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Abstract

Careful measurements of cosmic-ray spectra are crucial for constraining many of the viable acceleration mod-
els. For experiments having limited statistics at very high energies, data and statistical analysis must be done
sufficiently accurately to extract reliable information. In this paper we discuss the simulations and analysis we
have performed to study spectral measurements above TeV range energies. Our analysis includes both Poisson
fluctuations in the energy bins and finite energy resolution of the detector. We will also discuss de-convolution
techniques for obtaining the true spectra from the observed ones.

1 Introduction
The origin and acceleration of cosmic rays is not fully understood. Many testable scenarios have been

proposed on where and how the particles are accelerated, how they are propagated, and why they have power
law spectra. Ultimately, observations will decide which models are viable and which are precluded. One
set of models currently in favor is that the bulk of cosmic-rays are accelerated by supernova shock waves
as they interact with the interstellar medium or with stellar winds (V¨olk & Biermann, 1988; Gaisser, 1990).
The maximum energy attained in these models,Emax, is proportional to the charge of the particles and is
predicted to be appreciably larger for blast waves in stellar winds than in interstellar medium (Biermann,
1993; Biermann, Gaisser, & Stanev, 1995). For the latter,Emax � 100 Z TeV. These models therefore
predict a cutoff or a kink in the spectrum of individual elements in the TeV energy range, with protons having
the lowest cutoff energy. A kink around1015 eV in the all-particle spectrum, which is referred to as the knee,
has already been observed (Gaisser, 1990). No cutoff in the proton spectrum has directly been observed yet,
due to insufficient data at high energies. Because of Poisson fluctuations in the number of incoming protons,
observing a kink requires a detector of sufficiently larger energy-reach than the kink energy. Moreover, the
data will be smeared out by finite energy resolution of the detector. Low counting rate in high energy bins
will also complicate the data analysis, so observing and pinpointing a kink in the spectrum is not a trivial
task. There are now several experiments under study that extend their energy-reach up to 1000 TeV. In a
previous paper (Sina & Seo, 1999), we demonstrated that the proposed experiments do show promise for
observing and localizing reasonable steepening at 100 TeV. The present paper extends the previous work by
treating both the kink location and the index difference as free parameters and measuring them each by the
Maximum Likelihood fitting method. We have also included possible energy dependence of the resolution in
our simulations.

2 Simulations
In order to understand what kink energies and what steepenings can be unambiguously observed, we have

made sets of one thousand simulations of a broken power law spectra starting at 100 GeV with differential
index of
 =-2.76. Four energy bins per decade have been assigned, and the total number of events in each bin
i (for each simulation) is allowed to fluctuate by a Poisson distribution around a mean numberfi. The values
of fi are set by the absolute normalization of the expected flux. In these simulations the flux is chosen such
that, in the absence of any kink, 10 events would be detected above 1000 TeV, which is consistent with the
planned experiments under study. With the index and normalization we have chosen (Wiebel-Sooth, Biermann
& Meyer,1998), this corresponds to a effective time integrated geometry factor of 367m2 sr days.

In reality the energies of the incoming particles are uncertain due to finite energy resolution. A particle
that belongs to energy bini might be assigned an energy binj. The number of events observed in bini, ni,



is therefore different from the true valueNi (whose expectation isfi). We have allowed for this important
consideration by including a correction factor in the simulations. Assuming that the energy resolution is
Gaussian, the probability of an event in binj ending up in bini is

P (j; i) =
exp

�(Ej �Ei)2

2 (�Ej )2P
i exp

�(Ej �Ei)2

2 (�Ej)2

: (1)

Here�Ej is the energy resolution which is in general energy dependent.
The actual value ofNi is therefore related toni by a random number whose mean value is set by the

above probabilities. De-convolution techniques are needed to distinguish the true number of events from the
observed ones. One technique involves matrix inversions, which are discussed in detail in books on statistical
applications to experimental physics (Cowan 1998; Roe 1992). In practice, we can compensate for the differ-
ence by using a correction factorCi = Ni=ni which we can obtain using a large number of simulations and
averaging over all simulated events. Care must be taken for high energy bins where small events are expected.
The correction factor for each bin is, in principle, a function of the input spectrum, which is unknown prior to
fitting. However, it varies slowly for steep power law spectra. In our simulations all initial guesses in the range
-2.5 to -2.9, for the purpose of measuring the correction factors, have resulted in accurately fitting the index
below the kink to the -2.76 input index. In short, the exact spectrum is not needed to calculate the correction
factors. We have, however, assumed that the exact form of the resolution will be known in advance. We will
relax this assumption in a later paper.

Once the values ofNi are estimated in the simulation, then they are fitted to a broken power law and
the inferred kink energy and steepening are obtained. It should also be pointed out that one can also fit the
observed (convoluted) data to a broken power law. The measured spectrum in such cases would be steeper
than the true value.

3 Data Analysis
The cosmic-ray spectrum is measured by observing the number of events in each energy bin. A simplistic

method is to fit the data on a log-log scale. In this case the expected power law spectrum is represented in a
linear term, and linear regression can be applied to the data to obtain the best fit. Since the log of the number
of events is taken, the errors is each bin must be transformed to a log scale. There are several problems with
this procedure. First, in transforming between linear and log scales, numerical errors may be introduced in
the problem. Second, there are ambiguities in the weight factor for each bin. Fitting by Least Squares is also
inappropriate because it assumes large number of events in each bin,jfi � Nij � Ni. This condition is not
satisfied in high energy bins for whichfi � Ni � 1.

We shall use the method of maximum likelihood to obtain the best fit.

4 Method of Maximum Likelihood
We defineL to be the likelihood function, i.e. the product of the probabilities over each bin of energy for

obtainingNi when the true value isfi

L �
Y

p(Ni; fi) =
Y fi

Ni exp�fi
Ni!

: (2)

Instead of maximizingL, it is customary to minimize the natural log function ofL.

lnL =
X

[Ni ln fi � fi � lnNi]: (3)

Let us suppose there is a kink in the spectrum atE = E�, so that

fi = aEi
b E � E� (4)

fi = aEi
b(Ei=E�)

c E � E�; (5)



whereb andc are both negative numbers. By minimizinglnL, we set the derivatives with respect to valuesa,
b, c, andE� to zero. However, as it is, the function is not differentiable atE�. A smooth approximation for the
spectrumfi is given by the exact representation

fi = aEi
b gi (6)
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The approximation is made by using a finite value of� for the above representation in the numerical
modeling. In practice care must be given in choosing� to avoid numerical overflows and underflows. A
typical value of 5 to 8 should be optimum. If we writefi = aEi

b gi, then the ML function is given by

lnL =
X
i

[Ni lna + Ni b lnEi + Ni ln gi � aEi
b gi]: (8)
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These are four coupled non-linear algebraic equations which must be solved to obtain the estimators of the
four parameters. If the true value of kink energy, in the simulations, is sufficiently small, or if the steepening
is sufficiently large, then the data analysis for a majority of one thousand simulations in each set give values
of the four parameters consistent with the simulated values. In such case, we would consider the kink to
be observable and localizable. If, on the other hand, the
obtained values are inconsistent among themselves or with
the simulated values, then one can not expect to reliably
extract information about the kink from the data.
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Figure 1: Inferred kink energies for constant res-
olution of 40%. The solid and dashed lines corre-
spond to index change of 0.3 and 0.5 respectively.

5 Simulation Results
In a separate paper (Sina & Seo, 1999) we used the

Kologoromov–Smirnov test (Lupton, 1993) to check what
kink energies and index differences are observable. The
present work, based on different scheme, confirms the
findings that a kink at 100 TeV and with index difference
of 0.3 can be observed. Figures 1 through 3 show the
number of fits for the kink energy for the cases where the
resolution is constant,�E=E = 0:4; resolution becomes
worse as energy increases,�E=E / E1=8; and the resolu-
tion improves with energy,�E=E / E�1=8 respectively.
Simulations were made for an input kink at 100 TeV and
index changes of 0.3 and 0.5. We have not made any as-
sumptions that the kink location, or indices, are known in
advance. We have found that, depending on the form of
resolution, close to 90% of events could be fitted to infer
the kink energies.
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Figure 2: Inferred kink energies for�E=E /
E1=8. In this case resolution is 40% at 10 TeV and
becomes worse as energy increases. The solid and
dashed lines correspond to index change of 0.3 and
0.5 respectively.

Figure 3: Inferred kink energies when�E=E /
E�1=8. In this case the resolution is 40 % at 10
TeV and improves as energy increases. The solid
and dashed linescorrespond to index change of 0.3
and 0.5 respectively.
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