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Abstract

Recent theoretical results have led to improvements in formulas for dE=dx, particularly in the regime of
high projectile charge and moderate to highly relativistic velocities. In addition, integration of dE=dx leads
to predictions of total range given initial energy and, reciprocally, initial energy given total range. We have
compiled theoretical formulas for dE=dx from a variety of sources into a computer code which we will make
publicly available over the World Wide Web. We will also discuss comparisons of our code with experiment.

1 Introduction:
The simultaneous measurement of charge and energy of a particle passing through a solid state detector, for

example a track-etch detector, requires knowledge of the rate of energy loss, dE=dx as a function of charge
and energy. For a number of combinations of charge and initial energy, we predict the values of dE=dx along
a track, and use these to predict the energies along the track. With the valuesZ andE(x) we find the detector
response using an empirically determined response function,�(Z; �). The predicted response is compared to
the measured response, and the best value of charge and energy is found from maximum likelihood methods.

Provided beams of known charge and energy are available, it is usually straightforward to determine the
response function�(Z; �). The calculation of dE=dx, however is a subject fraught with difficulty. Previously,
we have relied on what amounts to a polynomial fit to empirical determinations of range as a function of en-
ergy. This method is described in Benton & Henke (1969), which is itself an extension of the work of Barkas
& Berger (1964). The code which results from this technique is extremely fast, since no integrals are involved.
For the purposes of the analysis of the Trek experiment (Weaver et al., 1998), we demonstrated experimentally
that this was adequate for the reconstruction of charge and energy. However, there is no evidence of compar-
ison of this code with experimental ranges for ion species above40Ar. The extrapolation to higher charge is
especially complicated by the increasing probability of ion shielding due to orbital electron capture. In this
case, it is appropriate to seek theoretical guidance in improving dE=dx calculations. The monumental work of
Ahlen (1980) on stopping powers must stand as the starting point for any modern calculation. It is particularly
interesting to note that calculations of stopping power for uranium ions were confirmed in an experiment by
Ahlen & Tarlé (1983), therefore, any modern calculation should be able to reproduce this result.

2 Overall form:
The overall form of the stopping-power formula can be obtained from classical arguments (Jackson, 1975).

In the convenient units A MeVg�1 cm2, that formula is
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Here, we have usedZ1 andA1 for the charge and mass (in amu) of the projectile,Z2 andA2 for the atomic
number and molecular weight (g mol�1) of the target material,NA is Avogadro’s number,mec

2 = 0:511 MeV,
andre = e2=4��0mec

2 is the classical electron radius.
The devil, they say, is in the details. In this case, the detail is the correction factorL, also known as the

stopping logarithm. Following Lindhard & Sørensen (1996), we set
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This is the form derived originally from quantum perturbation theory, and the first two terms are typically
called the Bethe result. The third term is the density effect originally calculated by Fermi (1940) and ex-
tended by Sternheimer & Peierls (1971). Here,I is the effective ionization potential of the target material.
Although there are theoretical means to determineI, for the most part, the experimentalist should regard it as
an empirical parameter. We will refer toL0 as the “Bethe” result, inclusive of the density effect.

For an accurate calculation, further corrections of the formL = L0 + �L are required. It will be useful
here to define the quantity� � �Z1=�, where� = e2=4��0�hc is the usual fine-structure constant. It is most
desirable to find formulas for�L which will be valid for all values of�. In particular, for uranium,� > 1

when� < 0:671! Thus, any formula which loses validity for� > 1 will be useless for describing the energy
loss of uranium ions in matter.

3 The Bloch-Mott-Ahlen corrections:
The Bloch correction (Bloch, 1933) arose from an investigation of the limiting behavior of classical

and quantum-mechanical calculations of
stopping power. Further details may be
found in Ahlen (1980). It is most im-
portant at moderate energies 10 A MeV
< E < 1000 A MeV. The Mott correction
(Ahlen, 1978) was first investigated when
corrections to the stopping power of order
higher thanZ2 became apparent. Ahlen’s
form of the Mott correction relied on pa-
rameterizations of the Mott cross section
(Curr, 1955; Doggett & Spencer, 1956).
Interested readers should note that the best
derivation of the Mott correction may be
found in Ahlen (1982). The Mott correc-
tion has a serious defect: it becomes large
and negative at low energies, leading to
unphysical behavior of the stopping power
if the Mott correction is not cut off below
some arbitrary energy. It has been experi-
mentally demonstrated that the Bloch and
Bloch+Mott corrections are inadequate in
regimes of both high charge and high en-
ergy (Ahlen & Tarlé, 1983). A third cor-
rection is necessary. This is the “relativis-
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Figure 1: dE=dx plotted versus energy for different corrections
described in this paper. The projectile is uranium and the target is
aluminum. Note the absence of the relativistic rise for the LS+FNS
corrections.

tic Bloch” correction of Ahlen (1982). Henceforth we will refer to this as the Ahlen correction. Altogether,
these three corrections form what we will call the BMA group.

4 The Lindhard-Sørensen correction:
It has been known for some time (Rose, 1961; Bhalla & Rose, 1962) that exact solutions of the Dirac

equation exist not only for the Coulomb potential, but for any spherically symmetric potential. Only very
recently (Lindhard & Sørensen, 1996) have these solutions been applied to the theory of stopping power.
What we will term the Lindhard-Sørensen (LS) correctionreplacesthe BMA group. (This definition of the
Lindhard-Sørensen correction differs from that of Scheidenberger & Geissel (1998).) The LS correction is
expressed as an infinite sum over Coulomb scattering phase shifts of increasing angular momentum quantum
number. The sum converges fairly rapidly.



4.1 Finite nuclear size effects: In their paper Lindhard & Sørensen (1996) also derive a correction due
to the finite size of atomic nuclei. The finite nuclear size effect arises as a modification to the Coulomb phase
shifts in the basic LS correction. The numerical evaluation of these phase shifts can be tricky unless fully
complex arithmetic can be implemented. In particular the convergence of the LS+FNS correction seems to be
limited by the behavior of the confluent hypergeometric function. Convergence has been demonstrated out to
Lorentz factors of
 ' 10=R0 (Sørensen, 1999), whereR0 = Rmec=�h = :003056A1=3 andR = 1:18A1=3 fm

is the nuclear radius. For238U this evaluates to
 ' 500 which is well into the ultrarelativistic regime.

4.2 The ultrarelativistic limit: Sørensen (1998) has shown that for ultrarelativistic ions, a (careful)
perturbation treatment of the problem of energy loss is possible. In particular, because of finite nuclear size
effects the potential energy experienced by an electron has a maximum depth of order 10 MeV, while the
kinetic energies involved are very much greater than this. Thus, the stopping power calculation should be
amenable to perturbation methods. For a uniformly charged nucleus, the perturbation treatment leads to a
correction,�Lultra, with a limiting behavior given by

�Lultra = � ln
�
�
R0

�
� 0:2 + �2=2: (3)

The LS+FNS correction tends toward this same limit. This correction cancels the density effect correction in
the ultrarelativistic limit, so that the entire stopping logarithm becomes

L = L0 +�L = ln
2c

R!
� 0:2; (4)

where! is the plasma frequency of the target material. Astonishingly, this implies thatthere is no relativistic
rise in stopping power in the ultrarelativistic regime. Classically, the stopping logarithm is interpreted as the
logarithm of the ratio of maximum to minimum impact parameters. Here we have an (obvious) minimum of
R out to the maximum ofc=!, which is the natural length scale for plasma screening. The prediction of an
energy-independent dE=dx in the ultrarelativistic regime has been confirmed with> 100 A GeV Pb ions in
an Al target (Scheidenberger, 1994; Datz et al., 1996; Arduini et al., 1996).

5 Comparison with experiment:
Since the goal has been to provide accurate stopping power calculations for very high charges, we have

primarily followed the experimental work of Ahlen & Tarl´e (1983). In that experiment, performed at LBNL’s
Bevalac, a beam of uranium ions with beam energy955:7� 2:0 A MeV, was brought to rest in a Lexan target.
Additional stopping was provided by a block of Cu upstream from the target. For an accurate calculation,
the upstream air and Al beam pipe window must also be included. The mean total range of the uranium
nuclei was measured, and energy was reconstructed from stopping power calculations. Since this was primar-
ily an experiment to determine the importance of the BMA group, low energy effects were not included in
the calculation. Instead, the calculation was terminated at an energy of 150 A MeV, and a measured range
(Ahlen, Tarlé, & Price, 1982) was used for the remaining energy. However, electron capture effects were
included by applying an empirical formula (Pierce & Blann, 1968) for the effective charge.

The reconstructed energy is sensitive to the details of the empirical cutoff (Tarl´e, 1999), but it is still possible
to reconstruct the beam energy to better than 1%. No matter how the empirical range is actually added, the
BMA and LS values differ by less than 1 A MeV. Thus, we believe the claim that the LS correction replaces
the BMA group is empirically verified. As a further check on the validity of the LS correction, we attempted
to reconstruct the beam energy without using the 150 A MeV cutoff. As mentioned above, the Mott correction
becomes large and negative at low energies, and probably should not be used for energies withZ1=� < 100

(Ahlen, 1978). Peculiarly, the integration of dE=dx with the BMA group produces a better fit to the beam
energy if we ignore the Mott cutoff. Direct integration of dE=dx with the LS correction gives a reconstructed
energy of 950.1 A MeV. Thus, any low energy effects must contribute less than 1% to the reconstruction of
energy given range.



6 Stopping power code:
The code which has been developed as a result of these studies is freely and publicly available. The code

is written entirely in C and should compile on most systems. The code may be downloaded from the website
http://underdog.berkeley.edu/dedx/dedx.html, or via anonymous FTP ftp://underdog.berkeley.edu/pub/dedx/.
We encourage anyone to suggest improvements.

A future goal will be to better understand low energies, where atomic effects become important. These
include the Barkas effect (Jackson & McCarthy, 1972; Lindhard, 1976) and the shell correction (Fano, 1963).
It is not entirely clear at this point what the range of validity or even the overall form of these corrections
should be. We hope to locate more recent work which will clarify these matters.
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