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Abstract

Numerical simulations and multiple scales perturbation methods are used to study wave interactions in mag-
netohydrodynamics with application to oblique cosmic ray modified shocks. Coupled evolution equations
for the Alfvén waves, fast and slow magneto-acoustic and entropy waves are solved using a spectral colloca-
tion method. Numerical simulations of the fully nonlinear cosmic ray MHD equations are compared to the
solutions of the linear wave interaction equations.

1 Introduction
Wave interactions in magnetohydrodynamics (MHD) are an integral part of cosmic ray propagation prob-

lems. There is an extensive literature on the role of waves and wave coupling in astrophysical plasmas (e.g.
Heinmann and Olbert, 1980; Zhou and Matthaeus, 1990; MacGregor and Charbonneau, 1990). The main aim
of this paper is to explore MHD wave coupling processes in cosmic-ray modified shocks by using the formal-
ism developed by Webb et al. (1999). Solutions of the equations describing wave mixing in a non-uniform
MHD plasma modified by the comsic rays are compared to numerical solutions of the non-linear, two-fluid
cosmic ray MHD equations in one Cartesian space dimension. We investigate the manner in which differ-
ent MHD wave modes can be generated by wave coupling from a single wave mode initially present in the
medium.

2 Model and Equations
Using the momentum averaged cosmic-ray transport equation, the two-fluid cosmic-ray modified MHD

system can be written as:
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where�,u, pg and
g denote the density, fluid velocity, pressure and adiabatic index of the thermal gas;B is the
magnetic field induction andpc, 
c and� denote the cosmic ray pressure, adiabatic index and hydrodynamical
diffusion coefficient respectively.

2.1 Wave mixing equations The wave interaction equations obtained by Webb et al (1999) describe
linear wave mixing of the different eigenmodes due to the gradients in the background flow; instability and
damping terms due to the cosmic rays; and nonlinear interaction effects. For linear wave propagation in inho-
mogenous media in which nonlinear and second order terms are negligible, one obtains the wave interaction
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whereaj represents amplitude of thejth MHD wave mode, and�js denotes the wave mixing coefficients. To
enumerate wave modes, we put them in the order of increasing wave speeds,�j:

a1 = a�f ; a2 = a�A; a3 = a�s ; a4 = ae; a5 = a+s ; a6 = a+A; a7 = a+f ; (8)

�1;7 = ux � cf ; �2;6 = ux � cA; �3;5 = ux � cs; �4 = ux:

In (8) the subscriptsf , s andA refer to the fast, slow magnetoacoustic and Alfv´en waves,e denotes the entropy
wave and� and+ correspond to backward and forward propagating waves respectively. The wave mixing
coefficients are given by
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whered=dts = @=@t + �s@=@x is the time derivative along thesth wave mode characteristic,Lj and
Rj are the left and right MHD eigenvectors corresponding to the conserved densities state vector	 =
(�; �ux; �uy; �uz; By; Bz; �S)

T of the MHD fluid, S is the gas entropy.Lp
j andRp

j denote thepth com-
ponent ofLj andRj . In (9)a2c = 
cpc=� and� = @ ln�=@ ln�. In order to assess more completely the role of
the cosmic rays, one can eliminated=dts terms in (9) using the normal momentum equation (2). For example,
the�11 coefficient in eq. (7) for the backward propagating fast wave mode becomes:
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where

�2f =
a2g � c2s
c2f � c2s
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�
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Therefore, if the cosmic ray pressure gradient is sufficiently large and negative, and� > �1, thena2c=� +
[(� + 1)=�cf ]@pc=@x� 0; and the backward fast mode wave can become unstable. Similar instability criteria
were obtained by Drury and Falle, (1986) and Dorfi and Drury, (1985). For planar MHD flows the Alfv´en
waves decouple from other modes and the wave mixing equations (7) take the form:
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3 Numerical results
In this section we present examples of wave interactions in an oblique, cosmic ray modified shock. We

choose a coordinate system in the rest frame of the shock with thex axis directed into the upstream region,
and a planar MHD flow configuration in which magnetic field and fluid velocity are restricted to thexy-plane,
with B = (Bx; By; 0) andu = (ux; uy; 0), so thatB � r � u = 0,B � r �B = 0.

Fig. 1 shows a continuous cosmic-ray modified MHD shock transition in which
g = 5=3, 
c = 3=2 and



diffusion coefficient� = 0:1. Far up-
stream� = 1:0; pg = 0:25; pc =

6:5; ux = 5:5; uy = 0:0; Bx =

0:52; By = 0:9, resulting in an Alfvén
Mach numberMA = ux=cA=10.6.
The shock transition is obtained nu-
merically using explicit Eulerian multi
dimensional MHD code ZEUS (Stone
and Norman, 1992) coupled with the
implicit Crank-Nicholson scheme for
the cosmic-ray pressure equation. We
specify inflow upstream state at the
right boundary of the computational
domain and reflecting left boundary.
After the shock wave has formed and
propagates with speedus, we change
coordinate system to the shock frame,
by settingux ! ux � us. The wave
interactions are studied by specifying
a single mode perturbation in the flow,
with a wave vectork parallel to the
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Figure 1: Cosmic ray modified oblique MHD shock wave.

shock normal. We consider the Alfv´en and magnetoacoustic wave interactions separately below.

3.1 Alfvén wave interactions In the case of the planar MHD flow, such as the shock wave in Fig. 1,
the forward and backward Alfv´en waves are coupled by (12).

Fig. 2 shows an example of the numerical solution of these wave mixing equations using Fourier spec-
tral collocation method and with a shock
wave from Fig.1 as a background. Dashed
lines show for comparison wave ampli-
tudes obtained by solving the nonlinear
MHD equations (1)-(6) with the same ini-
tial conditions.
At time t0 = 0 a forward Alfvén wave
packet�B+

z is specified far upstream. The
solutions for both forward and backward
waves are shown at a later timet1 = 0:1.
The backward Alfvén wave�B�z is gener-
ated and the amplitudes of both waves in-
crease, while the wavelengths decrease as
they pass through the shock into the down-
stream region. Once the backward mode
is generated, the waves separate, as they
travel at speeds differing by�6 � �2 =
2cA. In the case of the perpendicular
shockcA = 0 and botha2 anda6 travel
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Figure 2: �B�z =�a2, �B+
z =�a6 for interacting Alfvén waves.

at the speed of the background flow. The small difference in amplitudes between the nonlinear MHD solutions
and the spectral code solutions of the wave mixing equations is due to the larger numerical diffusion present
in the nonlinear solver. The two solutions are indistinguishable for smaller computational cell size.



3.2 Magnetoacoustic wave interactions Fig. 3 shows solutions of the wave mixing equations (7)
without Alfvén waves (s 6= 2; 6) for the case where the initial data consists of a forward slow mode wave train
specified initially throughout the shock structure.

The left panels show the density perturbations�3 and �5 for the backward and forward slow mode
waves at timest1 = 0:025 and t2 =
0:075, whereas the right panels show
the fast mode wave density perturba-
tions �1 and�7 that have been gener-
ated by the wave mixing. The back-
ward slow wave is amplified due to the
cosmic ray squeezing instability and
is approximately�=2 out of the phase
with the forward slow wave�5.
As expression for�11 in section 2.1 in-
dicates, the wave coupling coefficients
for the backward fast wave and the cor-
responding coefficients for the forward
fast mode wave�7, contain terms de-
scribing the cosmic ray squeezing in-
stability, wave damping due to the dif-
fusing cosmic rays, and MHD wave
mixing. For example, if the entropy
wave is specified as initial perturbation
in the flow, it will generate all magne-
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Figure 3: Slow mode (left panels) and fast mode (right panels)
waves. Vertical lines mark position of the shock wave.

toacoustic wave modes. In turn, magnetoacoustic waves can generate entropy wave perturbations, but only if
the background flow contains a large scale entropy gradient.

Unlike the perpendicular shock case studied in Webb et al (1999), in the oblique shock the slow mode
phase speedcs in not zero, and the wave mixing coefficients contain terms proportional to thecs@uy=@x.

4 Summary
Numerical solutions of the fully nonlinear two-fluid MHD equations were compared with the solutions of

the wave mixing equations obtained using Fourier collocation spectral method, for the case of a steady-state,
oblique, cosmic ray modified shock. For this configuaration, the wave mixing equations for Alfv´en waves
are independent from the magnetoacoustic and entropy wave modes. Due to the gradients in the background
thermal plasma state and cosmic ray pressure, a single mode perturbation creates different wave modes which
can become linearly unstable if the cosmic ray pressure gradient is large.
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