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Abstract

A new approach to solving the BGK Boltzmann equation quasi-numerically is described. Our ap-
proach shows that low-order expansions can be used to investigate particle propagation at arbitrarily
small times in a scattering medium. The characteristic theory of linear hyperbolic partial di�erential
equations illuminates the role of causality. The approach is not restricted to isotropic initial data.

1 Introduction:

The propagation of charged particles along the interplanetary magnetic �eld (IMF) is governed
by the Fokker-Planck equation, where
the scattering operator is given either
by a quasi-linear pitch-angle model
or by a relaxation time approxima-
tion. Both forms of the Fokker-Planck
equation can be reduced to a di�u-
sion equation describing particle prop-
agation [Jokipii, 1966], which is in-
valid for short times (with respect
to the scattering timescale) after the
impulsive release of particles from a
source. The in�nite signal speed dif-
�culty can be avoided by using in-
stead a telegrapher equation descrip-
tion for the omni-directional phase-
space density [Fisk and Axford, 1969;
Earl, 1974]. The telegrapher equa-
tion, while satisfying causality, can-
not however describe the early phases
of particle propagation when particles
have experienced little or no scatter-
ing. In an attempt to circumvent some
of these diÆculties, Gombosi et al.
[1993] expanded the BGK Boltzmann
equation asymptotically in a \di�usion
parameter" to obtain a higher order
modi�ed-telegrapher equation with a
phase speed di�erent from the familiar
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Figure 1: Evolution of the scattered particle distribution
f s for the f1, f2, f3, and f4 truncations. The full scattered
distribution is plotted (i.e., not just f0). Here �0 = 0:25,
v = 1 (normalized value). The time, normalized to � , ranges
from t=� = 0:1 � 7.

�v=p3 of the standard telegrapher equation [Fisk and Axford, 1969]. Nonetheless, the modi�ed-
telegrapher equation remains invalid at short times and, as we argue below, the modi�ed phase speed
does not capture the essential scattered particle propagation characteristics any better than the orig-
inal telegrapher equation.



Important papers by Federov and Shakov [1993] and K�ota [1994] presented exact solutions to the
BGK Boltzmann equation which are valid for all times and use simple initial data. This work, while
beautiful, does not lend itself readily to the investigation of more complicated initial data or more
complicated forms of the Boltzmann equation. Standard numerical approaches to the solution of of
the Boltzmann equation do not always provide a satisfactory understanding of the physics underlying
particle transport when compared to either the telegrapher or di�usion equation, and are often com-
putationally challenging. Here, we sketch a new approach to solving the BGK Boltzmann equation
quasi-numerically, drawing on the rich heritage of charged particle transport in a scattering medium.
Examples are presented for one initial condition. Our approach shows that low-order expansions
can be used to investigate particle propagation at arbitrarily small times in a scattering medium,
and the characteristic theory of linear hyperbolic partial di�erential equations illuminates the role of
causality. Furthermore, unlike existing polynomial expansion methods, arbitrarily anisotropic initial
data can be prescribed since we are not restricted to isotropic initial data.

2 Results

In this paper, we consider �rst particle transport with isotropic scattering. We defer to a separate
paper our more general results which include anisotropic scattering, focussing, and convection [Zank
et al., 1999]. The BGK Boltzmann equation for isotropic scattering is
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where f = f(x; t; �; v) is the velocity space distribution function at position x at time t, particle
velocity v and pitch-angle cosine � � cos �; f0 � (1=2)
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fd� is the isotropic distribution function

averaged over �, � � �(x; �; v) is the collision time, and S is a source term.
The distribution function f can be separated into those particles, denoted by F , which have not

experienced scattering, and those which have, denoted by f s, i.e., f = F + f s. Equation (1) may
therefore be expressed as
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where F0 � (1=2)
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Fd�. Obviously, F experiences losses only and has the exact solution

F (x; t; �; v) = F (x� �vt; 0; �; v)e�t=� : (4)

To solve (3), we may expand f s in an in�nite series of Legendre polynomials Pn(�),

f s =
1

4�
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n=0

(2n+ 1)Pn(�)fn; (5)

where fn is the nth harmonic of the scattered distribution function.
The f1 approximation (i.e., assume fn = 0 8 n � 2) yields the inhomogeneous telegrapher equation
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with the usual signal propagation speed �v=p3, and F �0 = (1=2)
R 1
�1

@F=@td�. The inhomogeneous
term in (6) is the source term for the isotropic scattered component and the initial data is only with



respect to F in equation (4) and can be arbitrarily anisotropic. Equation (6) can be solved analytically
and the solution grows up gradually from f0 = 0 at the initial time. Unlike the standard telegrapher
equation, no coherent propagating pulses are present in the solution of (6), and the solution is valid
for arbitrarily small times.

The expressing of the truncated in�nite system of expanded equations derived from (4) by (6) is
not especially revealing. The expanded system of equations in the fn approximation forms a linear
hyperbolic system with an in�nite (discrete) spectrum of characteristic speeds, expressed as

	t + vA	x = C; (7)

where 	 = (f0; f1; f2; : : : fn)
t and A is the tridiagonal matrix
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�C = (2�F �0 ; f1; f2; : : : ; fn)
t:

The (n + 1) characteristics of (7) are all distinct. When n is even, the number of characteristics is
odd and consists of n=2 propagating information forward, n=2 propagating information backward,
and one that is stationary. For example, the f2 characteristics are (dx=dt)0;� = 0;�p3=5v. Whereas

at the f1 (telegrapher) level, all scattered particles propagate at �v=p3, the f2 approximation is
more re�ned, substituting 0;�p3=5v for the speeds of the scattered particles. Since only the even
truncations fn (n even) admit the zero characteristic, these are the most accurate solutions to (1).
We �nd further that the f2 approximation is an entirely adequate truncation.

Solutions to (1) for an initial beam distribution/ Æ(���0) for the f1, f2, f3, and f4 approximations
are illustrated in Figure 1. These solutions were obtained using a numerical method of characteristics
scheme. The �gures show only the scattered part of the distribution function f s from an early time
(t=� = 0:1) until a later time (t=� = 7). The initial beam had �0 = 0:25 and was localized between
x = 0 and 1. At early times, a 
at box-like distribution of scattered particles is generated as the initial
propagating beam decays. The distribution peaks at slightly later times (t=� = 1) while remaining
very localized. The scattered particle distribution continues to grow and spread out in time. The
di�erences between the odd and even truncations are apparent. The f2 approximation proves to be a
good truncation to the full solution and few di�erences exist between the f2 and f4 solutions. Finally,
none of the solutions, including the f1 telegrapher truncation, of Figure 1 exhibit oppositely directed
propagating pulses.

The above approach is extended easily to anisotropic scattering. We assume that scattering
through 90Æ is slow and, following K�ota [1994], introduce two scattering timescales �1 and �2. In the
� < 0 and � > 0 hemispheres, particle scattering is isotropic occurring at a rate ��11 . Particle scatter-
ing from one hemisphere to another proceeds at the slower rate ��12 . Let f� denote forward/backward
moving particles, allowing one to generalize (1) to [K�ota, 1994]
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fd�. We again separate f� into scattered and unscat-

tered populations to obtain two coupled sets of equations analogous to (2) and (3). As before, the



unscattered distribution can be solved exactly and it decays with time. A half-range expansion for the
scattered particles can be developed and the resulting linear hyperbolic system can be solved using

characteristics. The f�1 truncation, for example, admits four signal speeds �+� =
�
1� 1=

p
3
�
v=2,

��� = �
�
1� 1=

p
3
�
v=2.

For two initial ring beam distributions propagating in opposite directions (�0 = �0:25) and
�2=�1 = 10 (i.e., highly anisotropic
scattering), we show in Figure 2 the
evolution of the scattered particle dis-
tribution using an f�2 approximation.

Initially, persistent oppositely propa-
gating coherent pulses exist which later
merge to form a broad distribution.
The solutions presented here are iden-
tical to the exact analytic solutions of
K�ota [1994] (his Figure 4).
We may conclude by noting that a new
and relatively simple method for solv-
ing the BGK Boltzmann equation has
been presented. A virtue of this ap-
proach is its close connection to exist-
ing di�usion and telegrapher equation
models.
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Figure 2: Evolution of the scattered particle distribution
f� for the f2 truncation. The full scattered distribution f s

is plotted together with f+ and f�. Here �0 = �0:25, v = 1
(normalized value), and �2=�1 = 10 for a range of times.
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