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Abstract

The Riemann problem is an initial value problem in which one often considers the evolution of a system which
has discontinuous initial conditions. In ideal gasdynamics, the problem is well understood. Here we consider
the Riemann problem in the presence of cosmic rays. Although the effect of cosmic rays on shock waves
is reasonably well understood in the hydrodynamic approximation, the cosmic ray Riemann problem has not
been studied in any detail. This problem is particularly important when considering the effect of cosmic rays
on the termination shock and heliopause, and the interaction of supernovae shocks with progenitor stellar wind
termination shocks.

1 Introduction:
It is, of course, possible for a system to begin with discontinuous initial conditions. Such an initial value

problem, the Riemann problem, is well studied for ideal gasdynamics and the solution can be determined
analytically (Landau & Lifshitz, 1959). If the initial conditions happen to satisfy the Rankine Hugoniot con-
ditions for a shock wave, the solution is trivial. If, on the other hand, the initial conditions do not satisfy the
Rankine Hugoniot relations, the gasdynamic system will generally break up into three waves which allow the
two initial states to be connected in such a way that mass, momentum, and energy are conserved. These three
waves will generally be a combination of shock waves, rarefactions, and contact discontinuities. The exact
combination of waves depends on the initial state.

The standard gasdynamic Riemann solution consists of a contact discontinuity bounded by either two
shock waves, two rarefactions, or a shock wave and a rarefaction. The two outer waves (shock or rarefaction)
move away from the initial discontinuity into the two initial, constant states. Between these two waves the
pressure and velocity are constant while the density consists of two constant states on either side of the contact
discontinuity (Landau & Lifshitz, 1959). The actual solution is determined by solving the Hugoniot relation
across each of the outer two waves for the common central pressure (see Chorin & Marsden, 1990). One
can then determine the two density values and the common velocity. The contact discontinuity convects with
this flow velocity. Whether the outer two waves are shocks, rarefactions or a combination is determined by
comparing the calculated central pressure with the initial pressures (see Landau & Lifshitz, 1959).

What we consider here is how the addition of cosmic rays effects the standard Riemann problem solution.
A considerable body of work has investigated the effect of cosmic rays on shock waves (Axford, Leer, &
McKenzie, 1982; Drury &Volk, 1981; Donohue, Zank, & Webb, 1994) but the Riemann problem has not been
studied in any detail. Webb et al. (1995) did consider a collision between a gasdynamic shock and a cosmic
ray modified shock but did not, however, address the Riemann problem itself.

We use a one-dimensional, Cartesian, two fluid model (Axford, Leer, & McKenzie, 1982). The cosmic
rays are assumed to have a negligible mass and contribute only a pressure. The equations are
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where�, u, andPg are the thermal gas density, velocity, and pressure.Pc is the cosmic ray pressure which has
a diffusion coefficient� and evolves according to equation (4), determined by taking a moment of the cosmic



ray transport equation. The terms
g and
c are the gas and cosmic ray spectral indices taken to be 5/3 and
4/3 respectively. The pure gasdynamic equations are obtained by settingPc to zero. The above equations are
solved using a time explicit Eulerian hydrodynamic code (Pauls, Zank, & Williams, 1995).

2 The Riemann Problem
In the cases considered, the velocity is always positive and hence there is a net motion from left to right. To

avoid waves propagating out of the right
hand side of the box, we choose our dis-
continuity to be 1/5 of the way along the
grid. The grid is initialized to two dif-
ferent constant states, one on either side
of this discontinuity. We consider both
a purely gasdynamic situation and one in
which cosmic rays are included. In both
cases we consider three initial value prob-
lems. For each problem the gas variables
are the same in both the gasdynamic and
cosmic ray cases. The initial gas condi-
tions are shown in Table 1. The subscripts
1 and 2 refer to the left hand and right
hand states respectively. In all three prob-
lems the gas pressures and densities are
the same and are chosen such that the the
sound speed is greatest to the right of the
discontinuity. When cosmic rays are in-
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Figure 1: Gasdynamic Riemann problem solutions for the three
cases discussed in the text. The gas density, flow velocity, and
pressure are plotted.

cluded they are constant across the entire box and have a value equal to the gas pressure on the left of the
discontinuity. All the values that are presented are normalized.
2.1 Gasdynamics: Figure 1 shows the solution to the three abovementioned gasdynamic Riemann prob-
lems. For each case, we plot the gas density, flow velocity, and pressure. In each plot the dotted lineillustrates
the discontinuous initial conditions, the dashed line shows the
solution at timet = to while the solid line gives the solution
at timet = 5to. It is clear that in all three cases either a shock
wave or a rarefaction propagates into each of the two constant
initial states. In between these two waves the pressure and
flow velocity are constant while the density contains a contact

� u Pg

Case 1 �1 > �2 u1 = u2 Pg1 < Pg2

Case 2 �1 > �2 u1 > u2 Pg1 < Pg2

Case 3 �1 > �2 u1 < u2 Pg1 < Pg2

Table 1: Initial gas conditions.

discontinuity. This contact discontinuity essentially separates the two initial states. In Figure 1a the solution
consists of a shock moving into the left hand fluid and a rarefaction moving to the right. Figure 1b shows
two shock waves, one moving into the left hand fluid and the other to the right while Figure 1c shows two
rarefactions. Due to the high left hand flow velocity, the left shock in Figure 1b has a positive velocity even
though it is actually moving into the left hand fluid. In both cases where shocks form, the shocks remain
unchanged with time. The rarefactions, by contrast, are broader att = 5to than att = to.

2.2 Cosmic Rays: Figure 2 illustrates the effect of adding cosmic rays to the three Riemann problems.
The gas density, flow velocity and pressure are plotted together with the cosmic ray pressure. The cosmic rays
are assumed to have the same pressure as the left hand fluid and to be initially constant across the box. As
before, the dotted line represents the initial conditions, the dashed lines give the solution att = to and the
solid lines give the solution att = 5to. The initial gas conditions ineach of these three cases are identical to
those in the corresponding gasdynamic case.



The dashed lines in the density and pressure plots of Figure 2a show that, as in the gasdynamic case, a shock
propagates to the left and a rarefaction to
the right. The cosmic ray pressure gradi-
ent has, however, decelerated the flow up-
stream of the shock creating a foreshock. It
has also modified the flow to the right of the
rarefaction, smoothing its leading edge. At
t = 5to (solid line) both the shock and rar-
efaction have been completely smoothed.
The effect of the cosmic ray pressure gra-
dient is also evident in Figures 2b and 2c.
In Figure 2b we have, as expected from the
corresponding gasdynamic case, two shock
waves. Once again, the cosmic ray pressure
gradient has resulted in a foreshock forming
upstream of both shocks. In this case, how-
ever, the shocks have not been completely
smoothed byt = 5to. The cosmic ray pres-
sure gradient may completely smooth these
shocks at a later time, but that is not clear.
As in the gasdynamic case, the velocity be-
tween the two outer waves is constant. In
this case, however, it is the sum of gas and
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Figure 2: Cosmic ray Riemann problem solutions with the same
initial gas conditions as in the gasdynamic case.

cosmic ray pressure that is constant and not the gas pressure alone. The cosmic ray pressure gradient across the
contact discontinuity acts as a source, or sink, of momentum and manifests itself as an increase, or decrease,
in density. This causes the peaks and troughs that can be seen on either side of the contact discontinuity in
the density plots. In Figure 2c there are two rarefactions both of which have been completely smoothed by
t = 5to.

In Figure 2b one can also see that the separation between the two shocks is greater than in the corresponding
gasdynamic case. This is due to the cosmic ray pressure changing the long wavelength sound speed and hence
the shock propagation speed (Webb et al., 1995). This increased sound speed also applies to the other two
cosmic ray Riemann problem solutions although the increased separation is not as easy to see.

3 Discussion
Although the cosmic ray Riemann problem looks somewhat complicated, it can be understood in a straight-

forward way. Initially the cosmic ray pressure is constant and hence, apart from changing the sound speed,
does not effect the Riemann problem. The initial solution is therefore determined by the gasdynamic condi-
tions. It is thus possible to determine analytically the flow velocity, gas pressure and density in the region
between the two waves that propagate out into the two constant states. The pressure that is calculated de-
termines whether the outer waves are shocks or rarefactions and the flow velocity gives the speed at which
the contact discontinuity propagates. In the case of shocks, their Mach number and compression ratio can be
determined. The technique of Axford, Leer, & McKenzie (1982) or Drury & Volk (1981) can then be used to
determine how the cosmic rays will effect the shock waves. Depending on the shock Mach number, the cosmic
rays will either completely smooth the shock (as in Figure 2a) or they will create a foreshock upstream of the
actual shock discontinuity (as in Figure 2b). If the cosmic rays completely smooth the outer two waves, then
these structures will propagate at the long wavelength sound speed determined by both the gas and cosmic ray
pressures.

In the gasdynamic case, equations (1), (2) and (3) can be written in characteristic form (Whitham,



1974). This cannot, strictly speaking, be
done in the cosmic ray case as equation
(4) is parabolic. An approximate set of
characteristic equations can be obtained
if we consider the@Pc=@x term in equa-
tion (3) to be a source term and assume
that equation (4) is not part of the sys-
tem. This ignores the fact that the cosmic
ray pressure changes the sound speed but
the characteristic curves that are obtained
are still a useful illustration of the solu-
tion. Figure 3 shows the the forward and
backward propagating sound speed char-
acteristics for both the gasdynamic (Fig-
ure 3a) and cosmic ray (Figure 3b) Rie-
mann problems of Figures 1a and 2a. In
the top panel of Figure 3a one can see
two characteristics that have intersected,
so necessitating the formation of a shock.

Figure 3: Gasdynamic sound speed characteristics for both the
gasdynamic and cosmic ray Riemann problems.

The characteristics on either side of these two are also converging and will intersect at a later time. In the
lower panel a region exists where the characteristics are diverging, indicating the presence of a rarefaction.

In Figure 3b it appears that some characteristics should intersect. Before they do, however, they bend and
become parallel. This is due to the cosmic ray smoothing of the shock. If our spatial resolution were better
some characteristics would intersect at early times but beyond a certain time this would no longer occur and
all points, after this time, can be traced back uniquely to the original data. In the lower panel one sees that
characteristics that initially appear to be diverge bend and become parallel. This indicates that beyond a certain
time all points can be traced back to the initial data, unlike the corresponding gasdynamic case.

4 Conclusion
The solution to the cosmic ray Riemann problems is given initially by the solution to the corresponding

gasdynamic Riemann problem, except that the cosmic ray pressure modifies the long wavelength sound speed.
Thus the rarefaction and shock wave properties can be determined initially. As the system evolves, the cosmic
ray pressure will be modified by these waves and its gradient will start to smooth both the shocks and the
rarefactions. Especially in the case of shocks, the extent to which these waves are smoothed depends on their
initial properties (Axford, Leer, & McKenzie, 1982; Drury & Volk, 1981).
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