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Abstract

Supernova remnants are expected to contain braided (or stochastic) magnetic fields, which are in some regions
directed mainly perpendicular to the shock normal. For particle acceleration due to repeated shock crossings,
the transport in the direction of the shock normal is crucial. The mean squared deviation along the shock nor-
mal is then proportional to the square root of the time. This kind of anomalous transport is calledsub-diffusion.
We use a Monte-Carlo method to examine this non-Markovian transport and the acceleration. As a result of
this simulation we are able to examine the propagator, density and pitch-angle distribution of accelerated par-
ticles, and especially the spectral properties. These are in broad agreement with analytic predictions for both
thesub-diffusive and the diffusive regimes, but the steepening of the spectrum predicted when changing from
diffusive tosub-diffusive transport is found to be even more pronounced than predicted.

1 Introduction
The acceleration of high energy particles in astrophysical plasmas is a transport process in configuration and

momentum space. In describing the acceleration of charged particles in a magnetised plasma, most analytical
descriptions of this process are based on the assumption that the phase-space densityf(x;p; t) is to zeroth
order isotropic and independent of the pitch angle� = cos� = p�B=(pB) between the particle momentump
and magnetic fieldB. Under this assumption, the process of acceleration at a plane shock wave moving inx-
direction can be described using the isotropic particle densityn(x; p; t) = 4� p2 f (0)(x; p; t), wherep = jpj.
The transport equation in a plasma at velocityu(x; t) is then given by (e.g. Parker 1965; Jones & Ellison
1991):
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whereF (x; p; t) is the flux due to the stochastic propagation of particles in configuration space. If the spatial
transport can be described by standard diffusion, thenF is proportional to the gradient in the density, and
Eq. (1) is the well known diffusion-convection equation. In this case, the momentum dependence of the
phase-space density of particles accelerated at a strong shock is given by a power lawf(p) / p�s with
spectral indexs = 3r=(r � 1) , depending solely on the compression ratio1 r of the shock. However, the
presence of a braided magnetic field (Jokipii & Parker 1969), can introduce a non-diffusive spatial transport.
This is important especially in quasi-perpendicular shock fronts, where the mean magnetic fieldB0 lies in the
plane of the shock, and a stochastic component with�b := hj�Bji=jB0j � 1 parallel to the shock normal
exists (inx-direction). Particles which follow the field lines are subject to a combined diffusion process.
One is along the field line due to pitch-angle scattering and the other is introduced by the stochastic spatial
fluctuations of the magnetic field on a larger scale as those responsible for scattering. This together leads to
an anomalous transport of particles while gaining energy due to shock crossings, which is outlined in Sect. 2,
followed by a brief description our Monte-Carlo method in Sect. 3. This method is designed to investigate test-
particle acceleration in magnetic fields with a stochastic component, without a priory assumptions about the
pitch-angle distribution of the phase-space density. The results are presented in Sect. 4, showing especially the
dependence of the spectral indexs on the compression ratior in two different transport regimes in comparison
to analytical treatments.

1r = �0=� with �0 and� are the downstream and upstream plasma densities respectively.



2 Anomalous transport
The main aspect of particle transport in a braided field (stochastic field with�b � 1) is the introduction

of memory to the particle propagation. The change of the density at time~t is no longer proportional to the
second derivative of the density at this time alone (standard diffusion equation), but also depends on the second
derivative at timest < ~t. This arises, because any local variation of the particle density which is caused by the
geometry of the magnetic field itself isnot the source of a diffusive particle flux, and remains associated with
the field line. This contribution has therefore to be subtracted from the standard diffusion term. A formulation
of this kind of anomalous transport has been given by Balescu (1995). Effectively this introduces a memory of
the particle density at time~t, on the spatial realisation of the magnetic field to which a particle was correlated
during ~t � tcorr < t < ~t. An important consequence of transport in braided fields is revealed by the time
dependence of the mean quadratic deviation perpendicular toB0, in x-direction h(�x(t))2i / t�, which
is given by� = 1=2 (Rechester & Rosenbluth 1978; Rax & White 1992). This kind of transport is called
sub-diffusion. Note that herex is the direction along the shock normal, and the relevant reference system
is the magnetic field, which flows downstream with the background plasma. The time dependence shows
that particles are even more effectively swept away from the shock in downstream direction as compared to
standard diffusion (� = 1). This increases the escape probability and leads to a steeper spectrum as shown by
the results in Sect. 4.

3 Monte-Carlo method
The simulation of particle acceleration in a stochastic field (static in the background plasma) has to consider

the memory introduced by the magnetic field as described in the previous section. The spatial transport is a
non-Markovian process. We generate a constant mean magnetic field and stochastic fluctuations at equidistant
grid points, and assume the field to be linear in between. Using a random number generator for the stochastic

Figure 1:Upstream pitch-angle distribution forsub-diffusion
(upper) and diffusion (lower), for two compression ratios. The
dotted lines indicate an approximation of the maximal pitch
anglej�j for which reflection off the shock is possible.

fluctuations, which allows to recall all val-
ues, we are able to assure a complete mem-
ory of the field until the particle crosses an
escape boundary far downstream (Gieseler et
al. 1997). At the same time this method al-
lows to use a new random number for each
field patch the particle crosses, which leads
to the standard diffusion. A combination of
the recalled value and a new random com-
ponent would simulate a finite correlation
time of particle and magnetic field. This
is, of course, the more realistic case. How-
ever, to investigate the principal effect of
sub-diffusion, we present here only results of
’pure’ sub-diffusion and standard diffusion.
Particles move along the field lines under
the influence of pitch-angle scattering. The
length scale of the grid spaces of the field
sampling is chosen to be in the same order
as the scattering length. This assures, that
while particles are transported in configuration space due to the field line geometry, they diffuse along the
field line itself. At the same time this avoids, that particles diffuse along the field while sampling only a lin-
ear patch of it. At a change of the magnetic field direction (in particular at the shock) we make use of the
conservation of the magnetic momentp2

?
=B, wherep? is the component of the momentum perpendicular to

the magnetic fieldB. This approximation is valid especially for non-relativistic quasi-perpendicular shocks,



which we consider here (Gieseler et al. 1999, see also for a description of pitch-angle scattering). The mo-
mentum remains constant in the corresponding upstream and downstream rest frames. On crossing the shock
the momentum and pitch-angle is transformed into the new system (Gieseler 1998). This method allows to
measure the particle propagator and the steady state density profile, which are in agreement with theoretical
predictions from Kirk et al. (1996) forsub-diffusive transport (Gieseler et al. 1997). Furthermore we are able
to measure the pitch-angle distribution and the momentum spectrum which are presented in the next section.

4 Particle acceleration at quasi-perpendicular shocks
In accelerating particles over between two orders of magnitude (for the steepest spectra) and six orders

of magnitude we always find a power law for the momentum distributions. We do not include loss mech-
anisms, and fit a power law functionf / p�s between about one order of magnitude above the injection
momentum and one order of magnitude below the (technical) cut-off. The results are plotted in Fig. 2 for
relativistic particles (v = c) at non-relativistic shocks (us � c) for various compression ratiosr. Dots rep-
resent standard diffusive acceleration, where the value of the fluctuation of a patch of field line is always
random, i.e. no memory effect is introduced. The stars show the spectral index for particles which move

Figure 2:Spectral indexs vs. compression ratior. Discrete sym-
bols represent our Monte-Carlo results. Lines represent analyti-
cal results for isotropic phase-space distributions (see text). Stars
and solid line:sub-diffusion. Dots and dashed line: diffusion.

always along the same field line, so that
sub-diffusive behaviour can take effect.
The statistical error of the fit itself is
well represented by the marker symbols.
However, whereas the flatter diffusive
spectra extend over many orders of mag-
nitude, the steepsub-diffusive spectra are
more difficult to measure. The maximal
systematical error in finding the spectral
index from the momentum distribution
is indicated by error bars. Because the
memory effect forsub-diffusion can not
set in immediately, the momentum dis-
tribution has a plateau below about ten
times the injection momentum. This is
indicated by the lower bound of the error
bar. A fit to the region where the spec-
trum is cut off due to technical reasons
gives the upper bound of the error bar.
For spectra flatter than abouts = 5, a cut-
off is effectively absent, so that the upper bound almost coincides with the plotted index. It can be seen from
Fig. 2, that the spectrum forsub-diffusive acceleration is significantly steeper than for standard diffusion. We
now compare our results to analytical predictions, remembering that these are found under the assumption of
an almost isotropic pitch-angle distribution. For standard diffusion the result was referred in connection with
Eq. (1):s = 3r=(r�1) , and plotted as a dashed line in Fig. 2. Although we found the pitch-angle distribution
is not really isotropic in this case, the spectral index found by the Monte-Carlo method agrees quite well with
the analytical result. Forsub-diffusive transport, an analytical solution was found by Kirk et al. (1996):
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The second relation means that the density of continuously injected particles at the shock is less than the
density far downstream. The resulting spectral indexs(r) is plotted as a solid line in Fig. 2. Again, this result
was found under the assumption of an almost isotropic phase-space density. The Monte-Carlo method does



not make any assumptions on this distribution, moreover we are able to measure the pitch-angle distribution at
any distance from the shock. Figure 1 shows the pitch-angle distribution immediately upstream of the shock,
in the upstream rest frame for thesub-diffusive and diffusive transport regime, at compression ratior = 3 and
r = 6. Especially forsub-diffusive transport and high compression ratio, we found the highest anisotropy.
Here, the deviation of the Monte-Carlo results from the analytical result (2) is most prominent (see Fig. 2). We
found, that the density of accelerated particles is not only reduced at the shock by the amount predicted by Kirk
et al. (1996), moreover a jump arises at the shock, which is intimately related to an anisotropic phase-space
distribution (Gieseler et al. 1999). This jump is such, that the upstream density is even more reduced, than
indicated by Eq. (2) (Gieseler 1998). This leads to an increased escape probability, and therefore to a steeper
spectrum, as compared to the analytical result.

5 Conclusions
We presented Monte-Carlo simulations of particle acceleration at non-relativistic quasi-perpendicular

shock fronts. We found that a stochastic component in addition to the mean magnetic field introducessub-
diffusive particle transport. The transport aspects (like propagator and density) were compared to analytical
treatments earlier (Gieseler et al. 1997), and we found very good agreement. Moreover, we tested our Monte-
Carlo code for oblique shocks against semi-analytical results, and found precise agreement again (Gieseler
et al. 1999). Here we showed, that particle acceleration under thesub-diffusive transport regime leads to a
much steeper spectrum (e.g.s = 5:3 for r = 4) compared to standard diffusion (s = 4:0 for r = 4), even
steeper than predicted by Kirk et al. (1996). The steepening of the spectrum depends strongly on whether or
not particles are correlated to field lines, and not (to first order) on the shock velocity, the scattering operator,
or the amplitude of the magnetic field fluctuations. However, if the mean field is not strictly perpendicular,
i.e. is oblique with an angle� with respect to the shock normal, then the transport properties depend on the
amplitude of the fluctuations. Thesub-diffusive transport will take effect as long as�b > 1= tan�. It is clear,
that for thesub-diffusive transport regime our result yields an upper limit on the spectral index (i.e. the steepest
possible), because it was produced by an unlimited correlation of particle and field line. In reality, particles
will, of course, decorrelate from a given initial field geometry. This is connected with the realisation of the
magnetic field itself, and is subject to further investigation.

6 Acknowledgments
This work was supported by the University of Minnesota Supercomputing Institute, by NSF grant AST-

9619438 and by NASA grant NAG5-5055. U.G. acknowledges support from the Deutsche Forschungsge-
meinschaft under SFB 328.

References

Balescu R., 1995, Phys. Rev. E 51, 4807
Gieseler U.D.J., 1998, Dissertation, Univ. Heidelberg, MPI f¨ur Kernphysik, preprint MPI H-V6-1998
Gieseler U.D.J., Duffy P., Kirk J.G., Gallant Y.A., 1997, Proc. 25. Int. Cosmic Ray Conf., Durban, 4, 437
Gieseler U.D.J., Kirk J.G., Gallant Y.A., Achterberg A., 1999, A&A 345, 298
Jokipii J.R., Parker E.N., 1969, ApJ 155, 777;799
Jones F.C., Ellison D.C., 1991, Space Science Reviews 58, 259
Kirk J.G., Duffy P., Gallant Y.A., 1996, A&A 314, 1010
Parker E.N., 1965, Planet. Space Sci. 13, 9
Rax J.M., White R.B., 1992, Phys. Rev. Lett. 68, 1523
Rechester A.B., Rosenbluth M.N., 1978, Phys. Rev. Lett. 40, 38


