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Abstract

A multiple scattering formalism is developed for the BGK Boltzmann equation. The formalism is equiva-
lent to constructing the Neumann series for the corresponding integral equation. By using transform methods,
the distribution of unscattered particlesf0, and the distribution of particles that have undergonen-scatters,fn
(n � 1), are determined for the initial value problem in a uniform background medium. The method is used
to investigate solutions of the BGK Boltzmann equation considered by Fedorov and Shakov (1993) and Kota
(1994) in studies of coherent and diffusive particle transport.

1 Introduction
The BGK Boltzmann equation has been used to elucidate various aspects of cosmic ray transport in as-

trophysical settings. These include the derivation of diffusive transport equations for cosmic rays (e.g. Earl,
Jokipii and Morfill, 1988) that generalize the Parker transport equation to include cosmic ray viscosity and
accelerating reference frame effects; models of coherent and non-diffusive particle transport (Fedorov and
Shakov, 1993; Kota, 1994); and nonlinear, one fluid models of cosmic ray modified shocks (Berezhko et al.
1983). The main purpose of this paper is to investigate coherent and non-diffusive particle transport (e.g.
Fedorov and Shakov, 1993; Kota, 1994) using a multiple scattering formalism.

2 Model and Equations
Our main interest in this paper is with solutions of the BGK Boltzmann equation:
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f(x; t; v; �)d�; � = cos �; (2)

subject to the initial condition:

f(x; t; v; �) = A(x)B(�) at time t= 0: (3)

In the following analysis, the particle speedv is taken to be a constant parameter. In the above equations,
f(x; t; v; �) is the velocity space distribution function at positionx and timet, for particles with speedv and
pitch angle cosine� = cos �; hfi is the mean distribution function averaged over�, and� = �(x; v) is the
collision time. The choicesA = N�(x) andB(�) = �(� � �0), correspond to the solution of Fedorov and
Shakov (1993). We consider the caseQ � 0, and take� = �(v) to be independent ofx.

3 Integral Equations and Multiple Scattering Solutions
Formally integrating the characteristics for (1) withQ = 0, results in the integral equation:

f(x; t; v; �) =

Z t
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hfi(x0; t0; v) exp[�(t� t0)=� ] dt0 + f(x� v�t; 0; v; �) exp(�t=�); (4)

where
x0 = x� v�(t� t0); (5)



denotes the position of the particle at the last scatter. The second term on the righthand side of (4) represents
the unscattered particles andP (t) = exp(�t=�) is the probability that the initial particles have not been
scattered at timet. Equation (4) is an integral equation forf in which hfi is given by (2). One can also
average (4) over� to obtain the integral equation:

hfi(x; t; v) = 1
2

Z 1

�1
d�

�Z t

0
hfi(x0; t0; v) exp[�(t� t0)=� ] dt0 + f(x� v�t; 0; v; �) exp(�t=�)

�
(6)

for hfi (c.f. also Berezhko et al. 1983).
To develop a multiple scattering formalism for the BGK Boltzmann equation (1), withQ = 0, i.e.,
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we write the solution forf in the form:

f = f0 + fc; fc =
1X
n=1

fn; (8)

wheref0 denotes the distribution of unscattered particles andfn is the distribution of particles that have
undergonen-scatters (e.g. Kuhn, 1979). From physical reasoning, the partial distribution functionsffj : j =
0; 1; 2; : : :g satisfy the coupled evolution equations:
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In (9), the particles that have undergone(n � 1) scatters provide a source for the particles that will undergo
n-scatters. The initial value data for (9) are:

f0 = A(x)B(�); fn = 0; n � 1; at time t= 0; (10)

since there are no scattered particles at timet = 0. The Neumann series of the Volterra type integral equation
(4) for f is obtained by using the iteration scheme:

f (n) = K[f (n�1)] + f0; f (0) = f0; (11)

wheref (n) is thenth iterate andK denotes the integral (and averaging) operator in (4). From (11),

f (N) = (I +K +K2 + : : :+KN )f0 = f0 +
NX
n=1

fn; (12)

wherefn = Kn(f0) is the distribution of particles that have undergonen-scatters. LettingN !1 we obtain
(8).

From (4), or by using transform methods we obtain

f0(x; t; v; �) = exp(��t)f0(x� v�t; 0; v; �) = exp(��t)A(x� v�t)B(�); (13)

for the distribution of unscattered particles, where in (13) and below we use the dimensionless variables
�t = t=� and�x = x=(v�). Using transform methods yields the solution forfn in the form:
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dx0 A(x0)Gn(�x; �t; v; �; �x0; �0); (n � 1); (14)



where the Green’s functionGn(�x; �t; v; �; �x0; �0) is given by

Gn(�x; �t; v; �; �x0; �0) =
exp(��t)
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(n � 1). The functionsV �n (�x; �t; �x0; p) in (15) are defined by the equations:
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wherem(p) = ln j(1 � p)=(1 + p)j. In the above equationsH(x) denotes the Heaviside step function. The
symbolPV in front of the integral in (15) denotes a Cauchy principal value (CPV) integral with possible
singularities atp = � andp = �0, and<(z) and=(z) denote the real and imaginary parts of the complex
numberz. Note that the singularities atp = �1, are integrable. The functionsV �n (�x; �t; �x0; p) are only non-
zero forjpj�t > j�x� �x0j, which corresponds to the causality constraint and impliesj(�x � �x0)=�tj < jpj < 1 in
the CPV integral.

The total scattered distributionfc is given by:
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whereGc =
P
1

n=1Gn is the Green’s function for the total scattered distribution. One can show thatGc

is equivalent to the Green’s function for the scattered particles given by Fedorov and Shakov (1993), which
consists of a superposition of slowly decaying diffusive eigenmodes, which dominate at late times, plus a com-
bination of fast decaying eigenmodes, which decay exponentially in time asexp(��t) (see also Kota (1994)).
The slowly decaying diffusive eigenmodes may be identified in part with the CPV integral contributions to
Gn in (15). At late times the solution forGc is approximately given by the Green’s function for the diffusion
equation, i.e.Gc ' exp[�(x � x0)

2=(4�t)]=(4��t)
1

2 , where� = 1
3v

2� is the diffusion coefficient. At early
times the scattered distribution is dominated by the particles that have undergone a single scatter (i.e.,f1 or
G1).

4 Numerical examples and discussion
Figure 1 illustrates the partial sumG(N)

c =
PN

n=1Gn, of particles that have done at mostN -scatters (the
dash-dot curves), and the distributionsfGng, as functions of�t. The parameters are:�x0 = 0, �x = 1, �0 = 0:99,
and the distributions are shown for� = 0, � = 0:49 and� = 0:98 (panelsa, b andc). For� = 0 and� = 0:49,
the figures show the sum ofN = 13 terms, butN = 8 in the� = 0:98 case. Panel (d) shows again the partial
sumsG(N)

c for � = 0, 0:49 and0:98; the bold dots show for comparison the Fedorov-Shakov solution results at
three separate times. TheG(N)

c exhibit diffusive behaviour (Gc / �t�
1

2 ) at large�t, whereasG1 shows coherent
propagation characteristics (G1 6= 0 for �x < �t < max(�x=j�j; �x=j�0j); note also there is no CPV contribution
to G1). The calculations show that the distributions are highly anisotropic at early times, but become almost



isotropic at late times. There were some numerical accuracy problems in evaluating the CPV integrals for the
� = 0:98 case for�t > 4:5 in panel (d), which hopefully can be improved upon. The formula (15) does not
apply for� = 1, or for� = �0; further work is needed to clarify these singular cases. To deal with thep = �1
singularities in (15) it is useful to use the integration variabley = � ln(1� jpj), and a special strategy is used
to isolate the CPV singularities.
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Figure 1: Partial sums
PN

n=1Gn, and distributionsGn versus�t.


