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Abstract

We discuss the transport of energetic particles accelerated at Corotating Interaction Regions (CIRs). The model
of Fisk & Lee (1980) is extended to low energies where the diffusive description does no longer apply. A
numerical code has been developed to solve the Fokker-Planck equation, which allows low particles velocities
and long scattering mean free path. Numerical results are compared to the predictions of the diffusive model.

1 Introduction:
Energetic ions accelerated at the forward and reverse shocks of Corotating Interaction Regions (CIRs) un-

dergo convection, diffusion, and adiabatic cooling or acceleration during their transport in the heliosphere. The
combination of all these processes determine the resulting energy spectrum at the shock. Fisk & Lee (1980)
proposed an elegant model which allowed to obtain an analytical approximative solution. This approximation
serves as a valuable theoretical base in interpreting corotating particle events (Desai et al., 1999). Giacalone
& Jokipii (1997) discussed general aspects of the acceleration of pickup ions ar CIRs.

The Fisk & Lee (1980) theory (referred as FL80 hereinafter) assumes a specific form of the diffusion
coefficient, which is a choice of convenience to reach an analytical solution. The physical limitation of the
FL80 model is that it is based on a diffusive description, which assumes that particle speed is considerably
larger than the plasma speed and scattering is frequent enough to produce near isotropic distributions. These
conditions are not met at pickup energies. Also there is evidence (Gloeckler et al., 1995) suggesting that
scattering mean free path for low rigidity particles may be as large as several AU.

It is the purpose of the present work to extend the FL80 theory to low energies, including pickup energies
and below. We consider numerical solutions of the Fokker-Planck equation that remains applicable for both
low and high particle speed and for both strong and weak scattering. Also the numerical schemes can read-
ily accommodate various types of pitch-angle scattering, including hemispherical scattering (Isenberg, 1997;
Schwadron, 1998).

2 Transport Equations:
Diffusive shock acceleration is described by the fundamental equation of Parker (1965), which includes

diffusion, convection, and adiabatic cooling and acceleration. The FL80 model assumes that low-rigidity
particles are tied to their field lines. They are convected together with their field lines, and undergo additional
diffusive motion along the field lines.

The Fokker-Planck equation (Skilling, 1971) was applied for low particle speeds by Isenberg (1997) and
by Kóta & Jokipii (1997). This equation considers the full directional distribution,f(z; w; �; t), as function
of position along the field line,z, particle velocity,w, cosine of pitch angle,�, and time,t. w and� are
measured in the solar wind frame. The rate of adiabatic cooling does, in general, depend on�. The Fokker-
Planck equation is based on an adiabatic approach, averaging over gyro-phase. Thus the adiabatic invariant,
w2(1� �2)=B, remains strictly conserved until random scattering is included.

2.1 Corotating Shocks: Corotating shocks represent a special class when steady state prevails in the
frame corotating with the sun around the axis,
. This implies that the fluid speed taken in corotating frame,
Vcor = V �
� r is parallel to the magnetic field,B, and magnetic field lines appear to be standing in the
corotating frame. The Fokker-Planck equation for this case (K´ota & Jokipii, 1997) is
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where the time variation is to be taken in the rotating frame, andz refers to lenght measured along the field
line. The right hand side accounts for random pitch-angle scattering, and for sources,q(z; w; �; t). The rates
of adiabatic focusing and cooling, respectively can be expressed as:
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These expresssions include but are not restricted to the standard Archimedean spiral field. For the standard
spiral fieldVcor = V=cos , with  denoting the hose angle, and the coeficients (2) and (3) are identical with
the coefficients derived by Ruffolo (1995).

2.2 Boundary Conditions: Shocks, similarly as in the FL80 theory, are treated as boundaries. The
boundary conditions, however, are more subtle. We follow an adiabatic approach thus particles are either
reflected or transmitted so that their adiabatic invariant is conserved. The FL80 model assumes that scattering
is frequent in the downstream region so that the diffusive streaming vanishes and the particle population is
convected with the fluid speed downstream of the shock. Following the same concept, we presribef(��) =
f(�) downstream of the shock. This corresponds to mirror-reflecting the transmitted particles. While this is
still a crude approximation, it contains the essential physics. It can be shown that this jump condition becomes
equivalent to that of the diffusion theory, if the particle speed is much larger than the fluid speed.

3 Numerical Results and Discussion:
Our numerical code is applied to model the acceleration and transport of energetic ions at corotating reverse

and forward shocks in scenarios similar to those considered by Fisk & Lee (1980). Here we present simulation
results for a reverse shock placed4 AU from the sun. An Archimedean spiral field is adopted with a fast wind
speed of700 km/s and a shock ratio of3. 10 keV/n particles are injected at the shock isotropically in the
solar wind frame. We assume isotropic pitch-angle scattering, withD�� = w(1 � �2)=2�k. In accord with
the FL80 model, we choose a rigidity independent parallel scattering mean free path,�k, so that the resulting
radial diffusion coefficient,�rr = w�kcos

2 =3 be proportional tor. One should remember that the diffusion
coefficient in the FL80 model is�rr = �kcos

2 . Hence, we assume�k = �0r=cos
2 . The value of�0 = 0:1

corresponds to the0:1 AU mean free path used by Fisk & Lee (1980).

Figure 1: Energy spectra at a corotating reverse shock at4 AU as obtained from the Fokker Planck equation
(solid lines) for scattering rates�0= 0:01, 0:1, and1. Predictions from the diffusive model are shown for
comparison (dotted lines). The lower pairs of curves indicate the modulated spectra at 1 AU.



Figure 1 shows the resulting spectra for three different values of the mean free path, together with the
predictions obtained from a diffusion model assuming the same isotropic injection at10 keV/n. Also shown
are in Figure 1 the modulated spectra at 1 AU. For strong scattering (�0 = 0:01) the diffusive model gives, as
expected, good approximation. Significant difference appears, however, already at the intermediate mean free
path,�0 = 0:1. The Fokker-Planck equation gives harder spectrum in the 0.01 - 1 MeV/n region. This may be
connected with the fact that diffusion approximation assumes that the relative gain of energy is small in each
crossing of the shock. At low energies, however, the relative energy gain in an encounter is quite large. This
is demonstrated by the distance of the secondary peak around 30 keV/n from the injection peak at 10 keV/n.
The secondary peak contains particles that have been reflected once from the shock.

Figure 2: Pitch angle distributions of 1.5 MeV/n
ions at a reverse shock, for�0 = 0:1 and 1:0.

Figure 3: Energy spectra at the shock obtained
for �0 = 0:1, at times, 1, 2, 5, 10, 20, and 50
days

For the case of weak scattering (�0 = 1:) the results of
the Fokker-Planck equation differ quite dramatically from
the predictions of the diffusion model, which latter gives
much steeper spectrum. Clearly, diffusion models become
inaccurate if the scattering mean free path is comparable
or larger than the focusing length. Conversely, this im-
plies that fitting observations to a diffusion model may
considerably underestimate the scattering mean free path
if the low-energy0:1� 1 MeV/n range is considered.

It may be interesting to notice that the diffusion model
does significantly underestimate the modulation for weak
scattering. In the extreme case, scatter-free propagation
would not give any modulation at all in a diffusion model.
However, adiabatic cooling and consequent modulation
do occur even in scatter-free propagation and this could
lead to significant modulation, if the shock is far out (K´ota
& Jokipii, 1999). This effect might be responsible for the
decreasing magnitude of recurrent ion events at high lati-
tudes (see, Simnett & Roelof, 1998).

We find that the Fokker-Planck equation predicts
harder spectra for weak and intermediate scattering. One
possible explanation is that the diffusion models assume
near isotropy, which is not valid if scattering is weak.
The pitch-angle distributions of 1.5 MeV/n ions at the
shock, which are shown in Figure 2., reveal a significant
anisotropy even in the case of intermediate rate of scat-
tering. The distributions tend to peak around� = �0:7
which corresponds to the direction of the maximum en-
ergy gain at reflection from the shock.

The characteristic times required for acceleration are
of interest. Figure 3 shows the time evolution of the spec-
trum at the shock, for�0 = 0:1. For this rate of scattering
it takes about 50 days to reach steady state. The weaker
rate of scattering results in longer characteristic times for
acceleration. Spectra may significantly soften if the shock
happens to be newly formed, or non-steady, as it can be
expected, for instance, in a Fisk field (Fisk, 1996).



3.1 Pickup Ions: The code covers low energies thus it is also capable to model the acceleration and
transport of pickup ions, if the condition are met that freshly ionized particles are reflected from the shock.

Figure 4: Pickup ions accelerated at a reverse
shock2 AU from the sun

General aspects of the acceleration of pickup ions
at CIRs. has been discussed by Giacalone & Jokipii
(1997). Here we present a simulation for the accelera-
tion of freshly ionized particles at a reverse shock. Figure
5 shows the results of such numerical simulations. We in-
ject freshly ionized particles at a corotating reverse shock
at 2 AU from the sun. The same shock ratio of3 and the
same form of the scattering mean free path is used as in
the previous simulations. We assume a ring-distribution
for the source-term,q(r; w; �). The 700 km/s value of
the fast wind corresponds to an initial energy of� 2:5
keV/n, and an initial value of�0 � �0:7. The dotted
line shows the simulation for intermediate rate of scatter-
ing, �0 = 0:1, while the solid line illustrates the resulting
spectrum for weak scattering (�0 = 1). The secondary
peak at� 17keV=n results from particles that have been
reflected from the shock one single time.

4 Summary
We have reported on the results of a numerical code solving the Fokker-Planck equation and thus extend-

ing the model of Fisk & Lee (1980) for particle acceleration at corotating shocks to low energies and large
scattering mean free path. We find significant deviations from the diffusion model when the scattering is weak.

The scheme is capable to handle more complex and time-dependent situations like travelling shocks or a
Fisk field configuration where field lines are not standing but are slowly rotating in the corotating frame (Fisk,
1996). These will be explored in future work.
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