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Abstract

The first-order Fermi acceleration mechanism is generally envisioned as taking place at a shock. However,
there are situations, such as the trailing edges of coronal mass ejections (CMES) as they pass the Earth, where
there is a substantial fluid compression and change in direction of magnetic field lines that has not yet evolved
into a shock discontinuity; treatment of this region will be an important component of realistic simulations of
particle acceleration and Forbush decreases due to CMEs. Compressions also occur in structured shocks, e.g.,
in foreshock regions. We examine the effects of first-order Fermi acceleration at a continuous compression
with a changing magnetic field direction by numerically solving a transport equation for the distribution of
particles in momentum, pitch angle, position, and time. We find that first-order Fermi acceleration yields
steeper steady-state power law spectra for greater values of the radius of curvature of magnetic field lines (i.e.,
a wider compression region). We also determine the distribution of particles in space and pitch angle near
the compression. In contrast to the case of a shock discontinuity, for a continuous compression we find a
sudden and dramatic decrease in the phase space density of energetic particles along the direction normal to
the compression region, which can only be understood in the context of pitch angle transport.

1 Introduction:

Now that numerical solutions of the pitch angle transport of cosmic rays are feasible for realistic, quies-
cent configurations of the interplanetary magnetic field (Ruffolo 1995; Hatzky, Schmidt, & Kallenrode 1997,
Kocharov et al. 1998; Lario, Sanahuja, & Heras 1998), a next step is to simulate the effects of transient phe-
nomena, such as coronal mass ejections (CMESs) and associated interplanetary shocks, on the transport and
acceleration of energetic charged particles, with an eye toward a better understanding of the acceleration of
particles out of the solar wind, further acceleration of particles previously accelerated near the Sun, Forbush
decreases, and cosmic ray modulation. Recently, simulations of the effects of an ideal, plane-parallel, oblique
shock on mildly relativistic particles have been performed in the context of pitch-angle transport (Ruffolo
1999), and can readily be incorporated into models of cosmic ray transport in the interplanetary magnetic
field. However, to be realistic, models of CME effects should include the refraction of magnetic field lines to
be more tightly wound downstream of the shock, and these field lines must straighten out to a more normal
configuration behind the CME. The region where this occurs is the CME reverse compression, which has not
yet evolved into a shock discontinuity. Treatment of this region will be an important component of realistic
simulations of the aforementioned phenomena. Compressions with refracted magnetic fields are also present
in shocks with a finite width, e.g., in the foreshock region.

In this work, we modify existing transport equations to permit a general magnetic field configuration in
space with no restriction on the particle velocity. We then address the effects of a continuous fluid compression
with an oblique magnetic field in the steady state. We model the magnetic field lines as hyperbolae and study
the effect of the ratioR/AH, whereR is the maximum radius of curvature of the magnetic fie\lp,is the
scattering mean free path parallel to the field, and the IfyiA, — 0 corresponds to the case of oblique
shock acceleration. Here we examine the steady-state spectral index of the particle distribution, as well as
the distribution in space and pitch angle; the same techniques could treat a magnetic field configuration and
particle distribution that varies in time.

2 Transport Equation:

A transport equation for a general magnetic field configuration, to first ordéfin) whereU is the fluid
speed, was provided by Skilling (1975). Transforming this equation, and keeping terms only to first order
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Figure 1: Left: Magnetic field lines for an idealized, plane-parallel shock. The vertical line indicates the shock
plane. Right: Model configuration for a continuous compression. The field lines are hyperbolae, and the width
of the transition region can be varied.

in (U/c) or (v/c), wherew is the particle speed, and also keeping selected terms of higher order, one can
obtain the transport equation obka and Jokipii (1997). Inspired by that work, we have adapted the equation
of Skilling (1975), retaining terms of general order(iryc), to a form amenable to numerical solution as in
Ruffolo (1995). Assuming a time-independent magnetic field, we have
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whereF'(t, z, i, p) = d>N/(dpdudz) is the particle distribution functiort, is time in a fixed framez is a
Cartesian coordinate in the fixed frame, e.g., along the shock nounsathe cosine of the pitch angle in the
local fluid frame p is the momentum in the local fluid framéf,(z) is the fluid speedy is the particle speed in
the local fluid frame/(z) is a unit vector tangent to the magnetic field, ar(@) is the pitch angle scattering
coefficient, which we assume to have the famyi)(1 — %) corresponding to isotropic scattering.

Since we only treat motion along the magnetic field, one coordinate suffices to specify the location. For a
time-dependent field configuration, to first ordefiryc) there would be corrections to theandu-advection
terms. With this equation, we can numerically study the pitch angle transport of particles subject to scattering
from magnetic irregularities flowing with the fluid speed for a general static magnetic field; the equation of
Skilling (1975) also includes terms which would enable one to extend the equation to permit time-dependent
magnetic configurations.



3 Model Configuration:

Figure 1 shows the magnetic field lines for an ideal-
ized, plane-parallel shock and for our model of a con-
tinuous compression, with the upstream region on the
right in both cases. The field lines are hyperbolae, and
the fluid speed, taken to be in thedirection (perpen-
dicular to the ignorable coordinates), is such that the
magnetic flux is “frozen” with the fluid. This permits?
analytic, albeit rather messy, expressions for all terms
in the transport equation. The only parameters of the
magnetic configuration are the asymptotic angles with
respect to the-axis @; upstream andy, downstream)
and the semi-conjugate axis of the hyperbélajVe set
z = 0 at the vertex, and the radius of curvature, which
has a maximum there, is given /= b cot 6}, where
0, = |01 — 62]/2. We takeb and6, as adjustable pa-
rameters, and for consistency with a shock configura-
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tion in the limitb — 0, we use the magnetohydrodyFigure 2: The spectral index vs. the raﬁ¢>\”,
namic jump conditions at the shock (de Hoffmann &hereb is the semi-conjugate axis of the hyperbolic
Teller 1950) to determing,. Results in the next sectionrmagnetic field line, specifying the width of the com-
were fortanf, = 4 (6, = 76.0°) andtanf, = 15.11 pression, and\ is the scattering mean free path
(62 = 86.2°), derived for upstream Alfen and sound along the magnetic field.

speedsiq; = ug = 50 km 7!, andU; = 144.3 km
s ! (Ruffolo 1999).

4 Preliminary Results:

We found the spectral index which yielded a steady-
state distribution function (neither increasing nor de-
creasing; Ruffolo 1999). Results for two continuous
compression configurations and the limiting shock con-
figuration (from previous work) are shown in Figure 2
(for v = 0.5¢). We see that for this oblique magnetic
field configuration, the spectral index steepens as tifg,
width of the compression region increases. A similar
trend has been found for parallel magnetic field config-
urations (e.g., Kulls & Achterberg 1994).

Figure 3 shows the simulated pitch-angle averaged
phase space densityf),, as a function ofz in the
steady state for two values &f\|. Note that since
z is a Cartesian coordinat¢, is proportional toF' for
a givenp; here we normalizef to be one far down-
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stream. Figure 3 indicates a sharp and dramatic ‘fl;‘?g]ure 3: Pitch-angle averaged phase space density,

crease in the omnidirectional phase space density at
compression, which is sharper for the narrower co
pression width. This is in marked contrast to the ¢
of an oblique shock (as/\; — 0), for which (f)
is nearly continuous, with only a slight jump=8%
for this configuration) to a higher value upstream (Os-

(t ﬁ vs.z for b = 0.2 AU and A\ = 1 AU (upper
anel) and fob = 1 AU and ) = 0.2 AU (lower
gnel). The sharp drop iff),, at the compression is

1 different from what is seen for a shock discontinuity;

see text for details.



trowski 1991; Ruffolo 1999; Gieseler et al. 1999). The very different behavior we see here for continuous
compressions cannot be understood in terms of the diffusion approximation. Instead, we believe that this is
due to pitch angle scattering within the compression region, which results in increased transport from upstream
to downstream. This in turn can explain the increased spectral index in the steady state, as greater momentum
advection from lowep values is needed to maintain the greater downstream outflow. In further work, we will
examine the acceleration time for such continuous compressions.
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