
SH 2.3.10

Simulation of Cosmic Ray Transport and Acceleration Near an
Oblique, Spherical Shock

T. Nutaro1;2, and D. Ruffolo1
1 Department of Physics, Chulalongkorn University, Bangkok 10330, THAILAND

2Permanent address: Department of Physics, Ubon Ratchathani University,
Ubon Ratchatani 34190, THAILAND

Abstract

Simulations of pitch angle transport and acceleration of cosmic rays nearby an oblique, spherical shock can
be performed using the well-known total variation diminishing method for the spatial advection terms and
treating how particles cross the shock. We aim to examine the effects of adiabatic focusing and deceleration
on the resulting particle spectrum, acceleration time and pitch angle distribution.

1 Introduction:
Curved shocks with oblique magnetic field configurations are known to accelerate particles at various

locations in the solar system, including planetary bow shocks, traveling interplanetary shocks driven by coronal
mass ejections, and corotating interaction regions, all of which are in the context of the laterally diverging solar
wind. Therefore, in addition to diffusive shock acceleration, there is also the competing process of adiabatic
deceleration due to the solar wind.

The model of a spherical shock has been a prototype for understanding the effects of a curved geometry
or a diverging wind on the shock acceleration of energetic particles ever since the pioneering work of Jokipii
(1968), and this arguably represents the simplest shock configuration after the plane-parallel case. Webb, For-
man, & Axford (1985) have examined particle acceleration at a spherical shock in the diffusion approximation,
and recently Vandas (1995) has made progress in analytically examining electron transport and acceleration
a spherical shock front. Here, we aim to examine the effects of adiabatic focusing and deceleration by nu-
merically simulating the transport of energetic charged particles in space, momentum, and pitch angle near
an oblique, spherical shock by solving a Fokker-Planck equation for the evolution of the particle distribution
function, using methods developed for the plane-parallel configuration (Ruffolo 1999). That work, and the
preceding report (Ruffolo & Chuychai 1999) have shown that interesting effects can emerge when treating
first-order Fermi acceleration in the framework of pitch-angle transport, i.e., beyond the diffusion approxima-
tion. Here we will consider the configuration of a spherical shock front at constant radiusr from a central wind
source, which approximates a traveling interplanetary shock due to a coronal mass ejection. The wind speed
is taken to be in the radial direction, with one constant speed upstream and another downstream. This configu-
ration permits one to assume Archimedean spiral magnetic fields upstream and downstream of the shock, and
has the nice property that a reference frame corotating with the Sun serves as a de Hoffmann-Teller frame (de
Hoffmann & Teller 1950) in which the magnetic field and fluid flow are parallel.



2 Theoretical Background:
We consider a theoretical framework similar to that of Ruffolo (1995), with a radial wind of speedu and

an Archimedean spiral magnetic field on either side of a spherical shock. We modify the transport equation of
that work (see also the preceding paper, Ruffolo & Chuychai 1999) to obtain
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whereF (t; �; r; p) � d3N=(dpd�dr) is the density of particles in a given magnetic flux tube,
r is the radius,
� is the pitch angle cosine in the fluid frame,
p is the particle momentum in the fluid frame,
t is the time in the fixed frame,
v is the particle speed in the fluid frame,

L(r) � �B=(dB=dz) is the focusing length,
 (r) is the “garden-hose” angle between~B andr̂, and
' is the pitch angle scattering coefficient.

The distribution function,F (t; �; r; p), is related to the phase space density,f(t; ~x; ~p), by F = 2�r2p2f .
We useF (following Ng & Wong 1979) because we can easily design the numerical finite difference method
to strictly conserve this quantity (corresponding to conservation of particles) during streaming and convection.

3 Numerical Method:
Our simulations deal with solving equation (1) by means of a finite difference method over our rectangular

simulation domain. The numerical method is a substantially modified version of that of Ruffolo (1995). In
practice, we are unable solve the whole equation at once, but we simplify the method based on the “operator
splitting” concept. That is, in a small enough time step, we group the right hand side of the transport equation
into 3 groups, involving derivatives with respect tor, �, andp, and then updateF (t; �; r; p) for each part
consecutively.

In practice, the sequence of steps we used is as follows:

1. UpdateF for �-changing processes over a time�t=2.

2. UpdateF for p-changing processes (deceleration) over a time�t.

3. UpdateF for r-changing processes (streaming and convection) over a time�t: Crossing of a shock is
also treated in this step.

4. UpdateF for �-changing processes over another�t=2:



Note that�-changing processes are treated twice for�t=2 each at the beginning and end. The reason why
their treatment is split into two parts is because their symmetric treatment in time improves the convergence
of the method to second order in�t. (Every second term disappears in the Taylor series for the error, which is
computed with respect tot+�t=2.) Steps 2 and 3 do not need to be split because these operations commute
to a reasonable approximation.

In step 3 we implement TVD differencing (Sweby 1984), tested and modified for a general Courant number
(Nutaro, Riyavong, & Ruffolo 1999) and treat particles crossing the shock, allowing us to properly deal with
a gradually varyingu cos or a discontinuousu. Other steps remain the same as in our previous work. Away
from a shock, step 3 for updatingF for r-changing processes involves solving
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Now consider the case of particles encountering an oblique, spherical shock. We assume that the shock
curvature and spherical geometry only affect the particle transport via the diverging wind (Jokipii 1968) and
the spiral field geometry; we assume that the shock’s radius of curvature is much greater than the particle
gyroradius and treat the shock crossing as if the shock were planar. In the framework of operator splitting, one
step corresponds to spatial motions (streaming + convection) so the treatment of particles crossing the shock
is naturally included in this step. We treat the transport of particles from a given cell by considering whether
the particles encounter the shock during a time increment�t. If not, then we use TVD scheme.

If particles encounter the shock, we first perform a Lorentz transformation ofp and� into the shock frame.
In general, for a static magnetic field,~F = q~v � ~B is perpendicular to~v; so the rate of doing work on the
particle, ~F �~v; is zero; thus the momentum in the shock frame is conserved throughout the encounter. We also
make the common approximation that the magnetic momentp2(1 � �2)=(2meB) is conserved as particles
cross or are reflected by the shock (Decker 1983). Since the magnetic field strength differs on the two sides of
an oblique shock, the pitch angle cosine�must also change. Particles encounting the shock from downstream
are transmitted upstream with higher� in the range(�a; 1]: The particles from upstream with a pitch angle
cosine in the range(�a; �b) are reflected back into this range due to the magnetic mirroring effect, while only
the particles which have� less than�b can transport to the downstream region. Finally, we perform a Lorentz
transformation ofp and� back into the local wind frame.

Note that the TVD algorithm effectively splits a cell into fractions of particles destined to move to two
different spatial locations. Here apply a similar method, since when particles cross the shock, some particles
might be transported to quite different� values as well. Note that for the nonrelativistic fluid speeds and
energetic cosmic ray particle speeds considered here, the fractional change in momentum for an individual
shock encounter is not large. In principle the numerical method can be applied for a grid ofp points. So far
we have treated onep value and simply assumedF / p�
 , through there are problems with this assumption
whenu=v is not small (Ruffolo 1999).

In practice, for a givenp value we define a four-dimensional array (a “transfer matrix”) that gives the
fraction of eachr-� cell near the shock that is transported to every otherr-� cell near the shock; the values of
this array are set at the start of the program. The splitting into differentr cells still makes use of the modified
TVD algorithm. Splitting in terms of� is performed by mapping final�-cell boundaries back into the initial
�-cell and splittingF according to the width of each segment of the initial�-cell that is destined to arrive
within a given final�-cell. This technique could be refined, e.g., by linear interpolation ofF (�) between
�-grid points (which is effectively what is done in second-order differencing for the Lax-Wendroff method);
however, we decided that this level of detail is not necessary given the approximate nature of the assumption
of magnetic moment conservation.

Results will be presented at the Conference.
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