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                          Abstract
Propagation of energetic solar cosmic rays was studied by solving the focussed transport equation without
adiabatic deceleration. In our calculations, we considered the change of pitch angle diffusion coefficient due
to the variation of magnetic field strength along Archimedian interplanetary magnetic field lines in addition
to magnetic field fluctuation and its correlation length depending upon radial distance from the sun. For
some typical values of radial dependence of magnetic field fluctuation (e.g. power index of radial
dependence = -2), we obtained the scattering mean free path at 0.1 AU 10 times longer than the one near the
earth. The time profiles calculated using the above radial dependence are compared with several
observations.

1  Introduction:
 Solar cosmic rays in the inner heliosphere are generally assumed to propagate along large-scale
interplanetary magnetic fields (Parker magnetic field line) with superimposed small-scale irregularities. The
resulting adiabatic focusing and pitch angle scattering lead to the focused transport equation (Earl, 1976)

where t is time, V the particle velocity, µ  the cosine of pitch angle, z the distance along the spiral magnetic

field, L(z)=-B(z)/(dB/dz.) focusing length, D(z, µ) the pitch angle diffusion coefficient and Q(z, µ,t) the

particle source close to the sun. For the convenience of our argument,

is adopted following quasi-linear theory, where q is the power index of the magnetic power spectrum.
Hereafter, D0 is expressed as a function of r because all observable quantities can be expressed as a function
of r, where r is the distance from the sun. Then, following Jokipii( 1971) and Goldstein( 1976), D0 is
represented as below.

where ρ(r) is the particle gyro radius, Lc (r) the correlation length of magnetic fluctuation, <δB2(r)> the

average of square of magnetic fluctuation, and <B(r)> the average of the ambient magnetic field. If we use
the typical dependence of Lc and δB2 upon r, and the Parker magnetic field strength for B(r), it is clear that
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D0 has a complicated radial dependence unlike the simple expression of r-b, where b is a constant. This fact
will reflect the radial dependence of mean free path of cosmic rays and should be emphasized as well as the
importance of focusing effect, as pointed out by many authors so far, when Eq. (1) is tried to solve. We will
show a solution of Eq. (1) for a typical radial dependence of δB2 and Lc

 2  Radial Dependence of Mean Free Path
 The relation (e.g. Volk, 1975) between the parallel mean free path λ// (r) and D0(r) is tentatively adapted

here as following,
              λ//(r)= 3V/(D0(r)(2-q)(4-q))

 Inserting D0 into the above equation, λ// (r) is then expressed as

             λ// (r) ~ ρ2-q Lcq-1/<δB2(r)>/ <B(r)>2.  

Here, we assume Lc ~ rm and <δB2(r)> ~ r-k by following Jokipii(1973). Further, we express Parker spiral

magnetic field B(r) as r-2 SQRT(1+(r/a)2 ), where a is the ratio of solar wind speed to the angular velocity of
the sun. Altogether, we obtain

The radial dependence of δB2 and L c has been discussed by many authors. But here we basically follow

the discussion by Jokipii(1973). That is, k=2 for r<<a and k=3 for r>>a. For Lc, we adopt only the cases of
m=0 and 0.5.

Next, we will show several cases of radial dependence of λ// (r). Shown in figure 1 are λ// (r) in unit of λE

denoting the mean free path at the earth, for the cases of k=2, m=0.5 with q=1.5(upper curve in the region
beyond 1 AU) and 1.67(lower curve in the region beyond 1 AU), respectively. They indicate that
λ//  becomes larger for both r>>rE and r<<rE. The longer λ// for r<<rE is easily understood. The resonant

wavelength of magnetic fluctuation becomes shorter with increasing B(r) for r<< rE. Then the power density
of the fluctuation tends to decrease as the wavelength shortens. Thus, the mean free path becomes longer for
r<<rE. Figure 2 shows four cases of λ// (r) in unit of λE.. The uppermost curve corresponds to k=2~3, m=0.5

and q=1.67, the upper to k=2~3, m=0 and q=1.67, and the lower to k=2, m=0.5 and q=1.67, and also the
shaded line constant to mean free path. Here, k=2~3 means a transition from k=2 to 3 at the earth in this
case. Although we tentatively take the transition at the earth, we fully recognize that the transition point
should be reconsidered in the future. These mean free paths are used for solving Eq. (1).

3  Time Profiles:
Fig.3 and 4 show time profiles for λE =0.039 AU and q=1.67 at 0.5 and 1 AU respectively. The

uppermost curve corresponds to k=2~3, m=0.5, the upper to k=2~3, m=0, and the lower to k=2, m=0.5, and
also to the shaded line constant mean free path. The upper and lower curves in Fig.3 seem to coincide each
other. From the both figures, it is clear that time profiles differ from each other according to interplanetary
condition between the source and the region behind an observation point, even if the mean free path λE at

the earth is the same. The different time profiles are due to the following facts. That is, the rising part of the
intensity is mainly reflected by the size of mean free path between the source and the observation point. On
the other hand, the mean free path beyond the observation point affects the decreasing phase. We examined
time profiles by using various values of mean free path at the earth. We recognized that almost the same
time profile with the constant mean free path can be obtained with half the length of the mean free path, if
we introduce a radial dependent mean free path ( e.g. k=2~3, m=0.5).

6 Discussions:

λ// (r) ~ r k + m(q −1)− 2q{ 1+ (r / a)2 }2.



 We will show an example of comparison of our results with the time profile of electrons given by Bieber
et al., (1980) in figure 5. In the figure, solid squares indicate the data observed on Helios 2 on 28th March,
1976 (we read out the data from their paper), and dashed lines best-fitting prediction obtained by them with
λ=0.7 AU, β= 0.7 h and τ=1.5 h from ~4 hours after Flare. β and τ  are a constant ( see Reid, 1964). Also,

the solid line (our case) shows the time profile obtained with λE=0.039 AU, k=2~3, m=0.5 and q=1.67. Here,

solar particles are assumed to be simply injected like exp(-t/90 min.). The injection pattern can change only
the shape around the peak value. But the general tendency of the decay phase can not be changed very much
by the injection. It is clear that our case can give a good fitness for the observed data of more than 10 hours.
This good fitness is due to the facts that at t < tmax, a longer mean free path than λE is effective, and that at t

> tmax, λE=0.039 itself may be important for the propagation of solar particles. This shorter mean free path

can create a longer decay phase. This means that, in some cases, we had better to take into account the
radial dependence of mean free path; that is, the radial dependence of interplanetary magnetic field
condition.
 Further, if we compare the mean free path around the earth deduced from quasi-linear theory with the one
from fitting to observed time profile, λE Å@which we introduced here, should be used. Otherwise, we will

need all the information about magnetic fields in interplanetary space. Thus, our λE may be directly

compared with the value derived by Jokipii(1971).

5  Summary:
 Generally, calculated time profile supposing the constant mean free path independent of r can be
approximately reproduced by the one calculated using radial dependent mean free path, which has a shorter
λE by the factor 2. Further, in fitting to the time profile observed on 25th March 1976, more than one order

of magnitude shorter mean free path (λE=0.039) can fit to the data, comparing to Bieber et al.,(1980). Of

course, we have to note here that our value is converted to the one at the earth, that is λE, although their  λ
is given at 0.5 AU. We can designate the mean free path at the earth. So λE determined by our method

seems appropriate in comparing directly with the mean free path given by Jokipii(1971), since he used
power spectrum at the earth. Further, if we consider the above facts, our method may be helpful in reducing
the discrepancy of one order pointed out by Palmer(1981). On the other hand, some theorists are trying to
get longer mean free path, which may also reduce the discrepancy by a factor of order unity. Thus,
considering altogether, that is, including our method and also improvement of theory, the one order
difference may be reconciled in the near future.
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                                                Figure 1                              Figure 2
The upper curve beyond 1 AU shows q=1.5, the lower q=1.67.        The uppermost curve corresponds to k=2~3,m=0.5, the         
 The other parameters are k=2 and m=0.5.                  upper to k=2~3, ,m=0, the lower to k=2, m=0.5, the lowest to constant λ

                  Figure  3                            Figure 4
 The uppermost curve corresponds to k=2~3,m=0.5, the upper to k=2~3, ,m=0, the lower to k=2, m=0.5, the lowest to constant λ

                                         Figure 5
The solid squares denote observation on Helios 2, the solid line our case, and the dashed line taken from Bieber et al.,(1980)


