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Abstract

Interplanetary transport is governed by the processes of focusing, pitch-angle scattering,
adiabatic deceleration and convection with the solar wind. The corresponding transport equa-
tion can be solved numerically by using a �nite di�erence method. We will present a fast and
accurate numerical method based on an explicit �rst-order upwind scheme for the spatial
transport with a 
ux-limiter correction and an implicit centered di�erence scheme for the
transport in pitch-angle. The transport of particles in momentum is described in an upwind
scheme with 
ux-limiter correction. The convergence of the scheme will be discussed.

1. Introduction

Interplanetary transport is governed by a multitude of physical processes, a�ecting particles of
di�erent energy at di�erent positions in space di�erently. A number of approximate solutions
exist, such as the convection-di�usion equation, mostly applied to the modulation of galactic
cosmic rays, or the equation of focused transport of Roelof (1969), in general applied to
solar energetic particle events in the inner heliosphere. Ru�olo (1995) combined the e�ects
of pitch-angle scattering, adiabatic focusing, convection with the solar wind, and adiabatic
deceleration in a transport equation
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and o�ered a numerical solution. In (1) the terms from left to right give: (a) the change
in the distribution function F (t; s; �0; p0), depending on time t, spatial distance s along the
Archimedian magnetic �eld line, pitch-cosine �0 and particle momentum p0, the latter two
measured in the solar wind frame; (b) the �eld parallel motion of particles consisting of the
direct propagation of particles with speed �0v0 along the �eld line and their convection with the
solar wind speed along the �eld line, described by the solar wind speed vsw and the spiral angle
 ; (c) changes in pitch-angle due to focusing with a focusing length L(s) = �B=(@B=@s) and
due to pitch-angle scattering with a pitch-angle di�usion coeÆcient �(�0; s); and (d) changes
in momentum due to the betatron e�ect (adiabatic cooling) and the \inverse Fermi-e�ect".
The term on the right gives a sources function, e.g. a solar injection.
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2. The numerical scheme

In this paper, Eq. (1) is solved with a numerical scheme based on an enhanced fractional
time step and time splitting method (e.g. Marchuk, 1975). The basic idea of such a splitting
scheme can be understood for the simpli�ed example consisting of only spatial and pitch-angle
transport. The arbitrary decision to transport �rst in s and then in �0 or vice versa gives two
di�erent numerical solutions. The di�erences are small for the omnidirectional intensity and
more pronounced in the anisotropies. In general such an approximation is only of �rst order
in �t. A better result can be achieved by alternating the order of fractional time steps and
hence get an approximation of second order in �t:
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(1) The spatial transport L(s): The spatial transport is described by a hyperbolic di�erential
equation. It is discretized by a 
ux-limiter method, which is under optimal circumstances
(low spatial gradient) of second order in space. Both a detailed discussion and a comparison
to other methods can be found in Hatzky (1996) and Hatzky et al. (1997). The advantage to
other methods (e.g. Ru�olo, 1995) is the good accuracy combined with a low computational
e�ort.
(2) The pitch-angle transport L(�0): The transport in pitch angle is described by a parabolic-
type convection-di�usion equation. The diÆculty in solving numerically this equation comes
from the two pitch-cosine terms which can be relative to each other of di�erent magnitude.
Close to the sun the focusing term is dominating while far away the pitch-angle di�usion
becomes relatively dominating. The same problem occurs when cases with large and small
scattering or a pitch-angle di�usion coeÆcient D(�0) with a pronounced shape shall be cal-
culated. Usually in literature this is called a singular perturbed problem which needs special
numerical treatment (e.g. Roos et al. 1996). A scheme constructed for this type of problem
is the Iljin scheme. In this paper the following implicit scheme, which is under optimal
circumstances of second order in pitch-cosine, is used:
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If an isotropic pitch-angle coeÆcient D(�0) = A(1 � �
02) is considered, the scheme is a pure

Iljin scheme. In case of a pronounced shape of D(�0), a so called \resonance gap" around
�0 = 0, the averaging of ~D(�0)�1 per ��0-interval gives better results. It is motivated by
an integro-interpolation scheme (e.g. Samarskii, Vabishchevich 1995), which leads to the

2



de�nition of ~bi+1=2. For a very pronounced D(�0) the following choice, where the focus is on
the integro-interpolation scheme, gives even better results:
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(3) The momentum transport L(p0): The momentum transport also is described by a hyper-
bolic di�erential equation. As the spatial transport it is discretized by a 
ux-limiter method.
The step size in �p0 is chosen to be constant in a logarithmic scale of momentum p0. Compared
to the geometric interpolation used by Ru�olo (1995), the 
ux-limiter method has the advan-
tage of particle number conservation even if the momentum spectrum cannot be described by
a power law { which will be the case during the course of a particle event, even if the initial
spectrum is a power-law, cf. Fig. 2.

Fig. 1: Intensity time pro-
�les with (solid) and without
(dashed) solar wind e�ects
for di�erent energies (20, 66,
220, and 730 keV, 2.4, 8, 26,
85, 260, and 711 MeV, and
1.7 GeV), a Æ-injection at
t = 0, and a radial mean free
path �r = 0:1 AU.

3. Simulations

Figure 1 demonstrates the in
uence of solar wind e�ects at di�erent energies (20 KeV, 66 KeV,
220 keV, 730 KeV, 2.4 MeV, 8 MeV, 26 MeV, 85 MeV, 260 MeV, 711 MeV, 1.7 GeV). The
observer is located at 1 AU, the radial mean free path �r is 0.1 AU. Two e�ects can be
separated:
(1) if solar wind e�ects are considered (solid lines), the intensities rise earlier and consequently
show an earlier maximum. This becomes most obvious in the lowest energy bands where the
average particle speed is comparable to the solar wind speed. The e�ect can be understood as
mainly due to convection with the solar wind, adiabatic deceleration contributes only a small
part to this because of the energy spectrum.
(2) the intensity decays faster because of adiabatic deceleration which, owing to the energy
spectrum, adds a rather small number of particles from the higher energies while removing a
larger number to lower energies. In the lower energy ranges, convection with the solar wind
also contributes to the faster removal of particles from the observer's position. Because low
energetic particles acquire maximum intensity at rather late times, this removal also leads to
a lower maximum intensity.
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In the anisotropies (not shown in the �gure) consequently a faster decay towards isotropy can
be seen, at late times anisotropies even can become negative as the { in the solar wind frame
isotropic { particle distribution is convected across the observer, leading to an inward directed
intensity gradient and thus a streaming of particles towards the Sun.

Fig. 2: Temporal evolution from t=0 h to
t=60 h of the energy spectrum in the range
20 keV to 1.7 GeV after a solar injection at
t=0.

Figure 2 shows the temporal evolution of the energy spectrum at the observer's site. The
injection spectrum has a power-law index 
 = �2:5 in energy. At early times, due to the late
arrival of slow particles, the spectrum turns over at lower energies. Only with the arrival of
the bulk of the slow particles, the spectrum turns to roughly a power-law, however, its slope
is much steeper than the slope of the injection spectrum, even bending to a steeper slope at
late times and high energies. Thus for most of the time of the event the description of the
spectrum in interplanetary space by a power-law would be a crude simpli�cation. Note that
a similar behavior would be observed if solar wind e�ects were neglected, in particular the
turn-over of the spectrum at low energies would be observed up to much later times, owing to
the later arrival of the low energies. If a decreasing slope has been established it would even
be steeper than under consideration of solar wind e�ects.
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