3 Numerical method and results
In order to find the time evolution of the cosmic ray energy spectrum, we solve the time dependent cosmic

ray transport equation (using an implicit Crank-Nicholson scheme), together with the general equations of
gas dynamics (using a TVD code, see Harten 1983), including the cosmic ray pressurePc and the energy
flux S which couples these equations. We refer to Kang & Jones (1995) for a more detailed description, and
emphasize here only the main differences with that work. Very important for the injection process is the

Figure 2:Gas density�, pressurePg, velocityu, and
cosmic ray pressurePc, at timest = 0 (dotted),t =
5 t0 (dashed) andt = 10 t0 (solid line).

energy transfer between plasma and cosmic rays. The
injection energy-density loss term can be written as
(de=dt)c = �S whereS is given by (p! p=mp):
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Here we have used�esc(0) = 0, �esc(1) = 1, and
@�esc=@p � 0 for momentump � 1, which is true, of
course, for the representation given in Eq. (1). Given
a step function�esc(p) = H(p � p0) the injection en-
ergy loss term used by (e.g.) Kang & Jones (1995)
is revealed. The escape function�esc depends on the
downstream plasma velocity, which is averaged over
the diffusion length of the particles with momentum
at the injection threshold. This dependence is quite
important for the injection efficiency, and leads to a
regulation mechanism similar to the above beam wave
interaction. If the initial injection is so strong that a
significant amount of energy is transferred from the
gas to high energy particles, the downstream plasma
cools, and becomes decelerated. Because the injection
momentum is in the high energy cut-off of the Maxwell distribution of the plasma, the cooling decreases
significantly the injection rate. However, the deceleration allows for a modest increase of the phase space of
particles which can be injected. This is expressed by theu2 dependence of Eq. (1), and can be seen also in
Fig. 1 where the dotted line shows the escape function for the setup distribution, and the solid line att = 10 t0.
This velocity dependence balances partly the reduction of injection due to the cooling of the plasma. These
two effects lead to a veryweakdependence of the injection efficiency on� in the vicinity of � � 0:35.

We consider here diffusion proportional to Bohm diffusion, with� = 10 � �B, where�B = 3 � 1022p2=(1 +
p2)1=2 cm2 s�1, for a magnetic fieldB = 1�G. Figure 2 shows the gas density�, gas pressurePg, plasma
velocity u and the cosmic ray pressurePc over the spatial lengthx, for different times. The scales are as
follows: t0 = 1:2 � 105 s, x0 = 6:0 � 1013 cm, u0 = 5000 km s�1, �0=mp = 1 cm�3, Pg0 = 4:175 �
10�7 erg cm�3. The initial cosmic ray adiabatic index is equal to the gas adiabatic index
c = 
g = 5=3,
and the compression ratio isr = 3:97. We have used 20480 grid zones forx=x0 = [�18; 14], with the shock
initially at x = 0, and 128 grid zones inlog(p=m) = [�3:0; 0:3].

For the parameters introduced above, Fig. 3 shows the energy spectrum in form of the (att = 0) nor-
malised omni-directional fluxF (E)dE / v p2f(p)dp vs. proton kinetic energy downstream of the shock.
At energies above the thermal particles we expect, for the strong shock (r ' 4) simulated here, the result
F (E) / E��, with � = f(r + 2)=(r � 1)g=2 = 1, which is reproduced with high accuracy. At the ther-



mal part of the distribution the cooling of the plasma due to the energy flux into high energy particles is
responsible for the shift of the distribution towards lower energies. The initial injection rate decreases thereby
to a quite stable value, as described above. Due to the steep dependence of both the Maxwell distribution,

Figure 3: Omni-directional flux vs. proton kinetic en-
ergy, for t = 0 (dotted),t = t0 (dot-dashed),t = 5 t0
(dashed), andt = 10 t0 (solid line)

and the transparency function (Fig. 1) on parti-
cle energy, the injection energy is quite well de-
fined, leading to a power law due to Fermi accelera-
tion, starting shortly above thermal energies. In us-
ing the standard cosmic ray transport equation, we
have, of course, made use of the diffusion approxi-
mation, which may introduce an error especially for
v ' u2. Multiplication of the initial thermal distri-
bution with�esc suggest an effective initial injection
velocity of about7 �106 ms�1 (in the shock frame).
Using an eigenfunction method, Kirk & Schneider
(1989) have explicitly calculated the angular distri-
bution of accelerated particles and accounted for ef-
fects of a strong anisotropy especially at low parti-
cle velocities. They were able to calculate the injec-
tion efficiency without recourse to the diffusion ap-
proximation, and found always lower efficiencies.
For the above given injection velocity,r = 4 and
u0 = 5 � 106 ms�1, they estimate a reduction ef-
fect of� 7%, leaving the diffusion approximation
as quite reasonable even in this regime.

4 Conclusions
We have presented results from a solution of the time dependent gas dynamics equation together with the

cosmic ray transport equation. We have incorporated in these calculations an analytical solution of an injection
model for a quasi-parallel shock, based on particle interaction with self-generated waves. We were therefore
able to investigate the interaction of high energy particles, accelerated by the Fermi process, with the shocked
plasma flowwithouta free parameter for the efficiency of the injection. We found the energy-fluxE �F (E) of
(non-relativistic) particles in the power law region to be about two orders of magnitude less than at the peak of
the thermal distribution. This result turns out to be quite stable, due to the self-regulating mechanisms between
particle injection and wave generationandgas modification described above.
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